REVIEW

Check for updates

Cite this: DOI: 10.1039/d0bm00222d

Received 10th February 2020, Accepted 14th April 2020 DOI: 10.1039/d0bm00222d

rsc.li/biomaterials-science

1. Introduction

Cancer is one of the major health problems since it is associated with high incidence and mortality rates.¹ The conventional therapies (*e.g.* surgery, chemotherapy, and radiotherapy) currently used in the clinic present several disadvantages, such as low solubility and selectivity, which hinder their therapeutic effectiveness.² This reality has been pushing researchers to develop new and more effective therapeutic approaches, such as immunotherapy, gene therapy, and hyperthermia.^{3–5}

Hyperthermia-based cancer treatments explore the exposition of the target tissue to high temperatures that can induce the death of cancer cells (*i.e.* thermal ablation, induced by temperatures higher than 45 °C) or increase the sensitivity of cancer cells to other therapeutic modalities (mild hyperthermia, temperatures between 40 and 45 °C).⁶ In conventional hyperthermia, the temperature increase in the target tissue is often achieved through outside-in approaches (*e.g.* superficial hyperthermia, regional hyperthermia, and whole-body hyperthermia based on the utilization of a thermal bath, microwaves, and radiofrequency).⁷ This creates a temperature gradient that peaks in the body surface and decreases with the

Overview of the application of inorganic nanomaterials in cancer photothermal therapy

Natanael Fernandes,^a Carolina F. Rodrigues,^a André F. Moreira^b*^a and Ilídio J. Correia^b*^{a,b}

Cancer photothermal therapy (PTT) has captured the attention of researchers worldwide due to its localized and trigger-activated therapeutic effect. In this field, nanomaterials capable of converting the energy of the irradiation light into heat have been showing promising results in several pre-clinical and clinical assays. Such a therapeutic modality takes advantage of the innate capacity of nanomaterials to accumulate in the tumor tissue and their capacity to interact with NIR laser irradiation to exert a therapeutic effect. Therefore, several nanostructures composed of different materials and organizations for mediating a photothermal effect have been developed. In this review, the most common inorganic nanomaterials, such as gold, carbon-based materials, tungsten, copper, molybdenum, and iron oxide, which have been explored for mediating a tumor-localized photothermal effect, are summarized. Moreover, the physicochemical parameters of nanoparticles that influence the PTT effectiveness are discussed and the recent clinical advances involving inorganic nanomaterial-mediated cancer photothermal therapy are also presented.

distance from the external heat source.⁸ Therefore, the healthy tissues will also be affected by the temperature increase leading to undesired side-effects.⁹

With this in mind, researchers have been focused on the development of more efficient hyperthermia approaches, particularly those capable of inducing a localized (*i.e.* tumor confined) temperature increase.¹⁰ In this field, nanoparticles capable of generating heat in response to outside stimuli have been used to overcome the limitations of conventional hyperthermia approaches (Fig. 1).¹¹ In fact, the nanoparticle size confers to them the innate capacity to accumulate on the tumor by taking advantage of the defective vasculature in the tissue (the enhanced permeability and retention effect and/or vascular bursts).¹² Then, the nanoparticles can mediate the localized thermal destruction of the cancer cells triggered by external stimuli, minimizing the damage on the surrounding healthy tissues.¹³ Such features allowed the development of several nanomedicine-based hyperthermia approaches that can be classified according to the external trigger used for the activation of nanoparticles such as photothermal, magnetic hyperthermia and ultrasound hyperthermia therapies.¹⁴⁻¹⁶

Among them, the nanomaterial-mediated photothermal therapy promotes the selective death of cancer cells by irradiating the target area with laser light.¹⁷ In the literature, several materials have already been explored to mediate this effect, such as gold, carbon, copper, tungsten, iron, and molybdenum.^{18–23} Moreover, in this approach, the utilization of near-infrared (NIR) radiation is essential, particularly the

View Article Online

^aCICS-UBI – Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal. E-mail: afmoreira@fcsaude.ubi.pt; Fax: +351 275 329 099; Tel: +351 275 329 002

^bCIEPQF—Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal. E-mail: icorreia@ubi.pt

Fig. 1 Representation of the conventional and localized hyperthermia. Conventional hyperthermia creates a heat gradient from the surface region of the body to the interior. The localized hyperthermia approaches promote the specific heating of the tumor tissue, avoiding damage in the surrounding areas.

NIR-I and NIR-II radiation, since the major biological components (*e.g.* proteins, melanin, hemoglobin, collagen, and water) present minimal or insignificant absorption in this region of the spectra.^{24,25} In this way, the utilization of radiation in the 750–1200 nm region guarantees the reduction of the off-target interactions and the maximum penetration in the human body, enhancing the therapeutic outcome.¹⁷

In this review, the most common inorganic nanomaterials explored for cancer photothermal therapy are presented, summarizing the parameters affecting the photothermal capacity. Furthermore, practical examples of their application in cancer therapy and the clinical advances based on the inorganic nanomaterial-mediated cancer PTT exploring both NIR-I and NIR-II stimuli are also presented.

2. Nanoparticle-mediated photothermal therapy

2.1. General properties

The nanomaterial cancer PTT involves the irradiation of a specific area with a NIR laser that leads to the activation of the nanostructures accumulated within the tumor.²⁶ Then, the local conversion of the NIR laser energy into heat mediated by nanoparticles induces a localized hyperthermia effect.²⁷ Therefore, the tumor selectivity of the nanomaterials is essen-

tial for PTT effectiveness.²⁸ The accumulation of the nanoparticles in the tumor tissue can occur through passive or active targeting phenomena.²⁹ The passive targeting arises due to the high proliferative rate of cancer cells, leading to the formation of defective vascular capillaries with fenestration sizes greater than 200 nm, and lymphatic vessels.³⁰ This abnormal vasculature facilitates the extravasation and retention of the nanoparticles in the tumor tissue.³¹ Furthermore, more recently, it has also been described that the enhanced permeability in tumors can be the result of transient vascular bursts that allow the diffusion of blood to the tumor interstitium.³² On active targeting, the accumulation of the nanoparticles on the tumor can be mediated by receptor-ligand or antigen-antibody interactions, which favor the interaction of the nanoparticles with the cancer cells.³³ Usually, in active targeting the nanomaterials are modified to explore the specific recognition of molecules overexpressed at the tumor site, such as the folate and biotin receptors.^{34,35}

Nevertheless, independently of the process that mediates the accumulation of the nanoparticles in the tumor tissue, a prolonged blood circulation will increase the probability of the nanoparticles to accumulate/interact with the cancer cells.³⁶ In this way, there are several physicochemical parameters (*e.g.* nanoparticle size, surface charge, and corona) that have an impact on the nano-bio interaction and consequently on the blood circulation time (reviewed in detail in the studies in ref.

37-39). For example, the development of nanoparticles with sizes from 100 to 200 nm has been described as optimal for the intravenous administration in the human body.¹² This size range avoids the rapid clearance by the kidneys (nanoparticle size <5 nm), and the accumulation in the liver (nanoparticle size <50 nm) and spleen (nanoparticle size >200 nm), while maintaining the capacity to extravasate through the tumor fenestrae (nanoparticle size <200 nm).³¹ Despite these ideal size values, Li and co-workers demonstrated that by increasing the size of gold nanoparticles (6.2, 24.3, 42.5 and 61.2 nm) a higher nanoparticle uptake by the liver and spleen (44-55 %ID g⁻¹ and 30-40 %ID g⁻¹, respectively) occurred after 24 h of administration.40 Similarly, Larsen and co-workers also observed an ≈8-fold increase in the uptake of PEGylated iron oxide nanoparticles by macrophage cells by increasing the size from 20 to 40 nm.41 Moreover, Liu et al. reported that PEGylated gold nanoparticles with a size of 30 nm present an increased tumor uptake when compared to their counterparts with 60 nm size $(2.11 \pm 0.64 \text{ } \nu s. 0.88 \pm 0.46 \text{ } \% \text{ID g}^{-1}).^{42}$ Additionally, Perrault and colleagues observed that PEGylated gold nanoparticles with 20 nm size presented an enhanced diffusion in the tumor interstitial space when compared to other equivalents with higher size, 60 and 100 nm.43

On the other hand, the nanoparticle surface charge can favor the uptake by the reticuloendothelial system (surface charge <-10 mV) and the interaction with serum proteins (surface charge >10 mV).⁴⁴ Therefore, nanoparticles with neutral surface charge (± 10 mV) often present the longest circulation time.⁴⁵ Additionally, the adsorption of proteins on the surface of the nanoparticles can induce charges in the surface

charge, prompt the aggregation of the particles, or even facilitate the recognition of the nanoparticles by the reticuloendothelial system.⁴⁶ This can be overcome by the introduction of hydrophilic and antifouling materials (*e.g.* polyethylene glycol (PEG) and polyoxazolines) or even self-membranes on the surface of the nanoparticles (Fig. 2).⁴⁷ Sharker and colleagues demonstrated that the functionalization of tungsten oxide nanoparticles with hyaluronic acid increased their biocompatibility even at high doses (1 mg mL⁻¹).⁴⁸ Furthermore, Xuan and coworkers reported that a gold nanoshell coating with self-macrophage membranes improved the blood circulation time and tumor accumulation from \approx 1.6 to \approx 7.5 %ID g⁻¹.⁴⁹

Nonetheless, when the nanomaterials are aimed for cancer PTT applications, the initial focus of the researchers is the nanoparticle light/heat conversion efficiency. In nano-sized photothermal agents the photothermal capacity is closely related to the surface plasmon resonance (SPR) that corresponds to the light-induced resonant oscillation of the free electrons on the surface of the particles.⁵⁰ In this process, the nanomaterials can mediate the light scattering or absorption.⁵¹ The light absorption induces the excitation of the free electrons on the surface of the particles and the subsequent relaxation of the electrons can release the absorbed energy in the form of luminescence or heat.⁵² In PTT, nanoparticles with high absorption efficiency and low luminescence capacity are required to guarantee the most effective light/heat conversion. In addition, a localized temperature increase will only occur when the laser irradiation time is longer than the nanoparticle relaxation time, since for shorter irradiation times the gener-

Fig. 2 Representation of the main factors that affect the PTT mediated by nanomaterials. The thermal effect induced by nanoparticles has a direct impact on their photothermal conversion efficiency (*i.e.* capacity to convert the energy absorbed into heat) and the irradiation parameters, such as the irradiation time and the power density. Furthermore, the accumulation of the nanomaterials in the tumor tissue will affect the therapeutic effectiveness.

Review

ated heat is only confined to the nanoparticle and does not diffuse to the external medium.⁹ Therefore, both the nanoparticle light/heat conversion efficiency and laser parameters (*e.g.* irradiation time and power) have to be optimized for an efficient PTT to be accomplished (reviewed in detail in the studies in ref. 11, 53 and 54). Nevertheless, it is worth noting that the NIR light can only penetrate a few centimeters in the human body, which will hinder the biological performance of the PTT mediated by nanomaterials in deep-seated tumors.^{21,50} Therefore, researchers have developed different approaches to enhance the antitumoral performance of nanomaterials, such as the application of tissue implanted NIR light sources or even by combining PTT with chemotherapy, immunotherapy and photodynamic therapy.^{55–58}

In the following sections, the most explored inorganic nanomaterials (such as gold, carbon-based materials, tungsten, copper, molybdenum, and iron oxide) for mediating a tumor-localized photothermal effect (Table 1) and their combination with other therapeutic approaches are described, highlighting the physicochemical parameters of nanoparticles that influence the PTT effectiveness.

2.2. Gold nanomaterials

Gold nanostructures are one of the most explored nanomaterials to mediate a photothermal effect, as already reviewed in detail in the studies in ref. 54,59 and 60. This is attributed to the localized SPR of gold nanomaterials that can mediate a strong light absorption and/or scattering.⁶¹ These nanostructures are usually produced by promoting gold nucleation upon reduction of gold salts, using stabilizing agents to avoid nanoparticle aggregation.^{62,63} Furthermore, the optimization of the synthesis process allows the tuning of the resonance wavelength to the NIR region of the spectra endowing a strong PTT capacity to the gold nanomaterials.⁶⁴ In fact, several works have already demonstrated that the PTT capacity of gold nanomaterials is dependent on the particle size, shape (e.g. spheres, nanorods, nanostars, and nanocages), and organization.54,65,66

2.2.1. Gold nanosphere-based structures. Gold nanospheres present a typical absorption band in the 500 to 550 nm region that can suffer a red-shift, on increasing the particle size.⁶⁷ Nevertheless, the gold nanosphere size increase does not allow the fine-tuning of the absorption peak to the NIR region (i.e. usually only up to 600 nm).^{68,69} When PTT applications are envisioned, the application of gold nanospheres occurs when organized in nanosphere shells and/or clusters. The localized SPR of gold nanosphere-based shells and clusters presents a shift in the absorption peak from the visible to the NIR region of the spectra, when interparticle gaps are decreased.^{70–72} This is attributed to the interparticle interactions that result in the coupling of the plasmon oscillations due to interactions of the near-field of one particle with the adjacent ones in close proximity.73,74 Li et al. produced U11 targeted gold nanoclusters containing a cathepsin E sensitive PDT therapy prodrug (5-ALA) and a cyanine dye (Cy5.5) for the pancreatic ductal adenocarcinoma photothermal and

Biomater. Sci

photodynamic therapy.⁷⁵ For this purpose, gold spheres with a 10 nm diameter were initially modified with Cys-Arg-Gln-Ala-Gly-Phe-Ser-Leu-5-ALA (CRQAGFSL-5-ALA) and Cys-Arg-Gln-Ala-Gly-Phe-Ser-Leu-Cy5.5 (CRQAGFSL-Cy5.5). Then, the gold nanoparticles were crosslinked using 1,9-nonanedithiol (i.e. exploring) gold-thiol interactions to form spherical gold clusters with an \approx 53 nm diameter, which were further functionalized with PEGylated U11 targeting peptides. The resulting gold nanoclusters presented a red-shift of the absorption peak of the gold spheres from 532 nm to 544 nm, as well as an increased absorption capacity in the 700-800 nm region. Additionally, the authors reported that the gold nanoclusters could mediate a temperature increase from 20 °C to around 50 °C after being irradiated with a NIR laser (750 nm, 2 W cm^{-2} for 5 min). Moreover, the U11 targeted gold nanoclusters were found to be biocompatible at concentrations as high as 5 nM (i.e. PANC1 CTSE cell viability was greater than 80% after 24 hours of incubation with gold nanoclusters) and showed a preferential accumulation on the tumor tissues. The authors also demonstrated that the intravenous administration of U11 targeted gold nanoclusters containing 5-ALA and Cv5.5 (2 pmol per mouse) could mediate an antimoral effect. In fact, an inhibition of the tumor growth has been reported when only PDT or PTT treatments were performed, whereas the combinatorial PDT/PTT treatment resulted in the almost complete eradication of the tumors, after 15 days. In a similar approach, Park and colleagues produced albumin nanoparticles containing gold nanoclusters and Cy5.5 for cancer fluorescence imaging and PTT.⁷⁶ The particles were produced by mixing the gold nanospheres (\approx 4.4 nm in diameter) with different amounts of albumin in order to promote their agglomeration. A close entrapment of the gold nanospheres on the albumin particles resulted in a greater absorbance over the 600-900 nm region. Moreover, nanoparticles formulated with 10 mg mL⁻¹ of albumin were able to mediate an increase in the temperature up to 70 °C after irradiation with a NIR laser (808 nm, 1.5 W cm⁻² for 10 min). Additionally, the *in vivo* assays demonstrated that the intravenous administration of albumin/gold nanoclusters (200 μ L at 10 mg mL⁻¹) remarkably suppressed the tumor growth. A reduction of the tumor size from 150 mm³ to 17.8 mm³ upon NIR laser irradiation (808 nm, 1.5 W cm⁻² for 10 min) was observed. Wang and coworkers developed gold nanoshell coated chitosan modified liposomes loaded with resveratrol for the chemo-PTT of cancer.⁷⁷ For that purpose, small-sized gold spheres were attached to the surface of chitosan modified liposomes (formation of Au-N bonds) and subsequently reacted with a growth solution (gold precursor and reducing agent). The growth solution allows the assembly of new gold atoms on the surface of the small-sized gold spheres forming large gold nanoparticles and a uniform shell at the liposome surface. The authors reported a red-shift in the absorption peak with the growth of the gold nanoparticles in the liposome surface, exhibiting a broad absorption band in the 550-800 nm region. In addition, the authors also observed that the photothermal effect generated by these nanomaterials remained constant during 5 cycles of

T able 1 Ov [,] length; (AR) ¿	erview of the different prope. aspect ratio; (MS) mesoporous	rties of inorganic nanop silica; and (D) diameter	barticles (gold, tungs	ten, molybdenum,	iron oxide, copper, and	carbon-based mate	erials) for applicatio	n in PTT. (W) Widt	h; (L)
					PTT				
Materials	Morphology and surface modification	General properties	Absorption band	Dose	Laser	Temperature	PTT conversion efficiency	Type of cancer in vitro/in vivo	Ref.
Gold	Rabies virus-mimetic silica-coated gold	L: 79.9 nm; W: 20.1 nm; AR: 4; sílica	820 nm	0.1 mM	808 nm, 1.5 W cm ⁻² for 5 min	$T_{ m max} pprox 50.0~^{\circ}{ m C}$	Ι	N2a cells/N2a tumor-bearing	176
	HA and RGD with MS-	Snell: 13.8 nm L: 50 nm; W: 10 nm; ciliog choll: 15 nm	520 and 780 nm	$40 \ \mathrm{\mu g \ m L^{-1}}$	808 nm; 2.0 W cm ⁻²	$T_{\rm max} = 43.5$ °C	I	mice SKOV-3 cells	177
	MS-coated gold nanotods MS-coated gold nanotods loaded with indocyanine green, end-capped with P-cyclodextrin and RLA	L: 57.3 nm; V: L: 57.3 nm; W: 16.2 nm; AR: 3.47; sílica shell: 21 nm	813 nm	4.2 mg mL^{-1}	808 nm; 2.0 W cm ⁻² for 9 min	$\Delta T = 31.2 \ ^{\circ}\mathrm{C}$	I	MCF-7 cells/ MCF-7 tumor- bearing mice	178
	pepute auctioned MS-coated gold nanorods coated with <i>in situ</i> formed silver	L: 46 nm; W: 19 nm; silica shell: 15 nm	684 nm	100 µg mL ⁻¹	780 nm; 3.0 W cm ⁻² for 10 min	$T_{\rm max} = 44.6 ^{\circ}{ m C}$	I	HeLa and L02 cells	179
	nanopatucies Mesoporous silica-coated gold nanorods, β-cyclodextrin as gatekeeper functionalized with lactobionic acid and PEG	L: 39.8 nm; W: 10.2 nm; AR: ≈3.9; sílica shell: ≈14 nm	677 and 791 nm	25 and 50 μg mL ⁻¹	808 nm; 0.37 and 1.01 W cm ⁻² for 8 min	$T_{\rm max} \approx 64.8 \ ^{\circ}{\rm C}$ (50 µg mL ⁻¹ and 1.01 W cm ⁻²); $T_{\rm max} \approx 39.1 \ ^{\circ}{\rm C}$ (25 µg mL ⁻¹ and	I	HepG2 and COS7 cells/ HepG2 tumor- bearing mice	180
	Capped with poly Capped with poly (NITDAAM-Co-DVIM)	L: 45 nm; W: 10 nm; AR: 4.5; silica shell: ∞20 nm	850 nm	60 μg mL ⁻¹	850 nm; 100.0 mW for 5 min	$T_{\rm max} \approx 65.0 ^{\circ}{\rm C}$	I	HeLa cells	181
	Bacterialite mesoporous silica coated gold nanorods functionalized with PEG		805 nm	$0.5 \mathrm{~mg~mL}^{-1}$	808 nm; 0.25 W cm ⁻² for 10 min	$T_{\rm max} = 45.0 \ ^{\circ}{ m C}$	29.6%	4T1 cells/4T1 tumor-bearing mice	182
	Nanostars	Size: 30 nm containing 95.5% gold and 4.5% silver; size: 60 nm containing 96.9% containing 96.9%	706 nm (60 nm) and 945 nm (30 nm)	0.5 nM (30 nm)	980 nm; 0.8 W cm ⁻² for 20 min	$T_{ m max} \approx 42.0 \ \circ C$ (30 nm)	94% (30 nm) and 90% (60 nm)	Mouse sarcoma tumor-bearing mice	42
	Gold nanostar coated hollow MS encapsulated with PFH and	Nanostar size: 60 nm; hollow MS: 200 nm	520 and 795 nm	20 mM Au concentration	808 nm; 1.2 W cm ⁻² for $\approx 6 \text{ min}$	$\Delta T = 40.2 \text{ °C}$	67.1%	C6 cells/C6 tumor-bearing mice	183
	Organosilica coating onto gold nanostars with conjugation of Gd cheates and functionalized with DEC	Core: 60 nm; organosilica shell: 20 nm	800 nm	I	808 nm; 0.5 W cm ⁻² for 10 min	$T_{\rm max} = 68.0 \ \circ C$	I	MDA-MB-231 cells/ MDA-MB-231 tumor-bearing	184
	Gold nanostar core, MS shell coated with FA	Core: 50 nm; silica shell: 50–60 nm; total size: ≈150 nm	≈800 nm	38.5 μg mL ⁻¹	808 nm; 800 mW for 5 min	T _{max} = 51.27 °C	31.21%	HeLa and A549 cells/HeLa tumor-bearing mice	185

Review

View Article Online

				PIT		Line	g	
General	properties	Absorption band	Dose	Laser	Temperature	PTT conversion efficiency	Type of cancer <i>in vitro/in vivo</i>	Ref.
D: 74.2 nm shell: 18 nr	; silica n	726 nm	0.35 mM Au concentration	808 nm; 1.3 W cm ⁻² for 5 min	$\Delta T = 15.1 \ ^{\circ}\mathrm{C}$	40%	HeLa cells/HeLa tumor-bearing mice	186
Total size: 5.	5.1 nm	800 nm	20 mM	808 nm; 1.2 W cm ⁻² for 5 min	$\Delta T = 55.0 \ ^{\circ}\mathrm{C}$	79%	U87MG cells/ U87MG tumor- bearing mice	187
Size of the lip 149.4 nm	osomes:	550-900 nm	58 μg mL ⁻¹	808 nm; 2.0 W cm ⁻² for 10 min	$T_{ m max}$ = 43 °C	I	143B and HeLa cells/U14 tumor- bearing mice	188
Silica core: 120 gold nanoshel) nm; l: 9 nm	700-900 mu	175 µg mL ⁻¹	808 nm; 1.2 W cm ⁻² for 5 min	$T_{ m max} \approx 52.5~{}^{\circ} m C$	32.63%	HeLa and MDA-MB231 cells/ MDA-MB231 tumor-bearing mice	78
Size: 186.2 nm		N.D.	I	808 nm; 2.0 W cm ⁻² for 5 min	$T_{ m max} pprox 62.0~{}^{\circ} m C$	I	HeLa cells	189
Gold nanoshel 12 nm; MS: 80 macrophage membrane: 20	l: nm; 0 nm	810 nm	$1 \mathrm{mgmL^{-1}}$	808 nm; 1.0 W cm ⁻² for 5 min	$\Delta T = 30.0 \ ^{\circ}\mathrm{C}$	I	4T1 cells/4T1 tumor-bearing mice	49
Ultra-small nanoparticles: 6 size: 100–180 nn	iu u	520 nm	200 µg mL ⁻¹	800 nm; 100 J cm ⁻² for 1 min	$\Delta T = 20.0 \text{ °C}$	I	SUM-159 and U87-MG cells	190
Agglomeration of gold nanoparticle with an average si of 4.4 nm	s	mn 000009	10 mg mL^{-1}	808 nm; 1.5 W cm ⁻² for 10 min	$T_{ m max} pprox 70.0 \ ^{\circ} m C$	I	HCT 116 cells/ HCT 116 tumor- bearing mice	76
Ag nanocube L: ≈60 nm; condens silica layer: ≈8 nr MS: ≈25 nm; tota size: 130 nm	sed n; l	530 nm	50 µg mL ⁻¹	808 nm; 1.0 W cm ⁻² for 10 min	$\Delta T = 16.0 \text{ °C}$	I	HeLa cells	19
Ag nanocube: ≈35 nm; gold wal ≈4 nm; silica laye 45 nm; average si 120-130 nm	l: :r: ze:	789 nm	1.20 mg mL^{-1}	808 nm, 123.8 mW cm ⁻² for 10 min	ΔT = 15.3 °C	I	MCF-7 cells	19
Gold nanocube: 50 nm; total size: 170.6 ± 4.2 nm		802 nm	9.7 μg mL ⁻¹	808 nm; 1.25 W cm ⁻² for 10 min	$\Delta T = 28.2 \ ^{\circ}\mathrm{C}$	I	SMMC-7721 cells/SMMC-7721 tumor-bearing mice	06

Published on 15 April 2020. Downloaded by University of Beira Interior on 5/3/2020 12:43:48 AM.

Table 1 (Contd.)

Biomaterials Science

					PTT				
Materials	Morphology and surface modification	General properties	Absorption band	Dose	Laser	Temperature	PTT conversion efficiency	Type of cancer in vitro/in vivo	Ref.
Tungsten	WO _{3x} @γ-poly-1-glutamic acid nanoparticles	Size: 5.75 nm	N.D.	200 mg mL^{-1}	1064 nm; 0.5 W cm ⁻² for 10 min	ΔT = 22.3 °C	25.8%	HUVEC and 4T1 cells/4T1 tumor- bearing mice	137
	Dopamine-conjugated HA encapsulating coated WO ₃	Size: 176.25 nm	800-1100 nm	$1~{ m mg}~{ m mL}^{-1}$	808 nm; 2.0 W cm ⁻² for 5 min	$T_{\rm max} = 44.0 \ ^{\circ}{ m C}$	11.78%	MDAMB-231/ MDAMB-231/ MDAMB-231 tumor-bearing	48
	W ₁₈ O ₄₉ nanoparticles with integrin-targeting peptide iRGD and HSP90- ishibitor 17AAG	W ₁₈ O ₄₉ nanoparticle size: 10 nm; total size: 120 nm	600-1000	100 µg mL ⁻¹	808 nm; 2.0 W cm ⁻² for 5 min	$\Delta T = 21.8 \ ^{\circ}\mathrm{C}$	I	MKN-45P cells/ MKN-45P tumor- bearing mice	136
	Platelet membranes as nanocarriers to co-load W ₁₈ O ₄₉ nanoparticles	W ₁₈ O ₄₉ nanoparticle size: 5 nm; size: 115 nm	600-1200	1 mg tungsten per ml	808 nm; 1.0 W cm ⁻² for 10 min	$\Delta T = 37.4 ^{\circ}\mathrm{C}$	I	PBMCs and Raji cells/Raji lymphoma	135
	$(NH_4)_x WO_3$ nanorods	W: 100 nm; L:	800–1200 nm	$400 \ \mu g \ ml^{-1}$	808 nm; 2.0 W cm ^{-2}	$\Delta T = 40.0 ^{\circ}\mathrm{C}$	32.7%	SUM-159 and	193
	Lentinan decorated W.o.O., nanorods	W: 40 nm; L: 180 nm; Withingh laver: 10 nm	650–1200 nm	$125 \ \mu g \ m L^{-1}$	$980 \text{ nm}; 0.4 \text{ W} \text{ cm}^{-2}$ for -13 min	$\Delta T = 15.1 \ ^{\circ}\mathrm{C}$	33.86%	MDA-MB231	140
	Cs _x WO ₃ nanorod coated with polyelectrolyte ultilayers	W: 26 nm; L: 85 nm	780–2500 nm	$0.5 \mathrm{~mg~mL}^{-1}$	880 or 1064 nm; 2.0 W cm ⁻² for 10 min	$\Delta T \approx 30.0 ^{\circ}\text{C}$ (880 nm); $\Delta T \approx$ 35.0 $^{\circ}\text{C}$ (1064 nm)	I	HeLa and L02 cells/HeLa tumor-bearing	133
	WS ₂ nanosheets functio- nalized with PEG	Size: $50-100$ nm; thickness: ≈ 1.6 nm	N.D.	$0.5 \mathrm{~mg~mL}^{-1}$	808 nm; 0.8 W cm ⁻² for 5 min	$\Delta T \approx 65.0 \ ^{\circ}\mathrm{C}$	I	4T1, HeLa and 293T cells/4T1 tumor-bearing	194
	BSA exfoliated WSe ₂ nanosheets	Size: 100–200 nm; thickness: 4–5 nm	N.D.	$1.0 \mathrm{~mg~mL}^{-1}$	808 nm; 3.6 W cm ⁻² for 5 min	ΔT = 25.0 °C	35.07%	HeLa cells/U14 tumor-bearing mice	195
	BSA coated WS ₂ nanosheets	Size: 20–100 nm; thickness: 4–5 nm	N.D.	450 µg mL ⁻¹	808 nm; 1.0 W cm ⁻² for 10 min	ΔT = 30.0 °C	32.83%	HeLa cells/HeLa tumor-bearing mice	196
	WS ₂ quantum dots	Size: 3 nm	N.D.	100 µg mL ⁻¹	808 nm; 1.0 W cm ⁻² for 10 min	$\Delta T = 20.0 \text{ °C}$	44.3%	HeLa and HepG 2 cells/BEL-7402 tumor-bearing	197
Molybdenum	MoO ₂ nanoparticles	Size: ≈10.5 nm	795 nm	80 $\mu g \ m L^{-1}$	808 nm; 2.0 W cm ⁻² for 10 min	$T_{\rm max} = 73.5 ^{\circ}{ m C}$	61.3%	Hep G2 cells	146
	MoO _x nanoparticles func- tionalized with PEG	Size: 15–30 nm	410 nm	200 μg mL ⁻¹	808 and 1064 nm; 1.0 W cm ⁻² for 10 min	$\Delta T = 18.1 ^{\circ}\text{C}$ (808 nm); $\Delta T =$ 29.5 $^{\circ}\text{C}$ (1064 nm)	27.3% (808 nm); 37.4% (1064 nm)	HeLa, HepG2 and PANC-1/ PANC-1 tumor-	142
	Mo ₂ C nanospheres	Size: 50 nm composed of crystals of 2–4 nm	N.D.	1 mg mL^{-1}	1064 nm; 2.0 W cm ⁻² for 10 min	$T_{ m max} pprox 62.0~{}^{\circ} m C$	24.95%	Definition of the providence o	198
	MoO _{3-x} hollow nano- spheres functionalized with PEG	Size: 142 nm	700–1000 nm	$0.5 \mathrm{~mg~mL}^{-1}$	808 nm; 1.0 W cm ⁻² for 10 min	$T_{ m max} pprox 53.0~{ m oC}$	≈22.64%	Hela, MCF-7 and Hela, MCF-7 and PANC-1 cells/ PANC-1 tumor- bearing mice	156

Review

Table 1 (Contd.)

Ĺ.
2
<
~
¥
÷
₽.
2
0
_
0
2
ລ.
5
Ω.
S.
c
5
Ē.
0
· 🗆
ē
E
Ξ
g
.Ħ
e)
m_
4
0
>
£.
· 20
5
5
Ę.
Jniv
Univ
y Univ
by Univ
d by Univ
ed by Univ
ided by Univ
oaded by Univ
loaded by Univ
'nloaded by Univ
wnloaded by Univ
ownloaded by Univ
Downloaded by Univ
. Downloaded by Univ
0. Downloaded by Univ
20. Downloaded by Univ
2020. Downloaded by Univ
2020. Downloaded by Univ
il 2020. Downloaded by Univ
pril 2020. Downloaded by Univ
April 2020. Downloaded by Univ
April 2020. Downloaded by Univ
5 April 2020. Downloaded by Univ
15 April 2020. Downloaded by Univ
n 15 April 2020. Downloaded by Univ
on 15 April 2020. Downloaded by Univ
d on 15 April 2020. Downloaded by Univ
ed on 15 April 2020. Downloaded by Univ
hed on 15 April 2020. Downloaded by Univ
ished on 15 April 2020. Downloaded by Univ
blished on 15 April 2020. Downloaded by Univ
ablished on 15 April 2020. Downloaded by Univ
Published on 15 April 2020. Downloaded by Univ

 PTT

Table 1 (Contd.)

٨	1														Biom	aterials Science
	Ref.	150	18	145	199	200	149	201	202	203	204	205	206	147	207	156
	Type of cancer in vitro/in vivo	4T1/4T1 tumor- bearino mice	4T1 and MCF-7 cells/4T1 tumor- bearing mice	4T1 cells/4T1 tumor-bearing mice	MCF-7 and 7402 cells/MCF-7 tumor-bearing mice	4T1 cells/4T1 tumor-bearing mice	HeLa and L02 cells/HeLa- tumor-bearing mice	4T1 cells	B16-10F and A549 cells/B16- 10F tumor- bearing mice	Hela and 4T1 cells/4T1 tumor- bearing mice	4T1 and RAW 264.7 cells/4T1 tumor-bearing mice	4T1 cells/4T1 tumor-bearing mice	HepG2 cells	HeLa cells	4T1 cells/4T1 tumor-bearing mice	Hela, MCF-7 and PANC-1 cells/ PANC-1 tumor- bearing mice
	PTT conversion efficiency	Ι	I	I	62.5%	I	25.5%	40.01%	42.9%	27.6%	I	I	I	46.5%	1	≈22.64%
	Temperature	$T_{ m max} pprox 60.0~^{\circ}{ m C}$	$\Delta T = 40.8 \ ^{\circ}\mathrm{C}$	$\Delta T pprox 52.0 \ ^\circ \mathrm{C}$	$T_{ m max} = 53.7$ °C	$\Delta T = 14.4 ^{\circ}\mathrm{C}$	$\Delta T \approx 25.0 \ ^{\circ}\mathrm{C}$	$\Delta T = 47.7$ °C	$\Delta T = 36.0 \text{ oC}$	$\Delta T = 47.0 \ ^{\circ}\mathrm{C}$	$\Delta T = 25.6 ^{\circ}\mathrm{C}$	$\Delta T \approx 27.5 \ ^{\circ}\mathrm{C}$	ΔT = 10.0 °C	$\Delta T pprox 35.0 \ ^{\circ}\mathrm{C}$	$T_{\rm max} = 41.0 \ ^{\circ}{ m C}$	$T_{ m max} \approx 54.0~{ m oC}$
	Laser	808 nm; 0.7 W ${\rm cm}^{-2}$ for 5 min	808 nm; 1.0 W cm ⁻² for 5 min	808 nm; 0.7 W cm ⁻² for 5 min	$808 \text{ nm}; 1.0 \text{ W cm}^{-2}$ for 5 min	808 nm; 1.0 W cm ⁻² for 5 min	880 nm; 2.0 W cm ⁻² for 10 min	$808 \text{ nm}, 2.0 \text{ W} \text{ cm}^{-2}$ for 5 min	808 nm; 0.64 W cm ⁻² for 5 min	808 nm; 2.0 W cm ⁻² for 5 min	808 nm; 1.0 W cm ⁻² for 5 min	808 nm, 0.5 W cm ⁻² for 5 min	808 nm; 2.0 W cm ⁻² for 5 min	785 nm; 2.0 W cm ⁻² for 5 min	808 nm, 1.0 W cm ⁻² for 5 min	808 nm; 1.0 W cm ⁻² for 10 min
	Dose	$80 \ \mu g \ m L^{-1}$	500 µg mL ⁻¹	$0.06 \mathrm{~mg~mL}^{-1}$	2 mg mL^{-1}	$100 \ \mathrm{\mu g \ m L}^{-1}$	2 mg mL^{-1}	$3 \mathrm{~mg~mL^{-1}}$	$100 \ \mu g \ m L^{-1}$	80 μg mL ⁻¹	200 µg mL ⁻¹	$100 \ \mathrm{\mu g \ m L}^{-1}$	$500 \ \mu g \ m L^{-1}$	$60 \ \mu g \ m L^{-1}$	200 μg mL ⁻¹	0.5 mg mL^{-1}
	Absorption band	700–1000 nm	≈800 nm	N.D.	255 nm	N.D.	600-800 nm	650-800 nm	700-850 nm	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	700-1000 nm
	General properties	Size: 90 nm; thickness: 1-5 nm	Size: 80–100 nm; thickness: 1.5 nm	Thickness: ≈1 nm	Mesoporous organosilica: 196 nm; nanosheet size: 120-300 nm and thickness: 1.5-2 nm	Size: ≈50 nm	Size: 2.5 nm	Size: 5.63 nm	6 nm	Size: 90 nm	Size: 90 nm	21 nm	Size: 6 nm	Size: 2.32 nm; height: 0.7 to 2.1 nm	Size nanodots: 3.8 nm; total size: 139.8 nm	Size: 142 nm
	Morphology and surface modification	MoO _x nanosheets func- tionalized with PEG	MoO _x nanosheets func- tionalized with pluronic- F127	MoS ₂ nanosheets functionalized with PEG	MoS ₂ nanosheet capped mesoporous organosilicas functionalized with PEI	MoS ₂ nanosheets	MoO _{3-x} quantum dots	MoO _{3-x} quantum dots	Mo ₂ C quantum dots	MoS ₂ nanoflakes functio- nalized with PEG	MoS ₂ nanoflakes functio- nalized with PEG	MoS ₂ nanodots functio- nalized with GSH	MoS ₂ nanodots	MoSe ₂ nanodots	MoSe ₂ nanodots assembled with BSA into nanospheres functiona- lized with FA	MoO _{3-x} hollow nano- spheres functionalized with PEG
	Materials															

Review

					PTT				
Materials	Morphology and surface modification	General properties	Absorption band	Dose	Laser	Temperature	PTT conversion efficiency	Type of cancer in vitro/in vivo	Ref.
Iron oxide	Fe ₃ O ₄ particles functiona- lized with PEG or citrate	Size PEG stabilized Fe ₃ O ₄ : 300 nm; size citrate stabilized Fe ₅ O · 240 nm	N.D.	50 μg mL ⁻¹	808 nm, 6.6 W cm^{-2} for 5 min	$\Delta T = 52.2 \circ C$ (PEG); $\Delta T =$ 31.5 °C (Cit)	16.9% (PEG); 15.9% (Cit)	A549 cells/A549 tumor-bearing mice	208
	Fe core/Fe ₃ O ₄ shell nano- particles functionalized with PFG	Fe core: 9.5 nm; total size: 13.4 nm	N.D.	$0.2 \mathrm{~mg~mL}^{-1}$	808 nm; 0.38 W cm ⁻² for \approx 8 min	$\Delta T pprox 17.5 ~^{\circ}\mathrm{C}$	≈20%	Hela cells/HeLa tumour bearing mice	209
	Porous iron oxide nanonarticles	Size: 260 nm	mn 080–080	$200 \ \mu g \ Fe \ mL^{-1}$	$808 \text{ nm}; 1 \text{ W} \text{ cm}^{-2}$ for 10 min	$\Delta T = 31.0 \ ^{\circ}\text{C}$	45.99%	4T1 cells	159
	Fe ₃ O ₄ nancoco coated with polysiloxane- containg diblock condumer	Polymer layer: 3–5 nm; total size: 15 nm	N.D.	$0.5 \text{ mg Fe mL}^{-1}$	885 nm; 2.5 W cm ⁻² for 10 min	$T_{ m max}$ = 56.4 °C	I	SUM-159 cells/ SUM-159 tumor- bearing mice	210
	Fe_3O_4 much the modi- fication with carboxy- methyl chitosan	Carboxymethyl chitosan thickness: ≈25 nm; total size: 228 nm	800 nm	300 µg mL ⁻¹	808 nm; 2.0 W $\rm cm^{-2}$ for 5 min	$\Delta T = 54.2 \ ^{\circ}\mathrm{C}$	I	KB, MCF-7 and S180 cells/S180 tumor-bearing mice	211
	Fe ₃ O ₄ clusters coated with polydopamine	Polydopamine shell: 27 nm; total size: 364 nm	≈400–550 nm	50 μg mL ⁻¹	$808 \text{ nm laser; } 6.6 \text{ W}$ cm^{-2} for 8 min	$T_{ m max}pprox 57.0~{}^{\circ} m C$	13.1%	A549 cells/A549 tumor-bearing mice	212
	Fe ₃ O ₄ cluster	Individual Fe ₃ O ₄ NPs: 15 nm; size: 225 nm with a spherical shane	≈400–600 nm	$50 \ \mu g \ m L^{-1}$	808 nm; 5.0 W $\rm cm^{-2}$ for 3 min	$T_{ m max}$ = 51.4 °C	I	A549 cells/A549 tumor-bearing mice	213
	Gold nanopopcorns containing a self- assembled Fe ₃ O ₄ cluster core functionalized with PFG	Faster size: 87 nm; external Au structure: ≈30 nm; total size: 158 nm	N.D.	$4.0 \ \mu g \ m L^{-1}$	808 nm, 0.55 W cm ⁻² for 10 min	$\Delta T = 40.0 \ ^{\circ}\mathrm{C}$	61%	KB-3-1 head and neck cancer cells	214
	Nanocubes	Size: 20 nm	N.D.	0.7 mg mL^{-1}	808 nm; 0.3 and 0.8 W cm^{-2} for 5 min	$\Delta T = 7.0 \text{ °C } (0.3 \text{ W} \text{ cm}^2); \Delta T = 22.0 \text{ °C } (0.8 \text{ W} \text{ cm}^2),$	I	SKOV3, PC3 and A431 cells/A431 tumor-bearing mice	215
Copper	Iodine-131-doped CuS nanoparticles functionalized with PEG	Size: ≈20 nm	700–1000 nm	60 μg mL ⁻¹	808 nm; 0.8 W cm ⁻² for 5 min	$\Delta T = 50.0 ^{\circ}\mathrm{C}$		4T1 cells/4T1 tumor-bearing mice	216
	Artesunate-loaded transferrin modified hollow mesoporous CuS	Mesoporous shell: 20 nm; total size: 205 nm	N.D.	200 μg mL ⁻¹	808 nm; 2.0 W $\rm cm^{-2}$ for 5 min	$\Delta T = 54.0 \ ^{\circ}\mathrm{C}$	I	MCF-7 cells/ MCF-7 tumor- bearing mice	163
	CuS nanoparticles functionalized with	Size: ≈3.8 nm	700–1100 nm	500 µg mL ⁻¹	808 nm; 1.0 W cm ⁻² in 12 min	$\Delta T = 23.3 \ ^{\circ}\mathrm{C}$	≈31.4%	HeLa cells/S180 tumor-bearing mice	217
	Cu _{2-x} Se nanoparticles dimercapto PEG	Size: 3.6 nm	≈600–1100 nm	$100 \ \mu g \ m L^{-1}$	808 nm; 0.75 W cm ⁻² for 10 min	$\Delta T = 75.0 \ ^{\circ}\mathrm{C}$	64.8%	4T1 cells/4T1 tumor-bearing mice	218
	Plate like Cu ₉ S ₅ nanocrystals	Size: ≈70 nm; thickness: 13 nm	N.D.	$40 \ \mu g \ mL^{-1}$	980 nm; 0.51 W $\rm cm^{-2}$ for 7 min	$\Delta T = 15.1 ^{\circ}\mathrm{C}$	25.7%	HeLa cells/SCID tumor-bearing mice	219

Published on 15 April 2020. Downloaded by University of Beira Interior on 5/3/2020 12:43:48 AM.

This journal is © The Royal Society of Chemistry 2020

Table 1 (Contd.)

Review

Biomater. Sci.

~	
_	
\checkmark	
~	
×,	
4	
ŝ	
÷	
1	
2	
-	
0	
2	
Ö	
Ō.	
\geq	
6	
S.	
_	
Ξ	
0	
5	
.9	
· 🚍	
ല	
E	
Г	
~	
11	
. 22	
~	
щ	
4	
0	
~	
- 12-	
2	
ē	
>	
·=	
<u> </u>	
\sim	
~	
\sim	
2	
р	
e e	
-	
_	
ē	
0a	
ıloa	
vnloa	
wnloa	
ownloa	
Downloa	
Downloa	
 Downloa 	
20. Downloa	
320. Downloa	
2020. Downloa	
2020. Downloa	
il 2020. Downloa	
ril 2020. Downloa	
pril 2020. Downloa	
April 2020. Downloa	
5 April 2020. Downloa	
15 April 2020. Downloa	
15 April 2020. Downloa	
n 15 April 2020. Downloa	
on 15 April 2020. Downloa	
1 on 15 April 2020. Downloa	
ed on 15 April 2020. Downloa	
hed on 15 April 2020. Downloa	
shed on 15 April 2020. Downloa	
lished on 15 April 2020. Downloa	
blished on 15 April 2020. Downloa	
ublished on 15 April 2020. Downloa	
Published on 15 April 2020. Downloa	

Table 1 (Contd.)

					PTT				
Materials	Morphology and surface modification	General properties	Absorption band	Dose	Laser	Temperature	PTT conversion efficiency	Type of cancer <i>in vitro\in vivo</i>	Ref.
	Cu _{2-x} S nanocrystals	6.5 nm	N.D.	200 µg mL ⁻¹	808 nm; 2.3 W cm ⁻² for 10 min	$\Delta T = 30.6 ^{\circ}\mathrm{C}$	16.3%	B16 cells/B16 tumor-bearing mice	220
	Cu nanowires functionalized with PEG	Size: ≈46 nm; L: ≈40 µm	N.D.	$50 \mathrm{~mg~mL}^{-1}$	808 nm; 1.5 W cm ⁻² for 10 min	$T_{\rm max} = 65.0$ °C	12.5%	CT26 cells/CT26 tumor-bearing	221
	Ultrasmall Cu _{2-x} S nanodots	Size: ≈2 nm	800–1200 nm	50 μg mL ⁻¹	980 nm; 1.41 W cm ⁻² for 5 min	$T_{ m max} pprox 37.0~^{\circ} m C$		HeLa cells/HeLa tumor-bearing mice	222
	CuS nanodots	Size: 4.3 nm	≈990 mm	100 µg mL ⁻¹	808 nm; 2.0 W cm ⁻² for 10 min	$\Delta T = 27.0 \ ^{\circ}\mathrm{C}$		4T1 cells/4T1 tumors bearing mice	223
	CuS nanoplates	L: 59.4 nm; W: 23.8 nm	800-1100 nm	400 μg mL ⁻¹	980 nm; 4.0 W cm ⁻² for 10 min	$\Delta T \approx 20.0 \ ^{\circ}\mathrm{C}$	I	HELA, HUVEC, RAW 264.7 and KB cells/ICR mice	224
Carbon	Single-walled carbon nanotubes functionalized with FA	D: 1–2 nm; L: 0.5–100 µm;	≈400–500 nm	$1~{ m mgmL^{-1}}$	800 nm; 1.726 W cm ⁻² for 3 min	$\Delta T = 64.6 ^{\circ}\mathrm{C}$	I	MCF7 cells	92
	Multi-walled carbon nanotubes functionalized with PEG	D: 10 nm; L: 50–150 nm	N.D.	2 and 4 mg kg ⁻¹	808 nm; 3.5 W cm ⁻² for 1.5 min	$T_{\text{max}} = 39.0 ^{\circ}\text{C}$ (2 mg kg ⁻¹); $T_{\text{max}} = 44.0 ^{\circ}\text{C}$ (4 mg ko ⁻¹)	I	A549 cells/A549 tumor-bearing mice	113
	Single-walled carbon nanotubes	D: 0.7–1.3 nm	500-650 nm	0.35 mg mL^{-1}	808 nm; 1.0 W cm ⁻² for 3 min	$\Delta T = 60.0 \circ C$	I	MDA-MB-435 cells/ MDA-MB-435 tumor-bearing	103
	Single-walled carbon nanotube-embedded indocyanine green-HA nanonarticles	Size: 389 nm	N.D.	Indocyanine ($10 \ \mu g \ mL^{-1}$) or nanotubes ($35 \ \mu o \ mL^{-1}$)	808 nm; 0.3 W cm ⁻² for ≈ 4 min	$\Delta T = 30.0 \ ^{\circ}\mathrm{C}$	I	SCC-7 and NIH-3T3 cells/ SCC7 tumor- hearing mice	102
	Reduced graphene oxide nanocomposite	Size: ≈300 nm; thick: 3.5 nm	N.D.	120 µg mL ⁻¹	808 nm; 1.5 W cm^{-2} for 5 min	ΔT = 30.0 °C	49.1%	MCF-10A and MCF-7 cells/4T1 tumor-bearing	96
	Indocyanine green-loaded polydopamine-reduced graphene oxide	Size: 1.0 µm; thick: 2.74 nm	750-850 nm	20 mg L^{-1}	808 nm, 0.6 W cm ⁻² for 5 min	$T_{\rm max} = 54.4$ °C	I	BEAS-2B and 4T1 cells/4T1 tumor- bearing mice	94
	Gold manoparticles onto graphene oxide nanocomposite	Graphene oxide D: 230; and thickness: 15 nm; gold nanoparticles size: 15 nm	N.D.	100 mg mL ⁻¹	808 nm; 0.3 W cm ⁻² for 10 min	ΔT = 23.0 °C	1	SCC7 cells/SCC7 tumor-bearing mice	117

Review

View Article Online

Biomaterials Science

Table 1 (Cc	.) (,)							
					PTT			
Materials	Morphology and surface modification	General properties	Absorption band	Dose	Laser	Temperature	PTT conversion efficiency	Type of cancer in vitro/in vivo
	Graphene oxide-coated gold superparticles	D: ≈90 nm and ≈130 changing the concentration of gold	N.D.	100 µg mL ⁻¹	808 nm; 1.0 W cm ⁻² for 5 min	$\Delta T = 49.3 \ ^{\circ}\text{C}$	I	U87MG cells/ U87MG tumor- bearing mice
	Carbon dots	liampentics Size: 2.9 ± 0.5 nm	mu 006-009	125 µg mL ⁻¹	808 nm; 2.0 W cm ⁻² for 10 min	$\Delta T = 37.0 \ ^{\circ}\mathrm{C}$	38.7%	HepG2 and CT26 cells/CT26 tumor-bearing
	Carbon dots with chitosan	Size: 65 nm with a quasisphere	235–260 nm	0.05 mg mL^{-1}	808 nm; 1.5 W cm ⁻² for 5 min	$\Delta T = 20.0 \ ^{\circ}\mathrm{C}$	25.2%	4T1 cells/4T1 tumor-bearing
	Graphene nanodots	morphotogy Size: ≈5 nm	655 nm	2 mg mL ⁻¹	670 nm; 0.3 W cm ⁻² for 30 min	$T_{ m max} pprox 50.0~^\circ{ m C}$	I	MDA-MB231 cells/ MDA-MB231 tumor-bearing mice

Ref. 116

97

225

93

irradiation with the NIR laser (808 nm, 2 W cm^{-2} for 5 min), reaching the maximum temperature of 66.7 °C. Furthermore, a temperature-responsive drug release from the gold shell coated liposomes was observed. In fact, the resveratrol release increased upon irradiation with the NIR laser due to the phase change of the liposomes. In the in vitro studies, the photothermal effect mediated by the gold nanoshell coated chitosan modified liposomes (54 μ g mL⁻¹) induced a reduction of the HeLa cell viability up to 57.3%. This cytotoxic effect was further enhanced when the heat generated by these nanomaterials was combined with the resveratrol action, leading to cell viability values less than 20%. Similarly, Manivasagan et al. developed anti-EGFR paclitaxel loaded-thiol chitosanlayered gold nanoshells for the fluorescence/photoacoustic imaging and chemo-PTT of cancer (Fig. 3).⁷⁸ In this approach, gold nanoshells composed of gold spheres with a 9 nm diameter were created on the surface of silica cores (120 nm). Then, the surface of this material was functionalized with thiolated chitosan through gold-thiol interactions and further conjugated with an anti-EGFR antibody. The resulting nanoparticles presented a strong absorption band in the 700-1200 nm region with a peak of absorption at 799 nm. This absorption peak resulted in heat generation upon the irradiation of the chitosan-layered gold nanoshells with a NIR laser (808, 1.2 W cm⁻² for 5 min), reaching 52.7 °C when a nanoparticle concentration of 175 $\mu g m L^{-1}$ was used. Additionally, these authors also observed that the heat generated could be used to trigger the paclitaxel release from the chitosan layer present on the surface of the gold nanoshells, in fact after 48 h, at pH 5, the group subjected to 5 irradiation cycles released 91.09% of the drug, in contrasting to 53.83% recorded for the non-irradiated group. The in vivo assays demonstrated that the tumor irradiation with a NIR laser (808, 1.2 W cm^{-2} for 5 min) 5 h after the intravenous administration of the anti-EGFR paclitaxel loaded-thiol chitosan-layered gold nanoshells (175 μ g mL⁻¹) caused an increase in the tumor temperature, reaching a maximum of 61.9 °C. Furthermore, the authors also observed that the combinatorial action of the paclitaxel and PTT resulted in the eradication of the tumors (97.43% tumor inhibition rate).

2.2.2. Gold nanorods. Gold nanorods have been one of the most explored morphologies to develop gold nanostructures for photothermal applications.⁷⁹ The gold nanorods present two absorption bands, a weaker one in the visible region of the spectrum (i.e. transverse resonance, surface electron oscillation along the nanorod width) and a more intense band that can be fine-tuned to the NIR region (i.e. longitudinal resonance, surface electron oscillation along the nanorod length).^{21,80} The absorption band corresponding to the longitudinal resonance is dependent on the nanorod aspect ratio (i.e. rod length/width coefficient), and nanorods with aspect ratios between 3 and 6.6 were applicable in PTT.81 Mackey and colleagues studied the photothermal potential of nanorods with different dimensions (length \times width: 38 \times 11, 28 \times 8, and 17×5 nm).⁸² The obtained results demonstrated that despite the similar aspect ratios (3.4-3.5), the different gold nanorods

Fig. 3 Evaluation of the antitumoral capacity of anti-EGFR-PTX-TCS gold nanoshells. Thermal images (A) and temperature variation curves (B) of tumors after irradiation with the NIR laser (808 nm, 1.2 W cm⁻²). Analysis of the mouse body weight changes (C), tumor volume evolution (D) and mouse survival (E) after different treatments. Reprinted from P. Manivasagan, S. W. Jun, G. Hoang, S. Mondal, H. Kim, V. H. M. Doan, J. Kim, C.-S. Kim, J. Oh, Anti-EGFR antibody conjugated thiol chitosan-layered gold nanoshells for dual-modal imaging-guided cancer combination therapy, *J. Controlled Release*, **311–312**, 26–42, Copyright (2019), with permission from Elsevier.

presented longitudinal absorption peaks at 740, 770 and 755 nm for 38×11 , 28×8 , and 17×5 nm nanorods, respectively. This difference resulted in an increased heat conversion capacity for the 28×8 nanorods after irradiation with a NIR laser (808 nm and 5.8 W cm⁻²) for 2 min, and the photothermal heat conversion factor was 2.05 and 1.40 times higher than that recorded for the 38×11 and 17×5 nm nanorods. Moreover, the authors also reported an increased cytotoxicity towards HSC-3 cells (oral squamous cell carcinoma) based on the photothermal effect of the 28×8 nm gold nanorods, with the cell viability values of ≈ 100 , ≈ 17 , and $\approx 29\%$ for nanorods with dimensions of 38×11 , 28×8 , and 17×5 nm. Zhang and coworkers developed PEG-biotin functionalized DNA conju-

gated gold nanorods for the targeted chemo-PTT of breast cancer.⁸³ The produced gold nanorods presented an aspect ratio of 3.5 with a length × width of 50×14 nm. The authors modified the nanorod surface by using thiolated-PEG modified with biotin and thiolated-DNA enriched with doxorubicin (DOX) for promoting the establishment of gold-thiol interactions. The produced nanomaterials presented the characteristic absorption peaks of gold nanorods at 512 nm (transversal surface plasmonic resonance) and 806 nm (longitudinal surface plasmonic resonance), which could be exploited to mediate a strong photothermal effect reaching \approx 45 °C after irradiation with a NIR laser (808 nm, 5 W cm⁻² for 30 min, gold nanorods at 5.82 µg mL⁻¹). On the other hand, the gold

View Article Online

nanorods presented a pH and NIR responsive drug release due to the DOX intercalation with the DNA grafted on the particle surface; $\approx 60\%$ drug was released when irradiated with a NIR laser (808 nm, 5 W cm⁻² for 30 min) and $\approx 50\%$ after being incubated at pH 5.0. In the *in vitro* assays, the authors observed that the combinatorial treatment mediated by the gold nanorods (gold nanorods at 5.82 µg mL⁻¹ and DOX 2 µM, NIR laser 808 nm, 5 W cm⁻² for 30 min) inhibited the MCF-7/ADR cell growth in 81% of the cases.

2.2.3. Gold nanostars. The gold nanostar absorption band is dependent on the core size and tip length, width, and number.⁸⁴ In general, an increase in the gold nanostar core size, tip length and sharper tips promotes a shift in the absorption peak to the NIR region.⁸⁵ Espinosa et al. produced gold nanostars with 25, 55, 85, 120, and 150 nm diameters and observed that the samples with 25 nm diameters presented two absorption peaks at 550 and 700 nm, whereas the samples with 55, 85, 120, and 150 nm diameters presented a single absorption band at 790, 800, 900, and 950 nm, respectively.86 Furthermore, the authors also reported that upon irradiation with the NIR laser (808 nm, 1 W cm⁻²) for 10 min, the nanostars with diameters of 25, 85, and 150 nm mediated an increase in temperature of ≈ 18 °C, ≈ 45 °C, and ≈ 36 °C. Xia and colleagues developed IR-780 iodine-loaded gold nanostars functionalized with matrix metalloproteinases (MMP2), polypeptides (Ac-GPLGIAGQ) and bovine serum albumin (BSA) for lung cancer imaging and photothermal/photodynamic therapy.⁸⁷ For that purpose, the gold nanostars were conjugated with BSA via gold thiol interactions. Then, MMP2 polypeptides were grafted on the nanostar surface through carbodiimide chemistry and loaded with the IR-780 molecules. The resulting nanoparticles presented a mean diameter of 80 nm and a strong absorption band in the 700-800 nm region. The data obtained revealed that the irradiation of the gold nanostars (20 μ g mL⁻¹) with a NIR laser (808 nm, 0.8 W cm⁻² for 5 min) could mediate a temperature increase up to 63 °C. In the in vivo studies, the intravenous administration of the IR-780 iodine-loaded gold nanostar functionalized MMP2 and BSA (IR-780, 1 mg kg⁻¹) mediated an increase in the tumor temperature up to 46 °C (808 nm, 0.8 W cm⁻² for 5 min), which combined with IR-780 action led to a 93% reduction of the tumor volume.

2.2.4. Gold nanocages. Gold nanocages, nanostructures where gold is only present at the particle surface, present an absorbance band that can be tuned to the NIR region by optimizing the wall thickness.⁸⁸ In fact, the increase in the amount of the gold source during the synthesis procedure is linked to a red-shift in the absorption peak.⁸⁹ Huang and coworkers developed polyethyleneimine (PEI)-modified and folate receptor-targeted PEGylated gold nanocages enriched with a microRNA-181b inhibitor aimed for the cancer gene and PTT.⁹⁰ The gold cages had a 50 nm size, a hollow structure, and pores with 5 nm. Then, thiol-PEG-folic acid (FA) chains were attached on the particle surface *via* gold-thiol interactions and the PEI was conjugated using lipoic acid as a linker. The resulting nanoparticles presented an absorption

peak at 802 nm and upon irradiation with a NIR laser (808 nm, 1.25 W cm⁻² for 10 min) induced a temperature increase up to \approx 55 °C, when a concentration of 9.7 µg mL⁻¹ was used. In the in vivo studies, the intravenous administration of gold nanocages (gold content at 8.5 mg kg⁻¹) resulted in an increase in the temperature up to 53.6 °C, which combined with the action of the anti-microRNA-181b inhibited the liver tumor progression and increased the mouse median survival times from 36 to 60 days. In turn, Sun and colleagues developed DOX-loaded gold nanocages coated with 4T1 cancer cell membranes for the chemo/PTT of breast cancer.91 For that purpose, DOX-loaded gold nanoshells with 70.5 nm diameter were extruded with 4T1 cell membrane vesicles through a 100 nm polycarbonate membrane. The resulting nanomaterials presented an absorption peak at 760 nm and could mediate a temperature increase of ≈25 °C upon irradiation with a NIR laser (808 nm, 2.5 W cm^{-2} for 8 min). Moreover, in the in vivo studies the combinatorial treatment (intravenous administration of 91 mg kg⁻¹ of gold nanoshells) suppressed the tumor progression and decreased the number of lung metastases by 98.5%.

2.3. Carbon-based nanomaterials

Carbon-based materials, principally carbon nanotubes and graphene, have been widely explored for cancer photothermal applications.^{92–94} The graphitic structure of carbon-based materials endows them with a strong optical absorption in the NIR region of the spectra and high photothermal conversion efficiencies.^{95–97} In these materials, after the light interaction, the energy is transferred to the lattice by electron–phonon coupling generating heat.⁹⁵ Furthermore, the intrinsic properties of the sp³ and sp² lattices of the carbon-based materials also endow them with high thermal conductivity.^{98,99}

2.3.1. Carbon nanotubes. Carbon nanotubes were initially described by Iijima in 1991¹⁰⁰ and are the most explored carbon-based nanomaterials in the literature for biomedical applications.^{52,101-104} These materials are usually synthesized using methodologies based on arc discharge or chemical vapor deposition of graphite.¹⁰⁵ The carbon nanotubes are cylindrical tubes of sp² graphite sheets with diameters within the nanoscale, which can be organized in single-walled or multi-walled carbon nanotubes.^{106,107} Moreover, the electronic and optical properties of these nanomaterials depend on the diameter and the relative orientation of the graphene basic hexagons with respect to the axis tube, and the latter is usually identified by the so called "chiral vector" - two integers (n,m).^{52,108,109} The synthesis procedures for single-walled carbon nanotubes usually result in a mixture of nanostructures with different chiral vectors.¹¹⁰ Therefore, the absorption spectra of these samples comprise several absorption peaks superimposed, according to the different chiralities of carbon nanotubes.¹¹¹ On the other hand, the multi-walled carbon nanotubes present a simpler absorption spectrum, in which the absorbance monotonically decreases with the wavelength increase.^{112,113} This characteristic of the multi-walled

Review

carbon nanotubes prompted their application in cancer PTT. Marangon and colleagues developed *m*-tetrahydroxyphenylchlorin loaded multi-walled carbon nanotubes for the photodynamic therapy and PTT of ovarian cancer.¹¹⁴ The produced multi-walled carbon nanotubes presented a mean diameter of 39 nm and a length of 400 nm as well as the typical absorption spectra (i.e. constant decrease in the absorbance when progressing to the NIR region of the spectra). Furthermore, the authors observed that the multi-walled carbon nanotubes at 20 μ g mL⁻¹ could mediate an increase in the temperature of 10 °C upon 80 seconds of NIR laser irradiation (808 nm and 2 W cm⁻²), whereas at a concentration of 100 µg mL⁻¹ a temperature increase of 50 °C could be achieved after 60 seconds of irradiation. Additionally, the authors observed that the multi-walled carbon nanotubes could induce the photothermal ablation of SKOV3 cancer cells, and only 10% of SKOV3 cells remained viable after NIR laser irradiation (808 nm, 2.3 W cm⁻², 200 seconds, and 20 μ g mL⁻¹). The cytotoxic effect of nanotubes was further improved by combining them with the *m*-tetrahydroxyphenylchlorin action. Similarly, Wang et al. produced DOX loaded multi-walled carbon nanotubes functionalized with poly(N-vinyl pyrrole), PEG and Fa for the combined chemo-PTT of cancer.115 The authors reported that the carbon nanotubes presented 8 to 15 nm diameter and less than 1 µm length. These materials were modified by promoting the oxidative polymerization of N-vinyl pyrrole on their surface, followed by the addition of Fa-terminated PEG (FA-PEG-SH) through thiol–ene click chemistry. The resulting nanostructures were able to induce an increase in the temperature up to \approx 45 °C at a concentration of 50 µg mL⁻¹, after NIR laser irradiation (808 nm, 1.5 W cm⁻² for 6 min). This capacity was maintained even after five on/off cycles. In the *in vitro* studies, the authors demonstrated that the administration of the functionalized multi-walled carbon nanotubes at 50 µg mL⁻¹ induced the reduction of the HeLa cell viability to \approx 40% after NIR laser irradiation (808 nm, 1.5 W cm⁻² for 6 min). Moreover, an increased cytotoxic effect was observed with the combined action of DOX and multi-walled carbon nanotube photothermal effect, and only \approx 20% of cells remained viable.

Zhang and coworkers developed PEGylated multi-walled carbon nanotubes modified with CREKA for the targeted PTT.¹¹³ The nanomaterials presented 10 nm diameter and 50 to 150 nm length and the characteristic multi-walled carbon nanotube absorption spectra. Furthermore, the authors observed that 24 hours after the intravenous administration of these targeted carbon nanotubes at a dose of 4 mg kg⁻¹ in A549 tumor xenograft-bearing mouse models, the NIR laser irradiation (808 nm, 3.5 W cm⁻² for 1 min) induced an increase in the temperature up to 55.17 °C within the tumor microenvironment. Furthermore, the single intravenous administration followed by four irradiation cycles resulted in the almost complete eradication of the tumor xenografts, without eliciting noticeable side-effects (Fig. 4).

Fig. 4 Evaluation of the multi-walled carbon nanotube (CMWNTs-PEG) photothermal effect. Temperature variation curves of tumors after injection doses of 2 mg kg⁻¹ (A) and 4 mg kg⁻¹ (B) and NIR laser irradiation (808 nm, 3.5 W cm^{-2}). Thermal images of tumor-bearing mice treated with a MWNT dose of 4 mg kg⁻¹. (C) Reprinted from B. Zhang, H. Wang, S. Shen, X. She, W. Shi, J. Chen, Q. Zhang, Y. Hu, Z. Pang, X. Jiang, Fibrin-targeting peptide CREKA-conjugated multi-walled carbon nanotubes for self-amplified photothermal therapy of tumor, *Biomaterials*, **79**, 46–55, Copyright (2016), with permission from Elsevier.

2.3.2. Graphene-based materials. Recently, graphene-based materials captured the attention of researchers for being applied in cancer PTT.^{116–118} Graphene is the building block of other graphite materials, such as 3D graphite, carbon nanotubes and fullerenes.¹¹⁹ This material presents a honeycomb lattice formed by a single-atom-thick layer of sp² hybridized carbon atoms and can be classified according to the oxygen content, the number of layers in the sheet, or their chemical composition.¹²⁰ Among the most common graphene materials, the graphene oxide and reduced graphene oxide have been one of the most explored for biomedical applications.¹²¹ These graphene derivatives are characterized by presenting various oxygen-based groups such as epoxide, carbonyl, carboxyl, and hydroxyl groups.¹²² Nevertheless, the reduced graphene oxide presents an enhanced absorbance in the NIR region of the spectrum, which makes it a better candidate for photothermal applications.¹²³ Lima-Sousa and colleagues functionalized the reduced graphene oxide with hyaluronic acid (HA) for mediating the targeted PTT of cancer.¹²⁴ These authors promoted the reduction of graphene oxide using ascorbic acid and the surface functionalization was achieved through hydrophobic interactions between the carbon lattice and a HA-based amphiphilic polymer (HA grafted onto poly(maleic anhydride-alt-1octadecene)). The obtained nanomaterial presented a mean size of 108 nm and an absorbance in the NIR region superior to that of graphene oxide. Furthermore, the authors also reported that the functionalized reduced graphene oxide $(75 \ \mu g \ mL^{-1})$ induced an increase in the temperature up to 33 °C after NIR laser irradiation (808 nm, 1.7 W cm⁻² for 5 min). Moreover, in the in vitro studies the heat generated upon the irradiation of the reduced graphene oxide-based nanomaterials induced the reduction of the MCF-7 cancer cell viability to $\approx 6\%$.

Cheon et al. developed reduced graphene oxide modified with serum albumin and loaded with DOX for the chemo-PTT of brain tumors.¹²⁵ The authors conjugated the serum albumin with the graphene oxide by promoting the simultaneous reduction of these nanomaterials, and subsequently performing the encapsulation of DOX on the surface of graphene oxide sheets. The obtained nanomaterials presented an enhanced absorption in the NIR region of the spectra, when compared to the non-reduced graphene oxide, and upon NIR laser irradiation (808 nm, 5.5 W cm⁻² for 3 min) the serum albumin coated reduced graphene oxide (30 µg mL⁻¹) induced a temperature increase up to ≈ 60 °C. Moreover, these authors also demonstrated that this increase in the temperature could be exploited to trigger the drug release and induce the death of U87MG cancer cells, with 21.8% and 1.76% of viable cells for the groups treated with only photothermal or chemo-PTT, respectively.

Roy and coworkers modified reduced graphene oxide nanosheets with poly(allylamine hydrochloride) for mediating the chemo-PTT of breast cancer.¹²⁶ The functionalized reduced graphene oxide presented an average size of 115 nm and a broad absorption throughout the visible and NIR regions of the spectra. Moreover, the authors also demonstrated that the irradiation of the functionalized reduced graphene oxide (150 μ g mL⁻¹) with a NIR laser (808 nm, 6 W cm⁻² for 6 min) could induce a temperature increase to values greater than 45 °C. Furthermore, in the *in vitro* studies, a combinatorial therapeutic modality mediated by the DOX delivery and photothermal effect resulted in an enhanced cytotoxicity towards MCF-7 cells, with 70% and 6% of viable cells in the groups treated by photothermal or chemo-PTT (nanomaterial dose: 5 μ g mL⁻¹), respectively.

2.4. Tungsten nanomaterials

Tungsten-based nanomaterials for PTT can be produced by using methodologies such as solution-phase synthesis,¹²⁷ vapor-phase synthesis,¹²⁸ precipitation routes¹²⁹ and hydrothermal methods.¹³⁰ Among them, the hydrothermal pathway has been associated with a higher control over the morphology of the particles.¹³¹ Furthermore, the tungsten nanomaterials due to their outer-d valence electrons present a localized SPR, similar to the nanoparticles of noble metals, which can be exploited for enabling a photothermal effect.¹³² The localized SPR will be dependent on the doping or stoichiometry of the tungsten nanomaterials and on the optimization of the size and shape of the nanoparticles.^{133,134} Among the different doped tungsten nanocrystals, tungsten oxide nanomaterials have been one of the most explored in the literature for biomedical applications.¹³⁵⁻¹³⁷ This transition metal oxide exhibits a wide band gap of 2.62 eV and a localized SPR.^{132,138} Particularly, nonstoichiometric WO_x compositions, such as W20O58, W18O49 and W24O68 (obtained mainly by reduction processes), present a strong NIR absorption, which makes them strong candidates for photothermal applications.¹³⁹ Tian and coworkers developed $W_{18}O_{49}$ nanorod coated lentinan for the PTT of breast cancer.¹⁴⁰ The tungsten nanomedicines were produced using a one-pot solvothermal approach mixing tungsten chloride and lentinan. The resulting W₁₈O₄₉ nanorods presented a length and width of 180 and 40 nm, respectively, as well as an increased absorbance in the 600 to 1200 nm region. These authors demonstrated that the irradiation (980 nm, 1 W cm⁻² for 10 min) of the lentinan coated $W_{18}O_{49}$ nanorods (500 µg mL⁻¹) resulted in a temperature increase to \approx 55 °C, which could be maintained after 5 on/off irradiation cycles. In the in vitro studies, the photothermal effect mediated by the lentinan coated $W_{18}O_{49}$ nanorods (200 µg mL⁻¹) led to the reduction of the MDA-MB-231 cellular viability to 24%. Similarly, Zhou and colleagues produced PEGylated nonstoichiometric WO2.9 nanorods for the PTT and imaging of tumors.¹⁴¹ For that purpose, WO_{2.9} nanorods were produced with a length of 13.1 nm and a width of 4.4 nm via a hightemperature pyrolysis method. Subsequently, nanorod PEGylation was performed by exploring the coordination interactions between PEG carboxylate groups and the tungsten oxide surface. Furthermore, the PEGylated WO2.9 nanorods present a strong absorption in the NIR region and upon irradiation (980 nm, 0.25 W cm⁻² for 10 min) a temperature increase of 20.1 °C could be achieved at a dose of 100 µg

Published on 15 April 2020. Downloaded by University of Beira Interior on 5/3/2020 12:43:48 AM.

Review

 mL^{-1} . In the *in vitro* assays, the WO_{2.9} nanomaterials remained biocompatible at concentrations up to 500 µg mL⁻¹, whereas the NIR laser irradiation (980 nm, 0.35 W cm⁻² for 8 min) induced a reduction in the HeLa cell viability to values less than 20%, even at a dose of 50 $\mu g \text{ mL}^{-1}$. Moreover, the intra-tumoral administration of PEGylated WO_{2.9} nanorods (200 μ L at 20 mg kg⁻¹) resulted in a temperature increase (≈ 20 °C) and a consequent growth inhibition of HeLa tumors after NIR laser irradiation (980 nm, 0.35 W cm^{-2} for 10 min). Sharker *et al.* created dopamine-conjugated HA tungsten oxide nanoparticles for the targeted PTT of breast cancer.⁴⁸ In this approach, the HA was conjugated with dopamine via carbodiimide chemistry and then assembled on the tungsten oxide nanoparticles at a mild alkaline pH. The resulting nanomaterials presented a mean diameter of 176.25 nm and an absorption peak in the 800 to 1100 nm region. The heat generated by the tungsten oxide nanoparticles (1 mg mL⁻¹) irradiated with a NIR laser (808 nm laser, 2 W cm⁻² for 5 min) led to a temperature increase up to 44 °C and the reduction of the MDA-MB-231 and A549 cellular viability to 3%. Moreover, the intravenous administration of the dopamine-conjugated HA tungsten oxide nanoparticles (30 mg kg^{-1}) to MDA-MB-231 tumor-bearing mice resulted in the increase of the tumor temperature up to 50 °C after NIR laser irradiation and the reduction of the tumor volume from 400 to 275 mm³ in 10 days post-injection (Fig. 5).

2.5. Molybdenum nanostructures

Molybdenum-based nanoparticles similar to other transition metal semiconductor nanostructures (*e.g.* tungsten, copper, or iron-based materials) present interesting properties that allow their use in photothermal applications.¹⁴² In fact, these nanomaterials possess a high photothermal conversion efficiency and a SPR that can be fine-tuned to display strong absorption in the NIR region of the spectra.¹⁴³ In the literature, it is reported that the doping or stoichiometry of the nanomaterials will affect the physicochemical properties of the molybdenum nanomaterials.¹⁴⁴ In this field, the molybdenum disulfide (MoS₂) and oxygen-deficient molybdenum oxide (MoO_{3-x}) are the most explored for mediating an anticancer photothermal effect.^{145,146}

2.5.1. Molybdenum disulfide materials. The MoS₂ structure and electrical properties are analogous to graphene and these nanostructures can be obtained by exfoliation or synthesized with various morphologies such as nanosheets, quantum dots, and nanodots.^{147–150} The MoS₂ crystals are composed of S–Mo–S layers, in which the unit cell presents a honeycomb structure containing each Mo atom enclosed by six S atoms.¹⁵¹ Liu and colleagues modified MoS₂ nanosheets with FA conjugated PEG aiming to use them in the chemo-PTT of breast cancer.¹⁵² In this study, the MoS₂ nanosheets were obtained by chemical exfoliation processes and then functionalized with the heterobifunctional lipoic acid-PEG-Fa by

Fig. 5 Evaluation of the photothermal capacity of WO₃-HA nanoparticles. Digital photographs of tumor-bearing mice after treatment with phosphate buffered saline (PBS), free WO₃, and WO₃-HA nanoparticles under 5 min of NIR laser irradiation (808 nm, 2 W cm⁻²) for 20 days (A). Analysis of the mouse tumor volume during 10 days of treatment (B). Histological images of the tumor tissue with hematoxylin & eosin (H & E) staining after 10 days of treatment (C). Reprinted from S. M. Sharker, S. M. Kim, J. E. Lee, K. H. Choi, G. Shin, S. Lee, K. D. Lee, J. H. Jeong, H. Lee, S. Y. Park, Functionalized biocompatible WO₃ nanoparticles for triggered and targeted *in vitro* and *in vivo* photothermal therapy, *J. Controlled Release*, **217**, 211–220, Copyright (2015), with permission from Elsevier.

exploring hydrophobic interactions. Additionally, the loading of DOX was also achieved by exploring the establishment of π - π stacking and hydrophobic interactions between the drug and the MoS₂ nanosheet lattice. The resulting nanomaterials presented a mean diameter of 50 nm and a thickness of 2 nm. Furthermore, the authors also reported that the PEGylated MoS₂ nanosheets possess a strong NIR absorbance and can mediate a temperature increase up to 60 °C upon NIR laser irradiation (30 µg mL⁻¹, 808, 1 W cm⁻² for 5 min). On the other hand, the *in vivo* assays revealed that the intra-tumoral administration of DOX-loaded PEGylated MoS₂ nanosheets (20 µL at a dose of 0.34 mg kg⁻¹) followed by irradiation with a NIR laser (808 nm, 0.35 W cm⁻² for 20 min) caused a temperature increase up to 45 °C and inhibited the growth of 4T1 tumors.

Wang et al. produced MoS₂ nanosheets functionalized with a hyperbranched polyglycidyl group and loaded with DOX for the combinatorial therapy of melanoma.¹⁵³ For that purpose, MoS₂ nanosheets were prepared through a hydrothermal method and then the hyperbranched polyglycidyl group was physically adsorbed on their surface. The authors reported that the functionalized MoS₂ nanosheets presented a mean diameter of 90 nm (thickness of 3 nm) and an increased absorbance in the NIR region of the spectra, when compared with bare MoS₂ nanosheets. Additionally, the irradiation with a NIR laser (180 μ g mL⁻¹, 808 nm, 2 W cm⁻² for 10 min) induced an increase in the temperature of 34 °C, which mediated the decrease of the B16 cell viability to less than 30%. The authors also demonstrated that the intra-tumoral administration of functionalized MoS₂ nanosheets (40 μ L at 2 mg kg⁻¹) followed by irradiation with a NIR laser (808 nm, 1 W cm^{-2} for 10 min) decrease the tumor growth, which was more efficient when combined with the simultaneous action of DOX.

2.5.2. Molybdenum oxide materials. Molybdenum oxides can be found in various stoichiometries from full MoO₃ to more oxygen deficient molybdenum oxide (MoO_{3-x}) or even semi-metallic MoO₂.¹⁵⁴ Liu and colleagues produced MoO₂ nanoparticles with a bow-tie morphology, through a hydrothermal reaction, for mediating the cancer PTT.¹⁵⁵ The resulting nanomaterials presented a strong absorption from the visible to NIR region of the spectra and could mediate a temperature increase up to 63.2 °C upon irradiation with a NIR laser (100 μ g mL⁻¹, 980 nm, 2 W cm⁻² for 3 min). Additionally, the in vivo assays demonstrated that the administration of MoO_2 nanoparticles (50 µL at 1 mg kg⁻¹) in mice bearing cervical tumors could cause the increase of the tumor temperature up to 66.3 °C, thus mediating a decrease in the tumor volume from ≈ 165 to ≈ 65 mm³. Bao and coworkers functionalized MoO_{3-x} hollow nanospheres with PEG for the chemo-PTT of pancreatic cancer.¹⁵⁶ The MoO_{3-x} hollow nanospheres were produced though the hydrothermal process, mixing [(NH₄)₆Mo₇O₂₄·4H₂O] and PEG, and then these nanospheres were loaded with campothecin. The resulting nanomaterials presented an average size of 90 nm and a cluster-like structure composed of ultra-small dots with 6 nm diameter. Additionally, the authors reported a strong absorption band in

the 700 to 1000 nm region of the spectra and upon NIR laser irradiation (808, 1 W cm⁻² for 10 min), the PEGylated MoO_{3-x} hollow nanospheres (200 µg mL⁻¹) mediated a temperature increase of ≈ 20 °C. Moreover, in the *in vivo* assays, the authors observed that the intravenous administration of PEGylated MoO_{3-x} (200 µL at 1 mg kg⁻¹) followed by irradiation with a NIR laser (808 nm, 1 W cm⁻² for 10 min) increased the tumor temperature up to 48 °C, which combined with the action of the campothecin induced an almost complete tumor eradication with no recurrence at day 15 (Fig. 6).

2.6. Iron-based nanomaterials

Iron oxide nanomaterials have been widely explored to generate hyperthermia effects in the presence of magnetic fields and more recently in response to NIR radiation.¹⁵⁷ Despite the iron nanomaterials (e.g. iron oxide) can exhibiting plasmonic properties, they require high energy to induce the excitation of free electrons due to the higher free electron density, when compared to gold nanomaterials. The iron oxide nanoparticles can present different chemical compositions, such as magnetite (Fe_3O_4), maghemite (Fe_2O_3), or non-stoichiometric combinations of the two.²⁰ These nanomaterials can be synthesized through different methodologies such as co-precipitation, thermal decomposition, and hydrothermal and solvothermal synthesis.¹⁵⁸ Hu and colleagues developed porous hollow Fe₃O₄ nanoparticles modified with polyacrylamide for the combined chemo-PTT of cancer.159 These nanostructures were produced through a hydrothermal process in a one-pot synthesis including the polyacrylamide. The resulting nanoparticles presented a spherical shape with a diameter of 260 nm and pores of 10 nm size. Moreover, the authors observed a broad absorption peak from the UV to the NIR region of the spectra and upon irradiation with NIR light (808 nm, 1 W cm⁻² for 10 min) the porous hollow Fe₃O₄ nanoparticles (200 μ g mL⁻¹) could mediate a temperature increase of 31 °C. Additionally, the authors also reported that the photothermal effect mediated by the hollow Fe₃O₄ nanoparticles caused a reduction in the 4T1 cellular viability to values lower than 20% (Fig. 7). In turn, Yang and coworkers produced superparamagnetic iron oxide nanoparticles coated with HA for the targeted PTT of breast cancer.¹⁶⁰ The superparamagnetic iron oxide nanoparticles were prepared by a coprecipitation method in alkaline media, followed by modification with 3-aminopropyltrimethoxysilane, and then conjugated with HA via carbodiimide chemistry. The nanoparticles presented a mean diameter of 17 nm and upon irradiation with a NIR laser (200 μ g mL⁻¹, 808 nm, 1 W cm⁻² for 9 min) they mediated a temperature increase of ≈ 18 °C. Moreover, in the in vitro studies the heat generated by the superparamagnetic iron oxide nanoparticles caused a ≈70% decrease of the MDA-MB-231 cellular viability. Furthermore, the authors also observed that the intravenous administration and irradiation (20 mg kg⁻¹, 808 nm, 2 W cm⁻² for 10 min every 24 hours for 8 days) of mice bearing MDA-MB-231 tumors stalled the tumor development with no significant growth being observed for 12 days.

Fig. 6 Evaluation of the MoO_{3-x} -campothecin nanosphere antitumoral capacity. Thermal images (A) and temperature variation curves (B) of tumors after treatment with MoO_{3-x} nanosphere formulations and irradiation with the NIR laser (808 nm, 10 min, 1 W cm⁻²). Analysis of the mice's body weight (C), tumor volume (D) and tumor weight (E) during the 15 days of treatment. Photographs of mice (F) and tumor H&E stained histological images (G) after 15 days of treatment with MoO_{3-x} -campothecin nanoformulations. Reprinted from S. M. ST. Bao, W. Yin, X. Zhang, X. Zhang, J. Yu, X. Dong, Y. Yong, F. Gao, L. Yan, Z. Gu, One-pot synthesis of PEGylated plasmonic MoO_{3-x} hollow nanospheres for photoacoustic imaging-guided chemo-photothermal combinational therapy of cancer, *Biomaterials*, **76**, 11–24, Copyright (2016), with permission from Elsevier.

Fig. 7 Physicochemical characterization of porous hollow Fe_3O_4 nanoparticles. (A) Evaluation of the porous hollow Fe_3O_4 nanoparticle porosity (A) and pore size distribution (B) through N₂ adsorption-desorption. UV-Vis absorption spectra of nanoparticles with different concentrations of Fe_3O_4 nanoparticles (C). Temperature variation curves of porous hollow Fe_3O_4 nanoparticles at different concentrations under NIR laser irradiation (808 nm, 1 W cm⁻²) for 10 min (D). Reprinted from L. Y. Hu, H. Hu, J. Yan, C. Zhang, Y. Li, M. Wang, W. Tan, J. Liu, Y. Pan, Multifunctional Porous Iron Oxide Nanoagents for MRI and Photothermal/Chemo Synergistic Therapy, *Bioconjugate Chem.*, **29**, 1283–1290, Copyright (2018), with permission from ACS Publications.

2.7. Copper nanomaterials

Copper is a transition metal and its nanomaterials can be engineered to be applied in cancer therapy.¹⁶¹ The synthesis of copper nanoparticles is usually performed through a wet chemical synthesis involving the reduction of copper salts (such as CuSO₄, copper(II) acetylacetonate, etc.).^{161,162} Among the different copper nanomaterials (copper selenide, copper telluride, and copper oxide), copper sulfide has been the most explored for the photothermal treatment of cancer. Copper sulfide and its copper-deficient structures ($Cu_{2-x}S$) present a NIR absorption compared to gold nanostructures, due to the d-d energy band transition of Cu²⁺ ions, which makes them promising photothermal materials. Hou et al. developed irondependent artesunate loaded hollow porous copper sulfide nanoparticles modified with transferrin for the chemo-PTT of cancer.¹⁶³ The resulting nanostructures presented a mean diameter of 205 nm and an increased absorption in the 700 to 1000 nm region of the spectra. Additionally, the authors demonstrated that the NIR laser irradiation (808 nm, 2 W cm⁻² for 5 min) of the hollow porous copper sulfide nanoparticles (100 µg mL⁻¹) can induce a temperature increase of \approx 40 °C, which combined with the iron-dependent artesunate action caused the death of 92.6% of the MCF-7 cancer cells. Moreover, the in vivo studies also demonstrated that the combinatorial therapy mediated by the intraperitoneal injection of the hollow porous copper sulfide nanoparticles (100 mg kg $^{-1}$, 808 nm, 2 W cm⁻² for 30 s) resulted in a tumor inhibition rate of 74.8% (Fig. 8). Wang and colleagues produced DOX loaded hollow copper sulfide nanoparticles enclosed in a hybrid coating formed by the fusion of the membranes of red blood cells and B16-F10 cells for the combinatorial therapy of melanoma.¹⁶⁴ The nanoparticles presented an average size of 200 nm and a strong absorption at 1064 nm. Furthermore, upon NIR irradiation (1064 nm, 1 W cm^{-2} for 10 min), the hollow copper sulfide nanoparticles mediated a temperature increase up to 75.4 °C. This photothermal capacity remained constant even after four on/off cycles of irradiation. The authors also reported that the combined action of the DOX and the photothermal effect (1064 nm, 1 W cm^{-2} for 10 min) mediated by the fusion membrane coated DOX loaded hollow copper sulfide nanoparticles caused the eradication of melanoma tumors in mice, after an intravenous administration of the nanoparticles at a concentration of 5 mg kg $^{-1}$.

3. Clinical trials

Currently, there are a wide number of nanomedicines that have been approved for cancer treatment.¹⁶⁵ Nevertheless, despite the promising properties and therapeutic potential

Fig. 8 Antitumor activity of artesunate-loaded hollow porous copper sulfide nanoparticles. Analysis of the tumor volume (A) and tumor inhibition (B) after treatment with different hollow porous copper sulfide nanoformulations and irradiation with the NIR laser (808 nm, 2 W cm⁻²). Histological images of H&E stained tumor samples (C) after treatment with the different porous copper sulfide nanoformulations. Reprinted from L. Hou, X. Shan, L. Hao, Q. Feng, Z. Zhang, Copper sulfide nanoparticle-based localized drug delivery system as an effective cancer synergistic treatment and theranostic platform, *Acta Biomater.*, **54**, 307–320, Copyright (2017), with permission from Elsevier.

demonstrated by the approaches based on hyperthermia mediated by nanomaterials, their translation into the clinic is still poorly investigated. In fact, most of the nanomaterial-mediated hyperthermia approaches under clinical development are based on the utilization of magnetic fields for promoting heat generation.¹⁶⁶

For example, NanoTherm® (MagForce AG) is applied in the treatment of glioblastomas and consists of an aqueous suspension of FeO nanoparticles that produces heat in the presence of alternating magnetic fields.^{167,168} The nanoparticles possess an average size from 10 to 15 nm and are injected into the tumor or in the cavity wall during the tumor resection. The FeO core (\approx 111 mg ml⁻¹ Fe concentration) is coated with amino silanes to ensure that the nanoparticles remain stable in the tumor tissue. After reaching the tumor site, the iron

oxide nanoparticles are activated by an external alternating magnetic field, for six one-hour sessions (magnetic hyperthermia). Thus, the tumor thermal ablation is performed, usually at temperatures \approx 44–45 °C, which can also sensitize the cells to other therapeutic approaches such as chemotherapy or radiotherapy.^{166,169} In fact, the efficacy of Nanotherm® shows improvements when combined with other therapies.^{170,171} This approach was approved by the European Medicines Agency for the treatment of brain tumors and is currently under clinical investigation in the United States of America.¹⁶⁶

Magnablate I is another iron oxide nanoparticle-based magnetic treatment under clinical trials for the treatment of prostate cancer.¹⁷² A clinical phase 0 study (ClinicalTrials.gov Identifier: NCT02033447, data still not available) has been developed to test where the nanoparticles are located after the

logical per-	/ Ref.	f [Au] 176
cation on the biol	Biocompatibility	0.02-0.10 mM o
he effect of their surface modific	Antitumor efficacy	Tumor eradication after 13 days
nolybdenum, iron oxide, copper, carbon-based materials) and th :y). (N.A.) not applicable; (N.D.) not disclosed	Biodistribution	At 12 h after administration, predominantly accumulated in
anic nanoparticles (gold, tungsten, n ntitumor efficacy, and biocompatibilit	Surface modification	PEG and rabies virus
Verview of the inorg <i>i.e.</i> biodistribution, ar		Nanorods
Table 2 C formance (Material	Gold

end builties modification locative modification <th locative="" modi<="" th=""><th></th><th></th><th></th><th>:</th><th></th><th></th><th></th></th>	<th></th> <th></th> <th></th> <th>:</th> <th></th> <th></th> <th></th>				:			
Namools Period Production in Marco Production Ma	rial		Surface modification	Biodistribution	Antitumor efficacy	Biocompatibility	Ref.	
Projections Societificant change and fully menory reactions practices Distribution of the manoe register of change and fully menory practices Distribution of the manoe register of change and fully menory practices Distribution of the manoe register of change and fully menory practices Distribution of the manoe register of change and fully menory reactions detected in the major or distribution of the manoe register of change and fully menory reactions detected in the major menor Distribution of the manoe register of change and fully menory reactions detected in the major of the manoe reactions of the random register of mange and fully menoe reactions of the random register of the major menory reactions detected in the major of the manoe reactions of the random reactions and menolity reactions detected in the major of the manoe reactions of the random reactions detected in the major of the manoe reactions of the random reactions and menolity reactions detected in the major multiple reaction reaction of the manoparticles Distribution reactions detected in the major of the manoparticles Distribution reaction reaction of the random reactin reactin reaction reaction reaction reactin reaction reaction re	Ž	anorods	PEG and rabies virus glycoprotein	At 12 h after administration, predominantly accumulated in 7 the liver and kidney. No significant damage and inflammatory reactions detected in the major oreans	Numor eradication after 13 days 200 μ L at 2.5 \times 10 ⁻³ M)	0.02–0.10 mM of [Au]	176	
projectionertin, lactobionic xi 1, late in previous (36% of the major organs. Perto and PEG Pero PEG Pero PEG Pero and PEG			β-Cyclodextrin and RLA nentide	numinimity reactions according in the major organis No significant damage and inflammatory reactions I defected in the major organs	inhibition of the tumor growth or 21 days (20 mg kg ⁻¹)	$0-200 \text{ mg L}^{-1}$	178	
PEG A2.4 hater region, 3.5 with the manyor reactions detected in the manyor relation with a single 6-100 ung Nanostars NA A2 hater right constrained in the manyor reactions detected in the manyor reacting the manyor reactions detected in the manyor reacting the reactin			β-Cyclodextrin, lactobionic acid, and PEG	At 24 th after injection, 50% of nanoparticles accumulated 1 in the tumor and 30% in the liver. Some vestiges on the (spleen, kidney and heart. No significant damage and	future readication after 7 days $(1.15 \text{ mg kg}^{-1})$	$0-200 \text{ mg L}^{-1}$	180	
Nanosaris N.A. After 3. h. 2.11% and 0.8% of the nanosaris with 30 mm Tumor tablation with a single N.D. PEG PEG Tumor endication in termory resertions' organisation in the inter, splera and lung 2 minus start returnent 0-500 µg ml PEG PEG After 3. h. 2.11% and 0.8% of the nanoparticles 2 minus start returnent 0-500 µg ml PEG After 3. h. 2.11% of the nanoparticles 2 minus start returnent 0-900 µg ml PEG After 3. h. 2.11% in the liver, splera and lung 2 minus start returnent 0-900 µg ml PEG After 3. h. 2.11% in the liver, splera and lung 2 minus start returnent 0-900 µg ml PEG After 3. h. 2.0% of the nanoparticles in the major organs 2 minus realication after 2 days 0-100 µg ml Nanoshells Anti-6CFR antibody Percondin flammatory reactions detected in the major organs Percondin at a mg mL ⁻¹) 0-100 µg ml Nanoshells Anti-6CFR antibody Percondin at a mg mL ⁻¹) 0-100 µg ml 1.75 µg mL ⁻¹) 0-100 µg ml PEG Anti-6CFR antibody Percondin at a mg mL ⁻¹) 0-100 µg mL ⁻¹) 0-100 µg mL ⁻¹) 0-100 µg mL ⁻¹) PEG Ant			PEG	inflammatory reactions detected in the major organs. At 24 h after injection, 8.6% of the nanoparticles F accumulated in the tumor, 25.1% in the spleen, 13.9% in a the liver, and some vestiges on other organs. No significant r damage and inflammatory reactions detected in the major	keduction of the tumor volume tifer 14 days (150 μL at 2 mg nL ⁻¹)	50-1000 mg L ⁻¹	182	
PEG High uptake from the liver, spleen and larg Thrac readication after 2 days 0-500 gr ml PEG After 24 h, 20% of the nanoparticles accumulated in the significant damage and inflammatory reactions Thrac radication after 2 days 0-100 µg ml PEG After 24 h, 20% of the nanoparticles accumulated in the significant damage and inflammatory reactions Thrac radication after 2 days 0-100 µg ml RA Nanoshells Anti-FGFR antibody Pedominant accumulation of the nanoparticles in the turnor tessue 0-1 mM of (1.4 mg mL ⁻¹), Thunor read- ing mL ⁻¹), Thunor read- bace react in the major organs 0-2 mg mL ⁻¹) 0-1 mM of (1.4 mg mL ⁻¹), Thunor read- turnor tessue Nanoshells Anti-FGFR antibody Pedominant accumulation of the nanoparticles in the unnor tissue 0-1 mM of (1.4 mg mL ⁻¹), Thunor read- tact after 14 days 0-2 mg ml Nanoclusters Hybrid albumin Pedominant accumulation of the nanoparticles in the unnor volume after 14 days 0-2 mg wl 0-1 mM of (1.4 mg mL ⁻¹), Thunor reaction of the transor after 14 days Nanoclusters Hybrid albumin No significant damage and inflammatory reactions 0-1 mM of (1.4 mg mL ⁻¹) 0-1 mg organs Nanoclusters Hybrid albumin No significant damage and inflammatory reactions 0-1 mM of (1.4 mg mL ⁻¹) 0-1 mg organs Nanoclusters Hybrid albumin No significant damage and inflammatory reactions 0-1 mM of (1.4 mg mL ⁻¹) 0	Ż	anostars	N.A.	organs After 48 h, 2.11% and 0.88% of the nanostars with 30 nm and 60 nm accumulated in the tumor, respectively. Nanostars with 60 nm presented higher accumulation in the liver (~19%) and spleen. No significant damage and inflammatory reactions detected in the maior organs	tumor ablation with a single 0 minutes laser treatment 2 mg of the nanoparticles)	N.D.	42	
PEG After 24 h, 20% of the nanoparticles accumulated in the tunor. Non spirati 13% in the liver and 2.2.5% in the tunor. Non significant damage and inflammatory reactions detected in the major organs O-100 µg mL FA Nanoshells Anti-EGFR antibody Predominant accumulation of the nanoparticles in the compageted thiol chitosan- layer O-100 µg mL Nanoshells Anti-EGFR antibody Predominant accumulation of the nanoparticles in the compageted thiol chitosan- layer Predominant accumulation of the nanoparticles in the chitosan- layer O-100 µg mL Nanoshells Anti-EGFR antibody Predominant accumulation of the nanoparticles in the compageted thiol chitosan- layer Predominant accumulation of the nanoparticles in the cumor relation for 1 days O-100 µg mL Nanoclusters PEG/Jated SN-38-micelles No significant damage and inflammatory reactions Preduction of the tunor volume detected in the major organs O-230 µg mL Nanoclusters PEG/Jated SN-38-micelles No significant damage and inflammatory reactions Preduction of the tunor volume detected D-235 µg/mL Nanoclusters PEG/Jated SN-38-micelles No significant damage and inflammatory reactions Preduction of the tunor volume detected D-235 µg/mL Nanoclusters PEG Heart cytotoxicity was detected No significant damage detected D-100 µg mL PEG Heart cytotoxicity was detected Tunor readiciton of the tunor organych D-100 µg mL			PEG	High uptake from the liver, spleen and lung	Tumor eradication after 2 days	$0-500 \ \mu g \ m L^{-1}$	183	
FANanoshellsReduction of the tumor volume detected in the major organsReduction of the tumor volume (1.75 µg mL ⁻¹). Innor recur- innor r			PEG	After 24 h, 20% of the nanoparticles accumulated in the conspleen; 15% in the liver and $\approx 2.5\%$ in the tumor. No significant damage and inflammatory reactions detected in the main reverse.	tumor eradication after 2 days 100 mL at 4 mg mL ⁻¹)	0-400 μg mL ⁻¹	184	
NanoshellsAnti-EGFR antibody conjugated thiol chitosan- layerPredominant accumulation of the nanoparticles in the umor visueTumor eradication for 16 days 			FA	No significant damage and inflammatory reactions F detected in the major organs	Reduction of the tumor volume 1.4 mg mL^{-1}). Tumor recur-	0–1 mM of [Au]	187	
Betulinic acid liposomesNo significant damage and inflammatory reactionsSignificant reduction of the tumor volume after 14 days1.5-47.5 µgPEGylated SN:38-micellesNo significant damage and inflammatory reactionsBignificant reduction of the tumor growth0.125-2 mMPEGylated SN:38-micellesNo significant damage and inflammatory reactionsReduction of the tumor growth0.125-2 mMNanoclustersHybrid albuminThe liver, kichney, heart, lung, and spleen did not show0.125-2 mM0.100 µg mLPEGHeart cytotoxicity was detectedmore volume0-100 µg mL0.125-2 mMPEGHeart cytotoxicity was detectedmL0.10 µg mL0.100 µg mLNanoclustersPEGHeart cytotoxicity was detectedmL0.100 µg mLNanocagesPEI, FA and PEGNo significant damage and inflammatory reactionsmL0.100 µg mLNanocagesPEI, FA and PEGNo significant damage and inflammatory reactionsmL0.100 µg mLHA, PEG, and A54 peptideNo significant damage and inflammatory reactions detected innhibition of the tumor growthN.D.Adoutoron A54 peptideNo significant damage and inflammatory reactions detected innhibition of the tumor growth0.625 × 10^{10}HA, PEG, and A54 peptideNo significant damage and inflammatory reactions detected innhibition of the tumor growth0.625 × 10^{10}Adoutorona.ANo significant damage and inflammatory reactions detected innhibition of the tumor growth0.625 × 10^{10}Adoutorona.ANo significant damage and inflammatory reactions dete	Ï	anoshells	Anti-EGFR antibody conjugated thiol chitosan- laver	Predominant accumulation of the nanoparticles in the tumor tissue	The function for 16 days $(175 \ \mu g \ mL^{-1})$	0–250 μg mL ⁻¹	78	
PEGylated SN-38-micellesNo significant damage and inflammatory reactionsReduction of the tumor growth for 35 days (1 mg kg^{-1})0.125-2 mMNanoclustersHybrid albuminThe liver, kidney, heart, lung, and spleen did not show significant histological damage and spleen did not showReduction of the tumor volume for 20 days (200 µl at 10 mg mL^{-1})0-100 µg mLPEGHeart cytotoxicity was detected mLTumor eradication (2.5 mg 			Betulinic acid liposomes	No significant damage and inflammatory reactions detected in the major organs	Significant reduction of the umor volume after 14 days 200 ut at 94 9 uo mt ⁻¹)	$1.5-47.5 \ \mu g \ mL^{-1}$	226	
NanoclustersHybrid albuminThe liver, kidney, heart, lung, and spleen did not show significant histological damagePEGP-100 µg mLPEGThe river, kidney, heart, lung, and spleen did not show significant histological damageThe river, kidney, heart, lung, and spleen did not show significant histological damagePEGP-100 µg mLPEGHeart cytotoxicity was detected taptorilHeart cytotoxicity was detected mL^-1)PT-00 µg mL (00 µl at 10 mg mL^-1)P-1024 µg mPEGNo significant damage and inflammatory reactions detected in the major organs significant damage and inflammatory reactions significant damage and inflammatory reactions 			PEGylated SN-38-micelles	No significant damage and inflammatory reactions	Reduction of the tumor growth for $35 \text{ days} (1 \text{ mor } \log^{-1})$	0.125-2 mM of [Au]	227	
PEG Heart cytotoxicity was detected Tumor eradication (2.5 mg 4-1024 μg m kg ⁻¹) Captoril No significant damage and inflammatory reactions Tumor eradication (2.5 mg 4-1024 μg m kg ⁻¹) Captoril No significant damage and inflammatory reactions Tumor eradication (2.5 mg 4-1024 μg m kg ⁻¹) Nanocages PEI, FA and PEG No significant damage and inflammatory reactions Tumor eradication after 15 days 0-100 μg mI (100 mL a 2.5 mg mL ⁻¹) Nanocages PEI, FA and PEG Predominant accumulation of the nanoparticles in the inhibition of the tumor growth N.D. HA, PEG, and A54 peptide No significant damage and inflammatory reactions detected in the major organs Inhibition of the tumor growth 0.623 × 10 ¹⁰ Matheuteneed No significant damage and inflammatory reactions Inhibition of the tumor growth 0.623 × 10 ¹⁰	Ï	anoclusters	Hybrid albumin	The liver, kidney, heart, lung, and spleen did not show f significant histological damage	or control of the turner volume or 20 days (200 µl at 10 mg	0–100 μg mL ^{–1}	76	
CaptorilNo significant damage and inflammatory reactionsTum/or eradication after 15 days0-100 µg mLRancagesPEI, FA and PEGPredominant accumulation of the nanoparticles in the tumor tissue, followed by the spleen and liver. No(100 mL at 2.5 mg mL^{-1})N.D.NanocagesPEI, FA and PEGPredominant accumulation of the nanoparticles in the tumor tissue, followed by the spleen and liver. No(100 mL at 2.5 mg mL^{-1})N.D.HA, PEG, and A54 peptideNo significant damage and inflammatory reactions detected in the major organsfor 15 days (8.5 mg kg^{-1})particles perMA, PEG, and A54 peptideNo significant damage and inflammatory reactionsfor 13 days (3.2.6 mg kg^{-1})particles perMathefferancialUrber commutation of the major organsInhibition of the tumor growth0.625 × 10^{10}MathefferancialUrber commutation commutation of the cumor growth0.625 × 10^{10}MathefferancialUrber commutation commutation for commutation commutation for the tumor growth0.625 × 10^{10}MathefferancialUrber commutation commutation for commutation for commutation for commutation for the tumor growth0.625 × 10^{10}MathefferancialUrber commutation for			PEG	Heart cytotoxicity was detected	Tumor eradication (2.5 mg	4–1024 µg mL ⁻¹	228	
Nanocages PEI, FA and PEG Predominant accumulation of the nanoparticles in the inhibition of the tunnor growth N.D. tunnor tissue, followed by the spleen and liver. No for 15 days (8.5 mg kg ⁻¹) significant damage and inflammatory reactions detected in the major organs for 15 days (8.5 mg kg ⁻¹) for 15 days (8.5 mg kg ⁻¹) HA, PEG, and A54 peptide No significant damage and inflammatory reactions detected in the major organs Inhibition of the tumor growth 0.625 × 10 ¹⁰			Captoril	No significant damage and inflammatory reactions	Tumor eradication after 15 days 100 mL at 2.5 mo mL ⁻¹)	$0-100 \ \mu g \ m L^{-1}$	229	
HA, PEG, and A54 peptide No significant damage and inflammatory reactions Inhibition of the tumor growth 0.625×10^{10} detected in the major organs for 13 days (32.6 mg kg ⁻¹) particles per trick per	Ż	anocages	PEI, FA and PEG	Predominant accumulation of the nanoparticles in the tumor tissue, followed by the spleen and liver. No f significant damage and inflammatory reactions detected in the main reverse.	inhibition of the tumor growth or 15 days (8.5 mg kg ^{-1})	N.D.	06	
Andruffermida Ution with a commutation on the colors and live True and a fee of ND			HA, PEG, and A54 peptide	ue insportoisans No significant damage and inflammatory reactions defected in the major orcons	nhibition of the tumor growth or 13 days (33.6 mo ko ⁻¹)	0.625×10^{10} – 5×10^{10} particles per mL	230	
Acymptotic (15% and 20%, respectively) and around 10% in the tumor. (100 µL at 2.5 mg mL ⁻¹) No significant damage and inflammatory reactions detected in the major organs			Acylsulfonamide	High man particle accumulation in the spleen and liver (15% and 20%, respectively) and around 10% in the tumor. (No significant damage and inflammatory reactions detected in the major organs	The function of the function	N.D.	231	

View Article Online

Published on 15 April 2020. Downloaded by University of Beira Interior on 5/3/2020 12:43:48 AM.

Table 2 (Contd.)

Biomater. Sci.

	(10)					
Material		Surface modification	Biodistribution .	Antitumor efficacy	Biocompatibility	Ref.
Tungsten	Oxide	HA	Predominant accumulation of the nanoparticles in the	Tumor eradication after 20 days	$0.001-1 \text{ mg mL}^{-1}$	48
		iRGD peptide	Predominant accumulation of the nanoparticles in the	Reduction of the tumor growth	N.D.	136
			tumor tissue. No significant damage and inflammatory reactions detected in the major organs	for 16 days (100 μ L at 1 mg mL ⁻¹)		
		Polyallylamine hydrochloride and	Predominant accumulation of the nanoparticles in the liver followed by the kidney, lung, spleen, tumor and heart, after	Tumor eradication after 8 days $(100 \ \mu L \ at \ 1 \ mg \ mL^{-1})$	$15.625 - 1000 \ \mu g \ mL^{-1}$	133
		polystyrenesulfonate	14 days. No significant damage and inflammatory reactions detected in the maior organs			
		γ -Poly-L-glutamic acid	No significant damage and inflammatory reactions	Reduction of the tumor volume for 18 days (20 mo loc^{-1})	$12.5-200 \ \mu g \ m L^{-1}$	137
	Disulfide	PEG	High nanoparticle accumulation in the tumor (13%) followed by the liver and spleen (40% and 30%,	Tumor eradication after 2 days $(200 \ \mu L \ at 2 \ mg \ mL^{-1})$	$0-0.1 \mathrm{~mg~mL}^{-1}$	194
			respectively. No significant damage and minimutory reactions detected in the major organs for 45 days			
		BSA	N.D.	Tumor eradication after 14 days (100 mL at 200 mº mL ⁻¹)	$0-400 \ \mu g \ m L^{-1}$	195
		BSA	No significant damage and inflammatory reactions	Tumor eradication after 22 days	$0-200 \ \mu g \ mL^{-1}$	197
Molvbdenum	Dxide	PEG	detected in the major organs Predominant accumulation of the nanoparticles in the	(20 μL at 2 mg mL ⁻) Reduction of the tumor volume	0–200 ug mL ⁻¹	142
			liver, spleen, lung, and kidney after 12 h. Clearing of the	for 15 days (20 mg kg^{-1})	61 01 001 00	
			nanoparticles in the following 2 days No significant damage and inflammatory reactions			
			detected in the major organs for 30 days			
		PEG	No significant damage and inflammatory reactions	Reduction of the tumor volume	$0-200 \ \mu g \ m L^{-1}$	156
			detected in the major organs	for 15 days (0.2 mg kg^{-1})	- - - -	
		PEG	Predominant accumulation of the nanoparticles in the liver, spleen, lung, and kidney after 24 h. No significant	Tumor eradication after 16 days (20 mg kg^{-1})	0–100 µg mL 🝈	150
			damage and inflammatory reactions detected in the major organs for 30 days			
		Pluronic-F127	No significant damage and inflammatory reactions	Tumor eradication after 24 days	$0-100 \ \mu g \ m L^{-1}$	18
-	Disulfide	Dad	detected in the major organs	(3 mg kg ⁻¹) Deduction of tumor growth	0.25_8 uo mT ⁻¹	1 A E
			detected in the major organs	$(6.85 \text{ mg kg}^{-1})$	Qui 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
		PEI	Predominant accumulation of the nanoparticles in the liver	Inhibition of tumor growth for	$0-100 \ \mu g \ mL^{-1}$	199
			and spleen. No significant damage and inflammatory reactions detected in the major organs	20 days (0.1 mL at 2 mg mL ^{-1})		
		PEG	Predominant accumulation of the nanoparticles in the	Reduction of the tumor volume	$6.25-200 \ \mu g \ mL^{-1}$	204
			lung, with some accumulation in the liver and spleen. No significant damage and inflammatory reactions detected in the motion remore 7 days next initiation.	for 13 days (50 μ L, 1 mg mL ⁻⁺)		
		GSH	Predominant accumulation of the nanoparticles in the liver	Tumor eradication after 4 days	$1.06-200 \ \mu g \ m L^{-1}$	205
			(1.5.7%) toutowed by spreen (0.5%), kidurey, and turnor, no significant damage and inflammatory reactions detected in	ر TIII BIII C.O at TH DOZ)		
			the major organs			

Table 2 (Co	ontd.)					
Material		Surface modification	Biodistribution	Antitumor efficacy	Biocompatibility	Ref.
Iron based	Oxide	PEG or citrate	N.D.	Tumor eradication after 2 days without recurrence in 20 days	$5-1000 \text{ mg mL}^{-1}$	208
		Carboxymethyl chitosan	Predominant accumulation of the nanoparticles in the tumor followed by the liver, spleen, kidney, and lung. No significant damage and inflammatory reactions detected in the matter damage and inflammatory reactions detected in	200 pL at 0.22 mg mL) Thumor eradication after 5 days without recurrence in 15 days (200 mL at 10 mg mL ⁻¹)	0–120 µg mL ^{–1}	211
		Polydopamine	use major or gams No significant damage and inflammatory reactions detected in the major organs	Reduction of the tumor volume for 19 days $(25 \ \mu L \text{ at } 2 \text{ mg} - 1)$	0-400 µg mL ⁻¹	212
		N.A.	N.D.	Reduction of tumor growth for 10 days (25 nf at 2 mo m1 -1)	$0-500 \ \mu g \ mL^{-1}$	213
Copper	Seline	Dimercapto PEG	Predominant accumulation of the nanoparticles in the liver, spleen, kidney and lung after 24 h. No significant damage and inflammatory reactions detected in the major	Tumor eradication after 2 days $(200 \ \mu L \ at 100 \ \mu g \ m L^{-1})$	$6.25 - 100 \ \mu g \ mL^{-1}$	218
		N.A.	No significant damage and inflammatory reactions	Reduction of tumor growth for	$1.6-50 \ \mathrm{\mu g \ m L^{-1}}$	220
		N.A.	utected in the major organs Similar accumulation of the nanoparticles in the heart, liver, spleen, and lungs. No significant damage and inflammatory reactions detected in the major organs after 3 20 and 00 dave	Tu uays (20 mg xg) Tumor eradication after 14 days (200 mL at 1 mg mL ⁻¹)	0–100 ppm	222
	Sulfide	DSPE-PEG2000	of our production of the nanoparticles in the liver followed by the spleen, kidney, heart and tumor. No significant damage and inflammatory reactions detected in the motor crosure	Tumor eradication after 14 days (200 μL at 1 mg mL^{-1})	0-400 ppm	217
Carbon based	Multi-walled carbon nanotubes functionalized with PEG	PEG	Predominant accumulation of the nanoparticles in the liver Predominant accumulation of the nanoparticles in the liver followed by the spleen, and kidney after 24 h. No significant damage and inflammatory reactions detected in the motor corose	Tumor eradication after 12 days (4 mg kg^{-1})	N.D.	113
	Single-walled carbon	Albumin	ure indui organs N.D.	Tumor eradication after 16 days $f_{12}^{(2)}$	0.001-50 mM	103
	nanotubes Single-walled carbon	НА	No significant damage and inflammatory reactions	(3 mg kg) Tumor eradication after 3 days	$0-500 \ \mu g \ m L^{-1}$	102
	Multifunctional carbon	PEG	ucceed in the indior organs N.D.	Inhibition of tumor growth for 11 days (4.0 mo ko ⁻¹)	$0.2-2 \ \mu g \ m L^{-1}$	97
	Go and rGO	Coated gold superparticles	N.D.	Tumor eradication after 14 days	$0-200 \ \mu g \ ml^{-1}$	116
		N.A.	Predominant accumulation of the nanoparticles in the	Reduction of tumor growth for	50–500 µg ml ⁻¹	225
		Polydopamine	nvet, knotted and tung atted 4 in No significant damage and inflammatory reactions	Tumor eradication after 18 days	$2.5-40 \ \mathrm{\mu g \ ml^{-1}}$	94
		N.A.	ucceled in the major organs N.D.	Turnor eradication after 17 days $(50 \ \mu L at 6 \ mg \ mL^{-1})$	0–160 μg ml ⁻¹	96

This journal is © The Royal Society of Chemistry 2020

Review

intratumoral injection and if any prostate-related side effects or irreversible damage can occur. Otherwise, Aurolase® (Nanospectra) remains as the unique nanoparticle under clinical evaluation for the PTT of cancer.¹⁷³ In fact, two clinical trials are currently being performed using this technology, a study to evaluate the efficacy of the Aurolase® therapeutic approach in primary and/or metastatic lung tumors (ClinicalTrials.gov Identifier: NCT01679470) and the determination of the antitumoral capacity in patients with refractory and/or recurrent tumors of the head and neck (ClinicalTrials. gov Identifier: NCT00848042).

Aurolase® uses PEGylated gold nanoshells with a diameter of approximately 150 nm and exhibits a high absorption peak at 800 nm, which allows its application in PTT. When the nanoparticles are intravenously injected, they explore the EPR effect to passively accumulate in the tumor site. The posterior NIR laser radiation may result in cellular death and tumor regression.^{169,174} In the first clinical trial (ClinicalTrials.gov Identifier: NCT01679470), a single dose of gold nanoparticles was administered in patients with primary and/or metastatic tumors of the lung (with airway obstruction). Then, the PTT effect was triggered via bronchoscopy using optical fiber emitting NIR light (testing the irradiation of an escalating dose).174,175 In the second PTT Aurolase® clinical study, patients with acute and/or chronic neck and head tumours received a single dose of gold nanoparticles through intravenous administration and were subjected to one or multiple doses of laser irradiation (808 nm). Three groups of 5 patients each, testing variations in the laser's power density, were studied and monitored during 6 months after treatment. Both clinical trials were already completed in 2014, but results have not yet been published (ClinicalTrials.gov Identifier: NCT00848042).174,175

4. Conclusion

Over the last few years, the utilization of nanomaterialmediated hyperthermia in cancer therapy has been showing promising results. In this field, a wide number of nanomaterials have been developed, particularly those that can mediate a localized hyperthermia in response to NIR light irradiation. These nanostructures are able to convert the energy of the photons into heat, which allows the spatiotemporal control over the therapeutic effect.

In this review, the main inorganic nanomaterials (*e.g.* gold, carbon, tungsten, molybdenum, iron, and copper) developed for mediating cancer PTT were described and their general properties were summarized. In general, the data available in the literature demonstrate that the photothermal capacity of these nanomaterials can be optimized by adjusting their size, shape and doping with other elements. Moreover, it is worth noting that the therapeutic efficacy of the nanomaterial-mediated PTT is also dependent on other external parameters such as tumor localization, NIR laser conditions (*e.g.* potency and irradiation time), and accumulation within the tumor

tissue. Additionally, researchers must also take into consideration the relationship between the high photothermal efficiency and biosafety of the nanostructures. For instance, several works have explored the functionalization of nanomaterials with polymers (*e.g.* PEG) and targeting agents (*e.g.* Fa, antibodies, and RGD peptide) for improving the materials stability, biocompatibility, and specificity for tumors (Table 2). Furthermore, the integration of the photothermal effect in combinatorial therapies can further improve the therapeutic potential of these nanostructures, leading to a decrease of the dose required to attain the eradication of tumor cells and treatment side-effects.

In conclusion, the PTT mediated by nanomaterials holds potential for improving the therapeutic outcome of cancer. Nevertheless, most of these nanomaterials remain at the preclinical stage and additional studies to characterize the shortand long-term fate of the nanomaterials in the body, their biodegradation, and their safety are of paramount importance to prompt their translation from the lab to the clinic. Moreover, the development of simple production methods and their scale-up will increase the reproducibility of the nanomaterials and their therapeutic effects.

Conflicts of interest

The authors declare no financial or commercial conflict of interest.

Acknowledgements

This work was supported by FEDER funds through the POCI – COMPETE 2020 – Operational Programme Competitiveness and Internationalisation in Axis I – Strengthening research, technological development and innovation (Project POCI-01 0145-FEDER-007491) and National Funds by FCT – Foundation for Science and Technology (Project UID/Multi/00709/2013). The funding from CENTRO-01-0145-FEDER-028989 and POCI-01-0145-FEDER-031462 is also acknowledged. Carolina F. Rodrigues acknowledges her individual Ph.D fellowship from FCT (SFRH/BD/144680/2019). The funders had no role in the decision to publish or in the preparation of the manuscript.

References

- 1 F. Bray, *et al.*, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, *CA-Cancer J. Clin.*, 2018, **68**(6), 394–424.
- 2 C. Liang, W. Chao and L. Zhuang, Functional nanomaterials for phototherapies of cancer, *Chin. J. Clin. Oncol.*, 2014, (1), 18–26.
- 3 N. Datta, *et al.*, Local hyperthermia combined with radiotherapy and-/or chemotherapy: Recent advances and

promises for the future, *Cancer Treat. Rev.*, 2015, **41**(9), 742–753.

- 4 D. M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy, *Nat. Rev. Cancer*, 2012, **12**(4), 252–264.
- 5 C. A. Robertson, D. H. Evans and H. Abrahamse, Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT, *J. Photochem. Photobiol., B*, 2009, **96**(1), 1–8.
- 6 G. Kong and M. Dewhirst, Review hyperthermia and liposomes, *Int. J. Hyperthermia*, 1999, **15**(5), 345–370.
- 7 P. Wust, et al., Hyperthermia in combined treatment of cancer, *Lancet Oncol.*, 2002, 3(8), 487–497.
- 8 D. K. Chatterjee, P. Diagaradjane and S. Krishnan, Nanoparticle-mediated hyperthermia in cancer therapy, *Ther. Delivery*, 2011, 2(8), 1001–1014.
- 9 J. Beik, *et al.*, Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications, *J. Controlled Release*, 2016, **235**, 205–221.
- 10 C. S. Kumar and F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery, *Adv. Drug Delivery Rev.*, 2011, **63**(9), 789–808.
- 11 D. de Melo-Diogo, *et al.*, Strategies to improve cancer photothermal therapy mediated by nanomaterials, *Adv. Healthcare Mater.*, 2017, **6**(10), 1700073.
- 12 A. F. Moreira, D. R. Dias and I. J. Correia, Stimuli-responsive mesoporous silica nanoparticles for cancer therapy: A review, *Microporous Mesoporous Mater.*, 2016, 236, 141–157.
- 13 G. S. Terentyuk, *et al.*, Laser-induced tissue hyperthermia mediated by gold nanoparticles: toward cancer phototherapy, *J. Biomed. Opt.*, 2009, **14**(2), 021016.
- 14 R. Seip, C. T. Chin, C. S. Hall, B. I. Raju, A. Ghanem and K. Tiemann, Targeted Ultrasound-Mediated Delivery of Nanoparticles: On the Development of a New HIFU-Based Therapy and Imaging Device, in *IEEE Transactions on Biomedical Engineering*, 2010, vol. 57, pp. 61–70.
- 15 I. M. Obaidat, B. Issa and Y. Haik, Magnetic properties of magnetic nanoparticles for efficient hyperthermia, *Nanomaterials*, 2015, 5(1), 63–89.
- 16 A. M. Pekkanen, M. R. DeWitt and M. N. Rylander, Nanoparticle enhanced optical imaging and phototherapy of cancer, *J. Biomed. Nanotechnol.*, 2014, **10**(9), 1677–1712.
- 17 J. Zhou, *et al.*, NIR photothermal therapy using polyaniline nanoparticles, *Biomaterials*, 2013, 34(37), 9584–9592.
- 18 Y. Chen, *et al.*, Pluronic F127-functionalized molybdenum oxide nanosheets with pH-dependent degradability for chemo-photothermal cancer therapy, *J. Colloid Interface Sci.*, 2019, **553**, 567–580.
- 19 H. Dong and Y. Cao, Carbon Nanomaterials for Optical Bioimaging and Phototherapy, *Carbon Nanomater. Bioimaging, Bioanal., Ther.*, 2019, 43–62.
- 20 J. Estelrich and M. A. Busquets, Iron oxide nanoparticles in photothermal therapy, *Molecules*, 2018, 23(7), 1567.
- 21 A. F. Moreira, *et al.*, Gold-core silica shell nanoparticles application in imaging and therapy: A review, *Microporous Mesoporous Mater.*, 2018, 270, 168–179.

- 22 S. Yin and Y. Asakura, Recent research progress on mixed valence state tungsten based materials, *Tungsten*, 2019, 1(1), 5–18.
- 23 M. Zhou, M. Tian and C. Li, Copper-based nanomaterials for cancer imaging and therapy, *Bioconjugate Chem.*, 2016, 27(5), 1188–1199.
- 24 X. Huang, et al., Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy, 2007.
- 25 N. Li, P. Zhao and D. Astruc, Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity, *Angew. Chem., Int. Ed.*, 2014, **53**(7), 1756–1789.
- 26 K. Greish, Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting, in *Cancer nanotechnology*, Springer, 2010, pp. 25–37.
- 27 J. Chen, *et al.*, Nanomaterials as photothermal therapeutic agents, *Prog. Mater. Sci.*, 2019, **99**, 1–26.
- 28 R. Singh and J. W. Lillard Jr., Nanoparticle-based targeted drug delivery, *Exp. Mol. Pathol.*, 2009, 86(3), 215–223.
- 29 S. M. Moghimi, A. C. Hunter and J. C. Murray, Long-circulating and target-specific nanoparticles: theory to practice, *Pharmacol. Rev.*, 2001, **53**(2), 283–318.
- 30 B. Wang, et al., Metabolism of nanomaterials in vivo: blood circulation and organ clearance, Acc. Chem. Res., 2013, 46(3), 761–769.
- 31 R. K. Jain and T. Stylianopoulos, Delivering nanomedicine to solid tumors, *Nat. Rev. Clin. Oncol.*, 2010, 7(11), 653.
- 32 Y. Matsumoto, *et al.*, Vascular bursts enhance permeability of tumour blood vessels and improve nanoparticle delivery, *Nat. Nanotechnol.*, 2016, **11**(6), 533.
- 33 A. Lamprecht, *et al.*, Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease, *J. Pharmacol. Exp. Ther.*, 2001, 299(2), 775–781.
- 34 D. N. Heo, *et al.*, Gold nanoparticles surface-functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy, *Biomaterials*, 2012, 33(3), 856–866.
- 35 U. Chitgupi, Y. Qin and J. F. Lovell, Targeted nanomaterials for phototherapy, *Nanotheranostics*, 2017, 1(1), 38.
- 36 S. Sunoqrot, *et al.*, Prolonged blood circulation and enhanced tumor accumulation of folate-targeted dendrimer-polymer hybrid nanoparticles, *J. Controlled Release*, 2014, **191**, 115–122.
- 37 J.-W. Yoo, E. Chambers and S. Mitragotri, Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects, *Curr. Pharm. Des.*, 2010, **16**(21), 2298–2307.
- 38 B.-J. L. Van Hong Nguyen, Protein corona: a new approach for nanomedicine design, *Int. J. Nanomed.*, 2017, 12, 3137.
- 39 A. E. Nel, *et al.*, Understanding biophysicochemical interactions at the nano-bio interface, *Nat. Mater.*, 2009, 8(7), 543–557.
- 40 X. Li, *et al.*, The systematic evaluation of size-dependent toxicity and multi-time biodistribution of gold nano-particles, *Colloids Surf.*, *B*, 2018, **167**, 260–266.

- 41 E. K. Larsen, *et al.*, Size-dependent accumulation of PEGylated silane-coated magnetic iron oxide nano-particles in murine tumors, *ACS Nano*, 2009, **3**(7), 1947–1951.
- 42 Y. Liu, *et al.*, A plasmonic gold nanostar theranostic probe for in vivo tumor imaging and photothermal therapy, *Theranostics*, 2015, 5(9), 946.
- 43 S. D. Perrault, *et al.*, Mediating tumor targeting efficiency of nanoparticles through design, *Nano Lett.*, 2009, **9**(5), 1909–1915.
- 44 M. J. Ernsting, *et al.*, Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles, *J. Controlled Release*, 2013, **172**(3), 782–794.
- 45 S.-D. Li and L. Huang, Pharmacokinetics and biodistribution of nanoparticles, *Mol. Pharm.*, 2008, 5(4), 496–504.
- 46 S.-D. Li and L. Huang, Nanoparticles evading the reticuloendothelial system: role of the supported bilayer, *Biochim. Biophys. Acta, Biomembr.*, 2009, **1788**(10), 2259– 2266.
- 47 M. Wang and M. Thanou, Targeting nanoparticles to cancer, *Pharmacol. Res.*, 2010, **62**(2), 90–99.
- 48 S. M. Sharker, *et al.*, Functionalized biocompatible WO3 nanoparticles for triggered and targeted in vitro and in vivo photothermal therapy, *J. Controlled Release*, 2015, **217**, 211–220.
- 49 M. Xuan, *et al.*, Macrophage cell membrane camouflaged Au nanoshells for in vivo prolonged circulation life and enhanced cancer photothermal therapy, *ACS Appl. Mater. Interfaces*, 2016, **8**(15), 9610–9618.
- 50 C. F. Rodrigues, *et al.*, Functionalization of AuMSS nanorods towards more effective cancer therapies, *Nano Res.*, 2019, 12(4), 719–732.
- 51 V. Amendola, *et al.*, Surface plasmon resonance in gold nanoparticles: a review, *J. Phys.: Condens. Matter*, 2017, 29(20), 203002.
- 52 D. Jaque, *et al.*, Nanoparticles for photothermal therapies, *Nanoscale*, 2014, **6**(16), 9494–9530.
- 53 J.-L. Li and M. Gu, Gold-nanoparticle-enhanced cancer photothermal therapy, *IEEE J. Sel. Top. Quantum Electron.*, 2009, **16**(4), 989–996.
- 54 X. Huang, *et al.*, Plasmonic photothermal therapy (PPTT) using gold nanoparticles, *Lasers Med. Sci.*, 2008, 23(3), 217.
- 55 A. F. Bagley, *et al.*, Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source, *ACS Nano*, 2013, 7(9), 8089–8097.
- 56 D. de Melo-Diogo, *et al.*, Strategies to Improve Cancer Photothermal Therapy Mediated by Nanomaterials, *Adv. Healthcare Mater.*, 2017, **6**(10), 1700073.
- 57 A. F. Moreira, *et al.*, Poly (vinyl alcohol)/chitosan layer-bylayer microneedles for cancer chemo-photothermal therapy, *Int. J. Pharm.*, 2020, **576**, 118907.
- 58 C. F. Rodrigues, *et al.*, Optimization of gold core-mesoporous silica shell functionalization with TPGS and PEI for cancer therapy, *Microporous Mesoporous Mater.*, 2019, 285, 1–12.

- 59 C. Yao, *et al.*, Gold nanoparticle mediated phototherapy for cancer, *J. Nanomater.*, 2016, **2016**, 1–29.
- 60 A. Amendoeira, *et al.*, Light Irradiation of Gold Nanoparticles Toward Advanced Cancer Therapeutics, *Adv. Ther.*, 2020, 3(1), 1900153.
- 61 T. S. Lopes, *et al.*, Advances and potential application of gold nanoparticles in nanomedicine, *J. Cell. Biochem.*, 2019, **120**(10), 16370–16378.
- 62 P. Zhao, N. Li and D. Astruc, State of the art in gold nanoparticle synthesis, *Coord. Chem. Rev.*, 2013, 257(3–4), 638– 665.
- 63 C. A. Reis, *et al.*, Development of gold-core silica shell nanospheres coated with poly-2-ethyl-oxazoline and β-cyclodextrin aimed for cancer therapy, *Mater. Sci. Eng.*, *C*, 2019, **98**, 960–968.
- 64 Y. Xia and N. J. Halas, Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures, *MRS Bull.*, 2005, **30**(5), 338–348.
- 65 I. Blakey, Z. Merican and K. J. Thurecht, A method for controlling the aggregation of gold nanoparticles: tuning of optical and spectroscopic properties, *Langmuir*, 2013, 29(26), 8266–8274.
- 66 S. Link and M. A. El-Sayed, Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles, *J. Phys. Chem. B*, 1999, **103**(21), 4212–4217.
- 67 S. Link and M. A. El-Sayed, *Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods*, ACS Publications, 1999.
- 68 P. K. Jain, I. H. El-Sayed and M. A. El-Sayed, Au nanoparticles target cancer, *Nano Today*, 2007, 2(1), 18–29.
- 69 Y. Sun and Y. Xia, Gold and silver nanoparticles: a class of chromophores with colors tunable in the range from 400 to 750 nm, *Analyst*, 2003, **128**(6), 686–691.
- 70 B. M. Reinhard, *et al.*, Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles, *Nano Lett.*, 2005, 5(11), 2246–2252.
- 71 P. K. Jain, W. Huang and M. A. El-Sayed, On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation, *Nano Lett.*, 2007, 7(7), 2080–2088.
- 72 P. K. Jain and M. A. El-Sayed, Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells, *Nano Lett.*, 2007, 7(9), 2854–2858.
- 73 J. P. Kottmann and O. J. Martin, Plasmon resonant coupling in metallic nanowires, *Opt. Express*, 2001, 8(12), 655–663.
- 74 L. Sweatlock, *et al.*, Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2005, 71(23), 235408.
- 75 H. Li, *et al.*, Combination of active targeting, enzyme-triggered release and fluorescent dye into gold nanoclusters for endomicroscopy-guided photothermal/photodynamic therapy to pancreatic ductal adenocarcinoma, *Biomaterials*, 2017, **139**, 30–38.

- 76 S. Park, *et al.*, Gold nanocluster-loaded hybrid albumin nanoparticles with fluorescence-based optical visualization and photothermal conversion for tumor detection/ ablation, *J. Controlled Release*, 2019, **304**, 7–18.
- 77 M. Wang, *et al.*, Gold nanoshell coated thermo-pH dual responsive liposomes for resveratrol delivery and chemophotothermal synergistic cancer therapy, *J. Mater. Chem. B*, 2017, 5(11), 2161–2171.
- 78 P. Manivasagan, *et al.*, Anti-EGFR antibody conjugated thiol chitosan-layered gold nanoshells for dual-modal imaging-guided cancer combination therapy, *J. Controlled Release*, 2019, **311**, 26–42.
- 79 A. Ben-Yakar, D. Eversole and O. Ekici, Spherical and anisotropic gold nanomaterials in plasmonic laser phototherapy of cancer, in *Nanotechnologies for the Life Sciences: Online*, 2007.
- 80 K.-S. Lee and M. A. El-Sayed, Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index, *J. Phys. Chem. B*, 2005, **109**(43), 20331–20338.
- 81 X. Huang and M. A. El-Sayed, Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy, *J. Adv. Res.*, 2010, **1**(1), 13–28.
- 82 M. A. Mackey, *et al.*, The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments, *J. Phys. Chem. B*, 2014, **118**(5), 1319–1326.
- 83 W. Zhang, *et al.*, pH and near-infrared light dual-stimuli responsive drug delivery using DNA-conjugated gold nanorods for effective treatment of multidrug resistant cancer cells, *J. Controlled Release*, 2016, **232**, 9–19.
- 84 S. Barbosa, et al., Tuning size and sensing properties in colloidal gold nanostars, *Langmuir*, 2010, 26(18), 14943– 14950.
- 85 C. G. Khoury and T. Vo-Dinh, Gold nanostars for surfaceenhanced Raman scattering: synthesis, characterization and optimization, *J. Phys. Chem. C*, 2008, **112**(48), 18849– 18859.
- 86 A. Espinosa, *et al.*, Cancer cell internalization of gold nanostars impacts their photothermal efficiency in vitro and in vivo: toward a plasmonic thermal fingerprint in tumoral environment, *Adv. Healthcare Mater.*, 2016, 5(9), 1040–1048.
- 87 F. Xia, *et al.*, Matrix metallopeptidase 2 targeted delivery of gold nanostars decorated with IR-780 iodide for dualmodal imaging and enhanced photothermal/photodynamic therapy, *Acta Biomater.*, 2019, **89**, 289–299.
- 88 Y. Feng, *et al.*, Time-staggered delivery of erlotinib and doxorubicin by gold nanocages with two smart polymers for reprogrammable release and synergistic with photo-thermal therapy, *Biomaterials*, 2019, **217**, 119327.
- 89 J. Chen, et al., Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents, Nano Lett., 2005, 5(3), 473–477.
- 90 S. Huang, et al., Folic-Acid-Mediated Functionalized Gold Nanocages for Targeted Delivery of Anti-miR-181b in

Combination of Gene Therapy and Photothermal Therapy against Hepatocellular Carcinoma, *Adv. Funct. Mater.*, 2016, **26**(15), 2532–2544.

- 91 H. Sun, *et al.*, Cancer cell membrane-coated gold nanocages with hyperthermia-triggered drug release and homotypic target inhibit growth and metastasis of breast cancer, *Adv. Funct. Mater.*, 2017, **27**(3), 1604300.
- 92 P. Jeyamohan, *et al.*, Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotubebased system for targeted drug delivery in combination with photothermal therapy, *Int. J. Nanomed.*, 2013, **8**, 2653.
- 93 H. Wang, *et al.*, Biocompatible chitosan–carbon dot hybrid nanogels for NIR-imaging-guided synergistic photothermal–chemo therapy, *ACS Appl. Mater. Interfaces*, 2017, 9(22), 18639–18649.
- 94 D. Hu, *et al.*, Indocyanine green-loaded polydopaminereduced graphene oxide nanocomposites with amplifying photoacoustic and photothermal effects for cancer theranostics, *Theranostics*, 2016, **6**(7), 1043.
- 95 B. Han, *et al.*, Carbon-Based Photothermal Actuators, *Adv. Funct. Mater.*, 2018, **28**(40), 1802235.
- 96 J. Yu, *et al.*, Improved anticancer photothermal therapy using the bystander effect enhanced by antiarrhythmic peptide conjugated dopamine-modified reduced graphene oxide nanocomposite, *Adv. Healthcare Mater.*, 2017, **6**(2), 1600804.
- 97 M. Zheng, *et al.*, One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy, *ACS Appl. Mater. Interfaces*, 2016, **8**(36), 23533–23541.
- 98 G. Fugallo, *et al.*, Thermal conductivity of graphene and graphite: collective excitations and mean free paths, *Nano Lett.*, 2014, **14**(11), 6109–6114.
- 99 A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, *Nat. Mater.*, 2011, 10(8), 569– 581.
- 100 S. Iijima, Helical microtubules of graphitic carbon, *Nature*, 1991, **354**(6348), 56–58.
- 101 R. Singh and S. V. Torti, Carbon nanotubes in hyperthermia therapy, Adv. Drug Delivery Rev., 2013, 65(15), 2045– 2060.
- 102 G. Wang, et al., Nanotubes-embedded indocyanine greenhyaluronic acid nanoparticles for photoacoustic-imagingguided phototherapy, ACS Appl. Mater. Interfaces, 2016, 8(8), 5608–5617.
- 103 L. Zhang, et al., A novel single walled carbon nanotube (SWCNT) functionalization agent facilitating in vivo combined chemo/thermo therapy, Nanoscale, 2015, 7(39), 16204–16213.
- 104 S. Augustine, *et al.*, Recent advances in carbon based nanosystems for cancer theranostics, *Biomater. Sci.*, 2017, 5(5), 901–952.
- 105 C. Cha, *et al.*, Carbon-based nanomaterials: multifunctional materials for biomedical engineering, *ACS Nano*, 2013, 7(4), 2891–2897.

- 106 C. Iancu, *et al.*, Enhanced laser thermal ablation for the in vitro treatment of liver cancer by specific delivery of multiwalled carbon nanotubes functionalized with human serum albumin, *Int. J. Nanomed.*, 2011, **6**, 129.
- 107 L. Xie, *et al.*, Functional long circulating single walled carbon nanotubes for fluorescent/photoacoustic imagingguided enhanced phototherapy, *Biomaterials*, 2016, **103**, 219–228.
- 108 A. Aqel, *et al.*, Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation, *Arabian J. Chem.*, 2012, 5(1), 1–23.
- 109 B. Liu, *et al.*, Chirality-controlled synthesis and applications of single-wall carbon nanotubes, *ACS Nano*, 2017, 11(1), 31–53.
- 110 J. Prasek, *et al.*, Methods for carbon nanotubes synthesis, *J. Mater. Chem.*, 2011, **21**(40), 15872–15884.
- 111 F. Wang, *et al.*, The optical resonances in carbon nanotubes arise from excitons, *Science*, 2005, **308**(5723), 838-841.
- 112 E. J. Comparetti, V. d. A. Pedrosa and R. Kaneno, Carbon nanotube as a tool for fighting cancer, *Bioconjugate Chem.*, 2017, **29**(3), 709–718.
- 113 B. Zhang, *et al.*, Fibrin-targeting peptide CREKA-conjugated multi-walled carbon nanotubes for self-amplified photothermal therapy of tumor, *Biomaterials*, 2016, **79**, 46–55.
- 114 I. Marangon, *et al.*, Synergic mechanisms of photothermal and photodynamic therapies mediated by photosensitizer/carbon nanotube complexes, *Carbon*, 2016, **97**, 110– 123.
- 115 D. Wang, et al., Facile preparation of doxorubicin-loaded and folic acid-conjugated carbon nanotubes@ poly (N-vinyl pyrrole) for targeted synergistic chemo-Photothermal Cancer treatment, *Bioconjugate Chem.*, 2017, 28(11), 2815–2822.
- 116 L.-S. Lin, *et al.*, Dual-enhanced photothermal conversion properties of reduced graphene oxide-coated gold superparticles for light-triggered acoustic and thermal theranostics, *Nanoscale*, 2016, **8**(4), 2116–2122.
- 117 S. Gao, *et al.*, Hybrid graphene/Au activatable theranostic agent for multimodalities imaging guided enhanced photothermal therapy, *Biomaterials*, 2016, **79**, 36–45.
- 118 D. de Melo-Diogo, *et al.*, POxylated graphene oxide nanomaterials for combination chemo-phototherapy of breast cancer cells, *Eur. J. Pharm. Biopharm.*, 2018, **131**, 162–169.
- 119 O. C. Compton and S. T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials, *Small*, 2010, **6**(6), 711–723.
- 120 B. Zhang, Y. Wang and G. Zhai, Biomedical applications of the graphene-based materials, *Mater. Sci. Eng., C*, 2016, 61, 953–964.
- 121 C. Chung, *et al.*, Biomedical applications of graphene and graphene oxide, *Acc. Chem. Res.*, 2013, **46**(10), 2211–2224.
- 122 S. C. Ray, Application and uses of graphene oxide and reduced graphene oxide, in *Applications of Graphene and Graphene-Oxide Based Nanomaterials*, 2015, pp. 39–55.

- 123 J. T. Robinson, *et al.*, Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy, *J. Am. Chem. Soc.*, 2011, **133**(17), 6825–6831.
- 124 R. Lima-Sousa, *et al.*, Hyaluronic acid functionalized green reduced graphene oxide for targeted cancer photo-thermal therapy, *Carbohydr. Polym.*, 2018, **200**, 93–99.
- 125 Y. A. Cheon, J. H. Bae and B. G. Chung, Reduced graphene oxide nanosheet for chemo-photothermal therapy, *Langmuir*, 2016, **32**(11), 2731–2736.
- 126 S. Roy, A. Sarkar and A. Jaiswal, Poly (allylamine hydrochloride)-functionalized reduced graphene oxide for synergistic chemo-photothermal therapy, *Nanomedicine*, 2019, 14(3), 255–274.
- 127 J. Li, *et al.*, Synthesis of monoclinic WO3 nanosphere hydrogen gasochromic film via a sol-gel approach using PS-b-PAA diblock copolymer as template, *Solid State Sci.*, 2010, **12**(8), 1393–1398.
- 128 N. Shankar, *et al.*, Synthesis of tungsten oxide (WO3) nanorods using carbon nanotubes as templates by hot filament chemical vapor deposition, *Mater. Lett.*, 2006, 60(6), 771–774.
- 129 C. Balázsi, et al., Nanosize hexagonal tungsten oxide for gas sensing applications, J. Eur. Ceram. Soc., 2008, 28(5), 913–917.
- 130 R. Huirache-Acuña, *et al.*, Synthesis and characterization of WO3 nanostructures prepared by an aged-hydrothermal method, *Mater. Charact.*, 2009, **60**(9), 932–937.
- 131 B. Bhuyan, *et al.*, Facile hydrothermal synthesis of ultrasmall W18O49 nanoparticles and studies of their photocatalytic activity towards degradation of methylene blue, *Mater. Chem. Phys.*, 2017, **188**, 1–7.
- 132 K. Manthiram and A. P. Alivisatos, Tunable localized surface plasmon resonances in tungsten oxide nanocrystals, *J. Am. Chem. Soc.*, 2012, **134**(9), 3995–3998.
- 133 W. Guo, *et al.*, CsxWO3 nanorods coated with polyelectrolyte multilayers as a multifunctional nanomaterial for bimodal imaging-guided photothermal/photodynamic cancer treatment, *Adv. Mater.*, 2017, **29**(4), 1604157.
- 134 S. Ghosh, *et al.*, Fabrication of tungsten nanocrystals and silver-tungsten nanonets: a potent reductive catalyst, *RSC Adv.*, 2015, 5(49), 38971–38976.
- 135 H. Zuo, *et al.*, Platelet-mimicking nanoparticles co-loaded with W18O49 and metformin alleviate tumor hypoxia for enhanced photodynamic therapy and photothermal therapy, *Acta Biomater.*, 2018, **80**, 296–307.
- 136 Z. Yang, *et al.*, Tumor-Targeting W18O49 Nanoparticles for Dual-Modality Imaging and Guided Heat-Shock-Response-Inhibited Photothermal Therapy in Gastric Cancer, *Part. Part. Syst. Charact.*, 2019, **36**(7), 1900124.
- 137 P. Liu, *et al.*, Ultrasmall WO_{3-x} (a) γ -poly-l-glutamic Acid Nanoparticles as a Photoacoustic Imaging and Effective Photothermal-Enhanced Chemodynamic Therapy Agent for Cancer, *ACS Appl. Mater. Interfaces*, 2018, **10**(45), 38833–38844.
- 138 F.-P. Koffyberg, K. Dwight and A. Wold, Interband transitions of semiconducting oxides determined from photo-

electrolysis spectra, *Solid State Commun.*, 1979, **30**(7), 433–437.

- 139 H. Zheng, *et al.*, Nanostructured tungsten oxide-properties, synthesis, and applications, *Adv. Funct. Mater.*, 2011, **21**(12), 2175–2196.
- 140 Y. Tian, *et al.*, Lentinan *in situ* coated tungsten oxide nanorods as a nanotherapeutic agent for low power density photothermal cancer therapy, *Int. J. Biol. Macromol.*, 2019, **137**, 904–911.
- 141 Z. Zhou, *et al.*, Tungsten oxide nanorods: an efficient nanoplatform for tumor CT imaging and photothermal therapy, *Sci. Rep.*, 2014, **4**, 3653.
- 142 W. Yin, *et al.*, Biodegradable MoO x nanoparticles with efficient near-infrared photothermal and photodynamic synergetic cancer therapy at the second biological window, *Nanoscale*, 2018, **10**(3), 1517–1531.
- 143 A. H. Odda, *et al.*, Plasmonic MoO_{3-x} nanoparticles incorporated in Prussian blue frameworks exhibit highly efficient dual photothermal/photodynamic therapy, *J. Mater. Chem. B*, 2019, 7(12), 2032–2042.
- 144 H. Yang, *et al.*, Molybdenum oxide nano-dumplings with excellent stability for photothermal cancer therapy and as a controlled release hydrogel, *New J. Chem.*, 2019, 43(36), 14281–14290.
- 145 T. Liu, *et al.*, Combined photothermal and photodynamic therapy delivered by PEGylated MoS2 nanosheets, *Nanoscale*, 2014, **6**(19), 11219–11225.
- 146 Y. Zhan, et al., Phase-controlled synthesis of molybdenum oxide nanoparticles for surface enhanced Raman scattering and photothermal therapy, Nanoscale, 2018, 10(13), 5997–6004.
- 147 L. Yuwen, *et al.*, Aqueous phase preparation of ultrasmall MoSe 2 nanodots for efficient photothermal therapy of cancer cells, *Nanoscale*, 2016, **8**(5), 2720–2726.
- 148 C. Rao, H. Ramakrishna Matte and U. Maitra, Graphene analogues of inorganic layered materials, *Angew. Chem., Int. Ed.*, 2013, **52**(50), 13162–13185.
- 149 D. Ding, *et al.*, MoO_{3-x} quantum dots for photoacoustic imaging guided photothermal/photodynamic cancer treatment, *Nanoscale*, 2017, **9**(5), 2020–2029.
- 150 G. Song, *et al.*, Degradable molybdenum oxide nanosheets with rapid clearance and efficient tumor homing capabilities as a therapeutic nanoplatform, *Angew. Chem., Int. Ed.*, 2016, **55**(6), 2122–2126.
- 151 V. Yadav, *et al.*, 2D MoS2-based nanomaterials for therapeutic, bioimaging, and biosensing applications, *Small*, 2019, **15**(1), 1803706.
- 152 T. Liu, *et al.*, Drug delivery with PEGylated MoS2 nanosheets for combined photothermal and chemotherapy of cancer, *Adv. Mater.*, 2014, **26**(21), 3433–3440.
- 153 K. Wang, *et al.*, Combined chemo-photothermal antitumor therapy using molybdenum disulfide modified with hyperbranched polyglycidyl, *ACS Biomater. Sci. Eng.*, 2017, 3(10), 2325–2335.
- 154 I. A. de Castro, *et al.*, Molybdenum oxides–from fundamentals to functionality, *Adv. Mater.*, 2017, **29**(40), 1701619.

- 155 W. Liu, *et al.*, Highly stable molybdenum dioxide nanoparticles with strong plasmon resonance are promising in photothermal cancer therapy, *Biomaterials*, 2018, **163**, 43– 54.
- 156 T. Bao, *et al.*, One-pot synthesis of PEGylated plasmonic MoO_{3-x} hollow nanospheres for photoacoustic imaging guided chemo-photothermal combinational therapy of cancer, *Biomaterials*, 2016, **76**, 11–24.
- 157 M. Saeed, W. Ren and A. Wu, Therapeutic applications of iron oxide based nanoparticles in cancer: basic concepts and recent advances, *Biomater. Sci.*, 2018, **6**(4), 708–725.
- 158 W. Wu, et al., Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications, Sci. Technol. Adv. Mater., 2015, 16(2), 023501.
- 159 Y. Hu, *et al.*, Multifunctional porous iron oxide nanoagents for MRI and photothermal/chemo synergistic therapy, *Bioconjugate Chem.*, 2018, **29**(4), 1283–1290.
- 160 R.-M. Yang, *et al.*, Hyaluronan-modified superparamagnetic iron oxide nanoparticles for bimodal breast cancer imaging and photothermal therapy, *Int. J. Nanomed.*, 2017, **12**, 197.
- 161 M. B. Gawande, et al., Cu and Cu-based nanoparticles: synthesis and applications in catalysis, Chem. Rev., 2016, 116(6), 3722–3811.
- 162 Y. Li, *et al.*, Copper sulfide nanoparticles for photothermal ablation of tumor cells, *Nanomedicine*, 2010, 5(8), 1161–1171.
- 163 L. Hou, *et al.*, Copper sulfide nanoparticle-based localized drug delivery system as an effective cancer synergistic treatment and theranostic platform, *Acta Biomater.*, 2017, 54, 307–320.
- 164 D. Wang, *et al.*, Erythrocyte–cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma, *ACS Nano*, 2018, 12(6), 5241–5252.
- 165 A. C. Anselmo and S. Mitragotri, Nanoparticles in the clinic, *Bioeng. Transl. Med.*, 2016, 1(1), 10–29.
- 166 K. El-Boubbou, Magnetic iron oxide nanoparticles as drug carriers: clinical relevance, *Nanomedicine*, 2018, 13(8), 953–971.
- 167 A. Wicki, et al., Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications, J. Controlled Release, 2015, 200, 138–157.
- 168 J. Wolfram and M. Ferrari, Clinical cancer nanomedicine, *Nano Today*, 2019, (25), 85–98.
- 169 P. R. Gil, *et al.*, Nanopharmacy: Inorganic nanoscale devices as vectors and active compounds, *Pharmacol. Res.*, 2010, **62**(2), 115–125.
- 170 K. Mahmoudi, *et al.*, Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy's history, efficacy and application in humans, *Int. J. Hyperthermia*, 2018, 34(8), 1316–1328.
- 171 O. Grauer, *et al.*, Combined intracavitary thermotherapy with iron oxide nanoparticles and radiotherapy as local

treatment modality in recurrent glioblastoma patients, *J. Neuro-Oncol.*, 2019, **141**(1), 83–94.

- 172 A. C. Anselmo and S. Mitragotri, A review of clinical translation of inorganic nanoparticles, *AAPS J.*, 2015, **17**(5), 1041–1054.
- 173 J. Shi, *et al.*, Cancer nanomedicine: progress, challenges and opportunities, *Nat. Rev. Cancer*, 2017, **17**(1), 20.
- 174 S. J. Oldenburg, et al., Current Good Manufacturing Practices (cGMPs) in the Commercial Development of Nanomaterials for Hyperthermia Applications, in Nanomaterials for Magnetic and Optical Hyperthermia Applications, Elsevier, 2019, pp. 339–353.
- 175 S. Bayda, *et al.*, Inorganic nanoparticles for cancer therapy: a transition from lab to clinic, *Curr. Med. Chem.*, 2018, **25**(34), 4269–4303.
- 176 C. Lee, *et al.*, Rabies virus-inspired silica-coated gold nanorods as a photothermal therapeutic platform for treating brain tumors, *Adv. Mater.*, 2017, **29**(13), 1605563.
- 177 H. Zhou, *et al.*, Dual targeting hyaluronic acid-RGD mesoporous silica coated gold nanorods for chemo-photothermal cancer therapy, *Mater. Sci. Eng.*, *C*, 2017, **81**, 261–270.
- 178 J. Liu, *et al.*, Tumor acidity activating multifunctional nanoplatform for NIR-mediated multiple enhanced photodynamic and photothermal tumor therapy, *Biomaterials*, 2018, **157**, 107–124.
- 179 Z. Zhang, *et al.*, Silver nanoparticle gated, mesoporous silica coated gold nanorods (AuNR@ MS@ AgNPs): low premature release and multifunctional cancer theranostic platform, *ACS Appl. Mater. Interfaces*, 2015, 7(11), 6211–6219.
- 180 G. F. Luo, *et al.*, A Triple-Collaborative Strategy for High-Performance Tumor Therapy by Multifunctional Mesoporous Silica-Coated Gold Nanorods, *Adv. Funct. Mater.*, 2016, 26(24), 4339–4350.
- 181 S. Baek, *et al.*, Triple hit with drug carriers: pH-and temperature-responsive theranostics for multimodal chemoand photothermal therapy and diagnostic applications, *ACS Appl. Mater. Interfaces*, 2016, 8(14), 8967–8979.
- 182 C. Xu, *et al.*, Bacteria-like mesoporous silica-coated gold nanorods for positron emission tomography and photoa-coustic imaging-guided chemo-photothermal combined therapy, *Biomaterials*, 2018, **165**, 56–65.
- 183 X. Li, *et al.*, Formation of gold nanostar-coated hollow mesoporous silica for tumor multimodality imaging and photothermal therapy, *ACS Appl. Mater. Interfaces*, 2017, 9(7), 5817–5827.
- 184 Y. Gao, *et al.*, Multifunctional gold nanostar-based nanocomposite: synthesis and application for noninvasive MR-SERS imaging-guided photothermal ablation, *Biomaterials*, 2015, **60**, 31–41.
- 185 J. An, et al., In Vivo Computed Tomography/Photoacoustic Imaging and NIR-Triggered Chemo–Photothermal Combined Therapy Based on a Gold Nanostar-, Mesoporous Silica-, and Thermosensitive Liposome-Composited Nanoprobe, ACS Appl. Mater. Interfaces, 2017, 9(48), 41748–41759.

- 186 D. Li, *et al.*, Construction of polydopamine-coated gold nanostars for CT imaging and enhanced photothermal therapy of tumors: an innovative theranostic strategy, *J. Mater. Chem. B*, 2016, 4(23), 4216–4226.
- 187 P. Wei, *et al.*, Dendrimer-Stabilized gold nanostars as a multifunctional theranostic nanoplatform for CT imaging, photothermal therapy, and gene silencing of tumors, *Adv. Healthcare Mater.*, 2016, 5(24), 3203–3213.
- 188 Y. Liu, et al., Gold nanoshell-based betulinic acid liposomes for synergistic chemo-photothermal therapy, *Nanomedicine*, 2017, 13(6), 1891–1900.
- 189 U. SeokáChung, Dendrimer porphyrin-coated gold nanoshells for the synergistic combination of photodynamic and photothermal therapy, *Chem. Commun.*, 2016, 52(6), 1258–1261.
- 190 C. Iodice, *et al.*, Enhancing photothermal cancer therapy by clustering gold nanoparticles into spherical polymeric nanoconstructs, *Opt. Lasers Eng.*, 2016, **76**, 74–81.
- 191 J. Yang, et al., Spatially confined fabrication of core-shell gold nanocages@ mesoporous silica for near-infrared controlled photothermal drug release, *Chem. Mater.*, 2013, 25(15), 3030–3037.
- 192 F. Hu, *et al.*, Double-Walled Au Nanocage/SiO2 nanorattles: integrating SERS imaging, drug delivery and photothermal therapy, *Small*, 2015, **11**(8), 985–993.
- 193 J. Hou, *et al.*, PEGylated (NH 4) x WO 3 nanorod mediated rapid photonecrosis of breast cancer cells, *Nanoscale*, 2019, **11**(21), 10209–10219.
- 194 L. Cheng, *et al.*, PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/ photoacoustic imaging guided photothermal therapy, *Adv. Mater.*, 2014, **26**(12), 1886–1893.
- 195 X. Jia, *et al.*, BSA-exfoliated WSe 2 nanosheets as a photoregulated carrier for synergistic photodynamic/photothermal therapy, *J. Mater. Chem. B*, 2017, 5(2), 269– 278.
- 196 Y. Yong, *et al.*, WS2 nanosheet as a new photosensitizer carrier for combined photodynamic and photothermal therapy of cancer cells, *Nanoscale*, 2014, **6**(17), 10394–10403.
- 197 Y. Yong, *et al.*, Tungsten sulfide quantum dots as multifunctional nanotheranostics for in vivo dual-modal image-guided photothermal/radiotherapy synergistic therapy, *ACS Nano*, 2015, **9**(12), 12451–12463.
- 198 Q. Zhang, *et al.*, The theranostic nanoagent Mo 2 C for multi-modal imaging-guided cancer synergistic photo-therapy, *Biomater. Sci.*, 2019, 7(7), 2729–2739.
- 199 J. Wu, *et al.*, Functionalized MoS2 nanosheet-capped periodic mesoporous organosilicas as a multifunctional platform for synergistic targeted chemo-photothermal therapy, *Chem. Eng. J.*, 2018, **342**, 90–102.
- 200 X. Li, *et al.*, Facile synthesis of soybean phospholipidencapsulated MoS2 nanosheets for efficient in vitro and in vivo photothermal regression of breast tumor, *Int. J. Nanomed.*, 2016, **11**, 1819.
- 201 H. Zu, *et al.*, Rapid room-temperature preparation of MoO_{3-x} quantum dots by ultraviolet irradiation for photo-

thermal treatment and glucose detection, *New J. Chem.*, 2018, **42**(23), 18533–18540.

- 202 W. Dai, H. Dong and X. Zhang, A semimetal-like molybdenum carbide quantum dots photoacoustic imaging and photothermal agent with high photothermal conversion efficiency, *Materials*, 2018, **11**(9), 1776.
- 203 W. Feng, *et al.*, Flower-like PEGylated MoS 2 nanoflakes for near-infrared photothermal cancer therapy, *Sci. Rep.*, 2015, 5, 17422.
- 204 L. Chen, *et al.*, One-pot synthesis of MoS2 nanoflakes with desirable degradability for photothermal cancer therapy, *ACS Appl. Mater. Interfaces*, 2017, **9**(20), 17347–17358.
- 205 T. Liu, *et al.*, Ultra-small MoS 2 nanodots with rapid body clearance for photothermal cancer therapy, *Nano Res.*, 2016, **9**(10), 3003–3017.
- 206 A. Zhang, *et al.*, An efficient and self-guided chemo-photothermal drug loading system based on copolymer and transferrin decorated MoS2 nanodots for dually controlled drug release, *Chem. Eng. J.*, 2018, **342**, 120–132.
- 207 F. Qi and R. Liu, Tumor-targeted and biocompatible MoSe 2 nanodots@ albumin nanospheres as a dual-modality therapy agent for synergistic photothermal radiotherapy, *Nanoscale Res. Lett.*, 2019, **14**(1), 67.
- 208 H. Peng, *et al.*, Highly Ligand-Directed and Size-Dependent Photothermal Properties of Magnetite Particles, *Part. Part. Syst. Charact.*, 2016, 33(6), 332–340.
- 209 Z. Zhou, *et al.*, Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy, *Biomaterials*, 2014, **35**(26), 7470–7478.
- 210 H. Chen, *et al.*, Highly crystallized iron oxide nanoparticles as effective and biodegradable mediators for photothermal cancer therapy, *J. Mater. Chem. B*, 2014, 2(7), 757–765.
- 211 S. Shen, *et al.*, CMCTS stabilized Fe 3 O 4 particles with extremely low toxicity as highly efficient near-infrared photothermal agents for in vivo tumor ablation, *Nanoscale*, 2013, **5**(17), 8056–8066.
- 212 R. Zheng, *et al.*, Polydopamine-coated magnetic composite particles with an enhanced photothermal effect, *ACS Appl. Mater. Interfaces*, 2015, 7(29), 15876–15884.
- 213 S. Shen, *et al.*, Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation, *Biomaterials*, 2015, **39**, 67–74.
- 214 S. Bhana, *et al.*, Near-infrared-absorbing gold nanopopcorns with iron oxide cluster core for magnetically amplified photothermal and photodynamic cancer therapy, *ACS Appl. Mater. Interfaces*, 2015, 7(21), 11637–11647.
- 215 A. Espinosa, *et al.*, Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment, *ACS Nano*, 2016, **10**(2), 2436–2446.
- 216 X. Yi, *et al.*, Imaging-Guided Combined Photothermal and Radiotherapy to Treat Subcutaneous and Metastatic Tumors Using Iodine-131-Doped Copper Sulfide Nanoparticles, *Adv. Funct. Mater.*, 2015, 25(29), 4689–4699.

- 217 Y. Huang, *et al.*, Copper Sulfide Nanoparticles with Phospholipid-PEG Coating for In Vivo Near-Infrared Photothermal Cancer Therapy, *Chem. Asian J.*, 2015, **10**(2), 370–376.
- 218 S. Zhang, *et al.*, Ambient aqueous synthesis of ultrasmall PEGylated $Cu_{2-x}Se$ nanoparticles as a multifunctional theranostic agent for multimodal imaging guided photo-thermal therapy of cancer, *Adv. Mater.*, 2016, **28**(40), 8927–8936.
- 219 Q. Tian, *et al.*, Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo, *ACS Nano*, 2011, 5(12), 9761–9771.
- 220 S. Wang, *et al.*, Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects, *ACS Nano*, 2015, **9**(2), 1788–1800.
- 221 K.-C. Li, *et al.*, PEGylated copper nanowires as a novel photothermal therapy agent, *ACS Appl. Mater. Interfaces*, 2016, **8**(19), 12082–12090.
- 222 J. Mou, *et al.*, Ultrasmall Cu2-xS Nanodots for Highly Efficient Photoacoustic Imaging-Guided Photothermal Therapy, *Small*, 2015, **11**(19), 2275–2283.
- 223 M. Zhou, *et al.*, CuS nanodots with ultrahigh efficient renal clearance for positron emission tomography imaging and image-guided photothermal therapy, *ACS Nano*, 2015, **9**(7), 7085–7096.
- 224 W. Feng, *et al.*, In vitro and in vivo toxicity studies of copper sulfide nanoplates for potential photothermal applications, *Nanomedicine*, 2015, **11**(4), 901–912.
- 225 M. Nurunnabi, *et al.*, Photoluminescent graphene nanoparticles for cancer phototherapy and imaging, *ACS Appl. Mater. Interfaces*, 2014, **6**(15), 12413–12421.
- 226 Y. Liu, *et al.*, Gold-nanobranched-shell based drug vehicles with ultrahigh photothermal efficiency for chemo-photothermal therapy, *Nanomedicine*, 2019, **18**, 303–314.
- 227 S. Y. Lee, C. L. Peng and M. J. Shieh, Combined Chemo-Photothermotherapy Using Gold Nanoshells on Drug-Loaded Micellar Templates for Colorectal Cancer Treatment, *Part. Part. Syst. Charact.*, 2018, 35(12), 1800334.
- 228 J. Peng, *et al.*, Mesoporous magnetic gold "nanoclusters" as theranostic carrier for chemo-photothermal co-therapy of breast cancer, *Theranostics*, 2014, 4(7), 678.
- 229 P. Liu, *et al.*, Concurrent photothermal therapy and photodynamic therapy for cutaneous squamous cell carcinoma by gold nanoclusters under a single NIR laser irradiation, *J. Mater. Chem. B*, 2019, 7(44), 6924–6933.
- 230 S. Huang, *et al.*, A54 peptide-mediated functionalized gold nanocages for targeted delivery of DOX as a combinational photothermal-chemotherapy for liver cancer, *Int. J. Nanomed.*, 2017, **12**, 5163.
- 231 J.-G. Piao, *et al.*, pH-sensitive zwitterionic coating of gold nanocages improves tumor targeting and photothermal treatment efficacy, *Nano Res.*, 2018, **11**(6), 3193–3204.