Skip to main content
Log in

Effect of ionic liquid on the fluorescence of an intramolecular exciplex forming probe

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The effects of ionic liquid addition on the spectroscopic properties of a pyrene-tryptophan-containing fluorescent intramolecular complex in polar-aprotic and polar-protic solvents, specifically, acetonitrile and ethanol, are assessed. Two ionic liquid sets, consisting of seven different ionic liquids, were explored; set 1 comprised three imidazolium-containing ionic liquids paired with different anions while set 2 consisted of varying cations, namely, imidazolium, pyrrolidinium, ammonium, and pyridinium, partnered with a common anion, bis(trifluoromethylsulfonyl)imide ([Tf2N]). The results provided herein reveal that all ionic liquids explored behave as quenchers, however, the imidazolium-, pyrrolidinium-, and ammonium-containing ionic liquids selectively quenched the fluorescence from the exciplex while the monomer emission from pyrene was largely unaffected relative to exciplex emission. Conversely, the pyridinium ionic liquid, significantly quenched the fluorescence from both the pyrene monomer and the pyrenetryptophan exciplex, as was expected. The observed quenching is demonstrated to originate from the cations of the ionic liquids and is, in general, more efficient for an imidazolium ionic liquid that contains an acidic proton in the C2 position. Stern–Volmer plots of the exciplex quenching demonstrate a complex quenching mechanism that does not appear to follow any conventional quenching models with the data best fit to an exponential equation. Furthermore, time-resolved fluorescence measurements reveal that the quenching is not dynamic in nature as the recovered decay times do not systematically decrease with increasing ionic liquid concentration, suggesting a possible static quenching mechanism. Thus, the formation of a “dark” ensemble is proposed, in which the ionic liquid cations complex with or crowd around the exciplex, quenching the intramolecular energy transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Mrinalini and S. Prasanthkumar, ChemPlusChem, 2019, 84 ,1103–1121.

    Article  CAS  Google Scholar 

  2. R. Gao, X. Fang and D. Yan, J. Mater. Chem. C, 2019, 7 ,3399–3412.

    Article  Google Scholar 

  3. I. Gallardo, G. Guirado, J. Hernando, S. Morais and G. Prats, Chem. Sci., 2016, 7 ,1819–1825.

    Article  Google Scholar 

  4. R. C. H. Wong, P.-C. Lo and D. K. P. Ng, Coord. Chem. Rev., 2019, 379 ,30–46.

    Article  Google Scholar 

  5. B. He, J. Dai, D. Zherebetskyy, T. L. Chen, B. A. Zhang, S. J. Teat, Q. Zhang, L. Wang and Y. Liu, Chem. Sci., 2015, 6 ,3180–3186.

    Article  Google Scholar 

  6. G. R. C. Hamilton, S. K. Sahoo, S. Kamila, N. Singh, N. Kaur, B. W. Hyland and J. F. Callan, Chem. Soc. Rev., 2015, 44 ,4415–4432.

    Article  Google Scholar 

  7. D. Staneva, M. S. I. Makki, T. R. Sobahi, P. Bosch, R. M. Abdel-Rahman, A. Asiri and I. Grabchev, J. Lumin., 2015, 162 ,149–154.

    Article  Google Scholar 

  8. V. Haridas, A. Yadav, S. Sharma and S. Pandey, Phys. Chem. Chem. Phys., 2016, 18 ,15046–15053.

    Article  Google Scholar 

  9. K. Behera and S. Pandey, Langmuir, 2008, 24 ,6462–6469.

    Article  CAS  Google Scholar 

  10. R. D. Rogers and K. R. Seddon, Ionic Liquids IIIA: Fundamentals, Progress, Challenges, and Opportunities, American Chemical Society, 2005, vol. 901.

  11. P. Kubisa, Prog. Polym. Sci., 2009, 34 ,1333–1347.

    Article  CAS  Google Scholar 

  12. K. R. Seddon, J. Chem. Technol. Biotechnol., 1997, 68 ,351–356.

    Article  CAS  Google Scholar 

  13. N. Fontanals, S. Ronka, F. Borrull, A. W. Trochimczuk and R. M. Marcé, Talanta, 2009, 80 ,250–256.

    Article  Google Scholar 

  14. M. V. B. Zanoni, E. I. Rogers, C. Hardacre and R. G. Compton, Anal. Chim. Acta, 2010, 659 ,115–121.

    Article  Google Scholar 

  15. T. Welton, Chem. Rev., 1999, 99 ,2071–2084.

    Article  CAS  Google Scholar 

  16. P. Wasserscheid and W. Keim, Angew. Chem., Int. Ed., 2000, 39 ,3772–3789.

    Article  CAS  Google Scholar 

  17. R. D. Rogers and K. R. Seddon, Science, 2003, 302 ,792.

    Article  Google Scholar 

  18. R. D. Rogers and K. R. Seddon, Ionic Liquids: Industrial Applications to Green Chemistry, American Chemical Society, 2002, vol. 818.

  19. G. A. Baker, S. N. Baker, S. Pandey and F. V. Bright, Analyst, 2005, 130 ,800–808.

    Article  Google Scholar 

  20. S. Trivedi and S. Pandey, J. Phys. Chem. C, 2013, 117 ,1818–1826.

    Article  CAS  Google Scholar 

  21. X. Wang, Y. Li, X. Du, Z. Lin and C. Huang, J. Fluoresc., 2011, 21 ,1643–1648.

  22. Y. Zou, H. Wang, W. Wang, M. Ma, P. Wang, C. Wang and X. Wang, Luminescence, 2012, 27 ,495–500.

    Article  Google Scholar 

  23. H. Wang, Y. Zou, C. Li, W. Wang, M. Zhang, R. A. Dahlgren and X. Wang, J. Fluoresc., 2013, 23 ,1157–1165.

    Article  Google Scholar 

  24. H. Wang, J. Mao, A. Duan, B. Che, W. Wang, M. Ma and X. Wang, J. Fluoresc., 2013, 23 ,323–331.

    Article  Google Scholar 

  25. H. Wang, C. Li, M. Gao, F. Fang, W. Wang, M. Ma and X. Wang, J. Mol. Liq., 2014, 200 ,374–380.

    Article  Google Scholar 

  26. A. K. Burrell, R. E. D. Sesto, S. N. Baker, T. M. McCleskey and G. A. Baker, Green Chem., 2007, 9 ,449–454.

    Article  Google Scholar 

  27. D. S. Karpovich and G. J. Blanchard, J. Phys. Chem., 1995, 99 ,3951–3958.

    Article  CAS  Google Scholar 

  28. K. Kalyanasundaram and J. K. Thomas, J. Am. Chem. Soc., 1977, 7, 2039–2044.

    Article  Google Scholar 

  29. D. C. Dong and M. A. Winnik, Can. J. Chem., 1984, 62 ,2560–2565.

    Article  CAS  Google Scholar 

  30. S. Pandey, W. E. Acree, L. T. Scott, A. Necula, J. C. Fetzer, P. P. J. Mulder, J. Lugtenburg and J. Cornelisse, Polycyclic Aromat. Compd., 1999, 13 ,79–92.

    Article  Google Scholar 

  31. S. Pandey, W. E. Acree and J. C. Fetzer, Phys. Chem. Liq., 1999, 37 ,565–578.

    Article  Google Scholar 

  32. S. Pandey, L. E. Roy, W. E. Acree and J. C. Fetzer, Talanta, 1999, 48 ,1103–1110.

    Article  Google Scholar 

  33. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, 3rd edn, 2006.

    Book  Google Scholar 

  34. G. v. Bünau and J. B. Birks, Photophysics of Aromatic Molecules Berichte der Bunsengesellschaft für Physikalische Chemie, Wiley-Interscience, London, 1970, vol. 74 ,pp. 1294–1295, 704 Seiten. Preis: 210s.

  35. G. A. Baker, S. Pandey and F. V. Bright, Appl. Spectrosc., 1999, 53 ,1475–1479.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddharth Pandey.

Additional information

Electronic supplementary information (ESI) available: Tables S1, S2 and Fig. S1–S10. See DOI: 10.1039/c9pp00458k

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, A., Trivedi, S., Haridas, V. et al. Effect of ionic liquid on the fluorescence of an intramolecular exciplex forming probe. Photochem Photobiol Sci 19, 251–260 (2020). https://doi.org/10.1039/c9pp00458k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00458k

Navigation