Skip to main content
Log in

Copper(I)–polymers and their photoluminescence thermochromism properties

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Under hydro(solvo)thermal conditions, four organic bidentate bridging N,N′-donor ligands 1,3-bis(2-methylimidazol-1-yl)propane (L1), 4,4′-di(1H-imidazol-1-yl)-1,1′-biphenyl (L2), 1,2-bis(2-methyl-1H-imidazol-1-ylmethyl)benzene (L3) and 5,6,7,8-tetrahydroquinoxaline (L4) were employed to react with CuBr/CuI, generating four 2-D layered copper(I)–polymer coordination polymer materials [Cu2Br2(L1)] 1, [CuI(L2)] 2, [CuI(L3)] 3 and [CuI(L4)0.5] 4. In 1–4, different Cu–X motifs are found: a cubic Cu4Br4 core in 1; a castellated Cu–I single chain in 2; a rhombic Cu2I2 core in 3; and a staircase-like Cu–I double chain in 4. The 2-D layer networks of 1–3 can all be simplified into a simple 44 topology (planar for 1 and 3; wave-like for 2), while the 2-D layer network of 4 has a 63 topology. The photoluminescence behaviors of 1–4 under a UV lamp suggest that 1 and 2 possess fluorescence thermochromism properties. Under the UV lamp, with the decrease in temperature, (i) 1 exhibits a yellow-to-red emission; (ii) 2 exhibits a yellow-to-green emission; (iii) 3 always emits green light; and (iv) 4 never emits light. These are further confirmed by their emission spectra. From 297 K to 77 K, the emission of 1 exhibits a large red shift from 561 nm to 623 nm; the emission of 2 exhibits a large blue shift from 571 nm to 515 nm; only a minor red shift is observed for the emission of 3; and no peaks appear in the emission spectra of 4. The crystal data of 1 and 2 at different temperatures have been collected for revealing the origination of their fluorescence thermochromism properties. Based on the above investigations, the effect of the rigidity/flexibility of the organic ligand on the fluorescence thermochromism properties of copper(I)–polymer coordination polymer materials is discussed. The quantum yields at 297 K and the photoluminescence lifetimes at 297 K and 77 K for 1–3 were also measured for better understanding their photoluminescence properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) R. Peng, M. Li and D. Li, Coord. Chem. Rev., 2010, 254, 1–18; (b) W. H. Fang and G. Y. Yang, J. Solid State Chem., 2014, 212, 249–257; (c) D. Yadav, R. K. Siwatch and S. Soumen, Inorg. Chem., 2014, 53, 600–606; (d) K. M. Henline, C. Wang, R. D. Pike, J. C. Ahern and H. H. Patterson, Cryst. Growth Des., 2014, 14, 1449–1458; (e) Y. Yu, X. Y. Zhang, J. P. Ma, Q. K. Liu, P. Wang and Y. B. Dong, Chem. Commun., 2014, 50, 1444–1446; (f) W. J. Gee and S. R. Batten, Cryst. Growth Des., 2013, 13, 2335–2343; (g) W. H. Fang and G. Y. Yang, CrystEngComm, 2014, 16, 1885–1892; (h) K. Škoch, I. Císařová and P. Štěpnička, Inorg. Chem., 2014, 53, 568–577; (i) V. J. Argyle, M. Roxburgh and L. R. Hanton, CrystEngComm, 2014, 16, 6345–6353; (j) A. Rashid, G. S. Ananthnag, S. Naik, J. T. Mague, D. Panda and M. S. Balakrishna, Dalton Trans., 2014, 43, 11339–11351.

    Google Scholar 

  2. (a) S. Yao, X. D. Sun, B. Bing, R. Krishna, G. H. Li, Q. H. Huo and Y. L. Liu, J. Mater. Chem. A, 2016, 4, 15081–15087; (b) Z. Z. Xue, Z. Zhang, J. Pan, S. D. Han, J. H. Li and G. M. Wang, Dalton Trans., 2017, 46, 13952–13956; (c) Y. Kang, F. Wang, J. Zhang and X. H. Bu, J. Am. Chem. Soc., 2012, 134, 17881–17884.

    Google Scholar 

  3. (a) B. J. Xin, G. Zeng, L. Gao, Y. Li, S. H. Xing, J. Hua, G. H. Li, Z. Shi and S. H. Feng, Dalton Trans., 2013, 42, 7562–7568; (b) A. Tarassoli, V. Nobakht, E. Baladi, L. Carlucci and D. M. Proserpio, CrystEngComm, 2017, 19, 6116–6126; (c) Y. Han, N. F. Chilton, M. Li, C. Huang, H. Xu, H. W. Hou, B. Moubaraki, S. K. Langley, S. R. Batten, Y. T. Fan and K. S. Murray, Chem. –, Eur. J., 2013, 19, 6321–6328.

    Google Scholar 

  4. (a) Z. X. Fu, J. Lin, L. Wang, C. Li, W. B. Yan and T. Wu, Cryst. Growth Des., 2016, 16, 2322–2327; (b) K. Yang, S. H. Li, F. Q. Zhang and X. M. Zhang, Inorg. Chem., 2016, 55, 7323–7325; (c) S. L. Li, J. Wang, F. Q. Zhang and X. M. Zhang, Cryst. Growth Des., 2017, 17, 746–752; (d) K. Kirakci, K. Fejfarová, J. Martinčí, M. Nikl and K. Lang, Inorg. Chem., 2017, 56, 4609–4614; (e) S. S. Zhao, L. Wang, Y. J. Liu, L. Chen and Z. G. Xie, Inorg. Chem., 2017, 56, 13975–13981; (f) S. Q. Bai, D. Kai, K. L. Ke, M. Lin, L. Jiang, Y. Jiang, D. J. Young, X. L. Loh, X. Li and T. S. A. Hor, ChemPlusChem, 2015, 80, 1235–1240; (g) E. Kwon, J. Kim, K. Y. Lee and T. H. Kim, Inorg. Chem., 2017, 56, 943–949; (h) W. Liu, K. Zhu, S. J. Teat, B. J. Deibert, W. B. Yuan and J. Li, J. Mater. Chem. C, 2017, 5, 5962–5969; (i) Q. L. Tang, J. Zhou, F. A. A. Paz, L. Fu, H. Xiao, Q. Zhou and J. Li, Dalton Trans., 2017, 46, 1372–1376; (j) H. Park, E. Kwon, H. Chiang, H. Im, K. Y. Lee, J. Kim and T. H. Kim, Inorg. Chem., 2017, 56, 8287–8294; (k) A. H. Sun, S. D. Han, J. Pan, J. H. Li, G. M. Wang and Z. H. Wang, Cryst. Growth Des., 2017, 17, 3588–3591; (l) J. C. Li, H. X. Li, H. Y. Li, W. J. Gong and J. P. Lang, Cryst. Growth Des., 2016, 16, 1617–1625; (m) S. Q. Bai, L. Jiang, A. L. Tan, S. C. Yeo, D. J. Younga and T. S. A. Hor, Inorg. Chem. Front., 2015, 2, 1011–1018; (n) S. Q. Bai, L. Jiang, D. J. Younga and T. S. A. Hor, Dalton Trans., 2015, 44, 6075–6081; (o) S. Q. Bai, L. Jiang, B. Sun, D. J. Youngac and T. S. A. Hor, CrystEngComm, 2015, 17, 3305–3311; (p) K. A. Vinogradova, V. F. Plyusnin, A. S. Kupryakov, M. I. Rakhmanova, N. V. Pervukhina, D. Y. Naumov, L. A. Sheludyakova, E. B. Nikolaenkova, V. P. Krivopalovd and M. B. Bushuev, Dalton Trans., 2014, 43, 2953–2960; (q) Z. Y. Zhang, Z. P. Deng, X. F. Zhang, L. H. Huo, H. Zhao and S. Gao, CrystEngComm, 2013, 16, 359–368; (r) J. Ni, K. J. Wei, Y. Z. Min, Y. W. Chen, S. Z. Zhan, D. Li and Y. Z. Liu, Dalton Trans., 2012, 41, 5280–5293.

  5. (a) J. Liu, F. Wang, L. Y. Liu and J. Zhang, Inorg. Chem., 2016, 55, 1358–1360; (b) L. X. Hu, M. Y. Gao, T. Wen, Y. Kang and S. M. Chen, Inorg. Chem., 2017, 56, 6507–6511; (c) X. J. Hong, X. Liu, J. B. Zhang, C. L. Lin, X. Wu, Y. J. Ou, J. Yang, H. G. Jin and Y. P. Cai, CrystEngComm, 2014, 16, 7926–7932; (d) X. W. Lei, C. Y. Yue, S. Wang, H. Gao, W. Wang, N. Wing and Y. D. Yin, Dalton Trans., 2017, 46, 4209–4217; (e) T. L. Yu, J. J. Shen, Y. L. Wang and Y. L. Fu, Eur. J. Inorg. Chem., 2015, 1989–1996.

  6. (a) X. L. Wang, M. J. Liu, Y. Q. Wang, H. Y. Fan, J. Wu, C. Huang and H. W. Hou, Inorg. Chem., 2017, 56, 13329–13336; (b) L. Jiang, Z. Wang, S. Q. Bai and T. S. A. Hor, Dalton Trans., 2013, 42, 9437–9443; (c) R. Cargnelutti, F. D. D. Siliva, U. Abram and E. S. Lang, New J. Chem., 2015, 39, 7948–7953; (d) H. X. Zhao, X. X. Li, J. Y. Wang, L. Y. Li and R. H. Wang, ChemPlusChem, 2013, 78, 1491–1502.

    Google Scholar 

  7. (a) S. Perruchas, X. F. Goff, S. Maron, I. Maurin, F. Guillen, A. Garcia, T. Gacoin and J. P. Boilot, J. Am. Chem. Soc., 2010, 132, 10967–10969; (b) D. M. Zink, T. Baumann, J. Friedrichs, M. Nieger and S. Bräse, Inorg. Chem., 2013, 52, 13509–13520; (c) M. S. Deshmukh, A. Yadav, R. Pant and R. Boomishankar, Inorg. Chem., 2015, 54, 1337–1345; (d) S. L. Li and X. M. Zhang, Inorg. Chem., 2014, 53, 8376–8383; (e) F. Farinella, L. Maini, P. P. Mazzeo, V. Fattori, F. Monti and D. Braga, Dalton Trans., 2016, 45, 17939–17947; (f) Y. Song, R. Q. Fan, P. Wang, X. M. Wang, S. Gao, X. Du, X. L. Yang and T. Z. Luan, J. Mater. Chem. C, 2015, 3, 6249–6259; (g) S. L. Li, F. Q. Zhang and X. M. Zhang, Chem. Commun., 2015, 51, 8062–8065; (h) B. C. Tzeng, A. Chao, T. Selvam and T. Y. Chang, CrystEngComm, 2013, 15, 5337–5344; (i) T. Hayashi, A. Kobayashi, H. Ohara, M. Yoshida, T. Matsumoto, H. Chang and M. Kato, Inorg. Chem., 2015, 54, 8905–8913; (j) N. M. Khatri, M. H. Pablico-Lansigan, W. L. Boncher, J. E. Mertzman, A. C. Labatete, L. M. Grande, D. Wunder, M. J. Prushan, W. Zhang, P. S. Halasyamani, J. H. S. K. Monteiro, A. D. Bettencourt-Dias and S. L. Stoll, Inorg. Chem., 2016, 55, 11408–11417; (k) S. Z. Zhan, M. Li, J. Zheng, Q. J. Wang, S. W. Ng and D. Li, Inorg. Chem., 2017, 56, 13446–13455; (l) X. C. Shan, F. L. Jiang, D. Q. Yuan, H. B. Zhang, M. Y. Wu, L. Chen, J. Wei, S. Q. Zhang, J. Pan and M. C. Hong, Chem. Sci., 2013, 4, 1484–1489; (m) J. H. Wang, M. Li, J. Zheng, X. C. Huang and D. Li, Chem. Commun., 2014, 50, 9115–9118; (n) F. S. Wu, H. B. Tong, Z. Y. Li, W. Lei, L. Liu, W. Y. Wong, W. K. Wong and X. J. Zhu, Dalton Trans., 2014, 43, 12463–12466; (o) L. Maini, D. Braga, P. P. Mazzeo, L. Maschio, M. Rérat, I. Manete and B. Ventura, Dalton Trans., 2015, 44, 13003–13006.

    Article  CAS  Google Scholar 

  8. (a) K. R. Kyle, C. K. Ryu, J. A. DiBenedetto and P. C. Ford, J. Am. Chem. Soc., 1991, 113, 1954–2965; (b) P. C. Ford, E. Cariati and J. Bourassa, Chem. Rev., 1999, 99, 3625–3647; (c) P. C. Ford and A. Vogler, Acc. Chem. Res., 1993, 26, 220–226; (d) M. Vitale and P. C. Ford, Coord. Chem. Rev., 2001, 219–221, 3–16.

  9. (a) L. P. Xue, X. H. Chang, L. F. Ma and L. Y. Wang, RSC Adv., 2014, 4, 60883–60890; (b) R. Y. Wang, X. Zhang, Q. F. Yang, Q. S. Huo, J. H. Yu, J. N. Xu and J. Q. Xu, J. Solid State Chem., 2017, 251, 176–185.

    Google Scholar 

  10. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112–122.

  11. A. J. Black, N. R. Brooks, N. R. Champness, P. A. Cooke, A. M. Deveson, D. Fenske, P. Hubberstey, W. S. Li and M. Schröder, J. Chem. Soc., Dalton Trans., 1999, 2103–2110.

  12. (a) Y. R. Qiao, P. F. Hao and Y. L. Fu, Inorg. Chem., 2015, 54, 8705–8710; (b) D. Braga, L. Maini, P. P. Mazzeo and B. Ventura, Chem. – Eur. J., 2010, 16, 1553–1559; (c) D. Sun, S. Yuan, H. Wang, H. F. Lu, S. Y. Feng and D. F. Sun, Chem. Commun., 2013, 49, 6152–6154; (d) S. Yuan, H. Wang, D. X. Wang, H. F. Lu, S. Y. Feng and D. Sun, CrystEngComm, 2013, 15, 7792–7802; (e) S. Yuan, S. S. Liu and D. Sun, CrystEngComm, 2014, 16, 1927–1933.

    Google Scholar 

  13. X. F. Sun, H. Pan and L. X. Ju, Chin. J. Struct. Chem., 2016, 9, 1406–1412.

    Google Scholar 

  14. F. Y. Yi, J. P. Li, D. Wu and Z. M. Sun, Chem. – Eur. J., 2015, 21, 11475–11482.

    Article  CAS  Google Scholar 

  15. X. W. Zhang, P. Q. Xing, X. J. Geng, D. F. Sun, Z. Y. Xiao and L. Wang, J. Solid State Chem., 2015, 229, 49–61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Zhang.

Additional information

Electronic supplementary information (ESI) available. CCDC 1818389 (173 K) for 1, 1818392 for 3 (149 K), 1818394 (173 K) for 2, 1837154 for 4 (293 K), 1837238 (299 K) and 1837240 (297 K). For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c8pp00474a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, RY., Zhang, X., Yu, JH. et al. Copper(I)–polymers and their photoluminescence thermochromism properties. Photochem Photobiol Sci 18, 477–486 (2019). https://doi.org/10.1039/c8pp00474a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00474a

Navigation