Skip to main content

Advertisement

Log in

Synthesis and antimicrobial photodynamic effect of methylene blue conjugated carbon nanotubes on E. coli and S. aureus

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

A Correction to this article was published on 01 February 2019

This article has been updated

Abstract

Catheter-related bloodstream infections (CRBSIs) are one of the leading causes of high morbidity and mortality in hospitalized patients. The proper management, prevention and treatment of CRBSIs rely on the understanding of these highly resistant bacterial infections. The emergence of such a challenge to public health has resulted in the development of an alternative antimicrobial strategy called antimicrobial photodynamic therapy (aPDT). In the presence of a photosensitizer (PS), light of the appropriate wavelength, and molecular oxygen, aPDT generates reactive oxygen species (ROS) which lead to microbial cell death and cell damage. We investigated the enhanced antibacterial and antibiofilm activities of methylene blue conjugated carbon nanotubes (MBCNTs) on biofilms of E. coli and S. aureus using a laser light source at 670 nm with radiant exposure of 58.49 J cm−2. Photodynamic inactivation in test cultures showed 4.86 and 5.55 log10 reductions in E. coli and S. aureus, respectively. Biofilm inhibition assays, cell viability assays and EPS reduction assays showed higher inhibition in S. aureus than in E. coli, suggesting that pronounced ROS generation occurred due to photodynamic therapy in S. aureus. Results from a study into the mechanism of action proved that the cell membrane is the main target for photodynamic inactivation. Comparatively higher photodynamic inactivation was observed in Gram positive bacteria due to the increased production of free radicals inside these cells. From this study, we conclude that MBCNT can be used as a promising nanocomposite for the eradication of dangerous pathogens on medical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

References

  1. L. Zhang, J. C. Brownlie and C. Rickard, The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Program, in, Biofilms and intravascular catheter related bloodstream infections, ed. A. Méndez-Vilas, Formatex Research Center, Spain, 2015, pp. 405–412.

  2. J. M. Weber, R. L. Sheridan, S. Fagan, C. M. Ryan, M. S. Pasternack and R. G. Tompkins, Incidence of Catheter-Associated Bloodstream Infection After Introduction of Minocycline and Rifampin Antimicrobial-Coated Catheters in a Pediatric Burn Population, J. Burn Care Res., 2012, 33(4), 539–543.

    Article  Google Scholar 

  3. K. Johani, D. Abualsaud, D. M. Costa, H. Hu, G. Whiteley, A. Deva and K. Vickery, Characterization of microbial community composition, antimicrobial resistance and biofilm on intensive care surfaces, J. Infect. Public Health., 2018, 11(3), 418–424.

    Article  Google Scholar 

  4. L. Zhang, J. Gowardman, M. Morrison, L. Krause, E. G. Playford and C. M. Rickard, Molecular investigation of bacterial communities on intravascular catheters: no longer just Staphylococcus, Eur. J. Clin. Microbiol. Infect. Dis., 2014, 33(7), 1189–1198.

    Article  CAS  Google Scholar 

  5. F. C. Tenover, Mechanisms of antimicrobial resistance in bacteria, Am. J. Infect. Control, 2006, 34(5), S3–10.

  6. S. Miquel, R. Lagrafeuille, B. Souweine and C. Forestier, Anti-biofilm Activity as a Health Issue, Front. Microbiol., 2016, 7, 1–14.

  7. D. Lebeaux, J. M. Ghigo and C. Beloin, Biofilm-Related Infections: Bridging the Gap between Clinical Management and Fundamental Aspects of Recalcitrance toward Antibiotics, Microbiol. Mol. Biol. Rev., 2014, 78(3), 510–543.

    Article  Google Scholar 

  8. X. J. Fu, Y. Fang and M. Yao, Antimicrobial Photodynamic Therapy for Methicillin-Resistant Staphylococcus aureus Infection, BioMed Res. Int., 2013, 1–9.

  9. F. Cieplik, L. Tabenski, W. Buchalla and T. Maisch, Antimicrobial photodynamic therapy for inactivation of biofilms formed by oral key pathogens, Front. Microbiol., 2014, 5, 1–17.

    Article  Google Scholar 

  10. A. P. Castano, T. N. Demidova and M. R. Hamblin, Mechanisms in photodynamic therapy: part one—photo-sensitizers, photochemistry and cellular localization, Photodiagn. Photodyn. Ther., 2004, 1(4), 279–293.

    Article  CAS  Google Scholar 

  11. R. Yin, T. Agrawal, U. Khan, G. K. Gupta, V. Rai, Y. Y. Huang and M. R. Hamblin, Antimicrobial photodynamic inactivation in nanomedicine: small light strides against bad bugs, Nanomedicine, 2015, 10(15), 2379–2404.

    Article  CAS  Google Scholar 

  12. W. Zhang, Z. Zhang and Y. Zhang, The application of carbon nanotubes in target drug delivery systems for cancer therapies, Nanoscale Res. Lett., 2011, 6(1), 555.

  13. T. Mocan, C. T. Matea, T. Pop, O. Mosteanu, A. D. Buzoianu, S. Suciu, C. Puia, C. Zdrehus, C. Iancu and L. Mocan, Carbon nanotubes as anti-bacterial agents, Cell. Mol. Life Sci., 2017, 74(19), 3467–3479.

    Article  CAS  Google Scholar 

  14. U. Sah, K. Sharma, N. Chaudhri, M. Sankar and P. Gopinath, Antimicrobial photodynamic therapy: Single-walled carbon nanotube (SWCNT)-Porphyrin conjugate for visible light mediated inactivation of Staphylococcus aureus, Colloids Surf., B, 2018, 162, 108–117.

    Article  CAS  Google Scholar 

  15. A. Sur, B. Pradhan, A. Banerjee and P. Aich, Immune activation efficacy of indolicidin is enhanced upon conjugation with carbon nanotubes and gold nanoparticles, PLoS One, 2015, 10(4), 1–15.

    Article  Google Scholar 

  16. B. P. De Oliveira, S. A. Lins CC dos, F. A. Diniz, L. L. Melo and Castro CMMB de, In Vitro antimicrobial photoinactivation with methylene blue in different microorganisms, Braz. J. Oral Sci., 2014, 13(1), 53–57.

    Article  Google Scholar 

  17. M. Usacheva, B. Layek, S. S. Rahman Nirzhor and S. Prabha, Nanoparticle-Mediated Photodynamic Therapy for Mixed Biofilms, J. Nanomater., 2016, 1–11.

  18. J. K. Trigo Gutierrez, G. C. Zanatta, A. L. M. Ortega, M. I. C. Balastegui, P. V. Sanitá, A. C. Pavarina, P. A. Barbugli and E. Garcia de Oliveira Mima, Encapsulation of curcumin in polymeric nanoparticles for antimicrobial Photodynamic Therapy, PLoS One, 2017, 12(11), e0187418.

  19. A. Shrestha and A. Kishen, Polycationic Chitosan-Conjugated Photosensitizer for Antibacterial Photodynamic Therapy, Photochem. Photobiol., 2012, 88(3), 577–583.

    Article  CAS  Google Scholar 

  20. S. Schastak, S. Ziganshyna, B. Gitter, P. Wiedemann and T. Claudepierre, Efficient Photodynamic Therapy against Gram-Positive and Gram-Negative Bacteria Using THPTS, a Cationic Photosensitizer Excited by Infrared Wavelength, PLoS One, 2010, 5(7), e11674.

  21. A. S. Garcez, S. C. Nunez, M. S. Baptista, N. A. Daghastanli, R. Itri, M. R. Hamblin and M. S. Ribeiro, Antimicrobial mechanisms behind photodynamic effect in the presence of hydrogen peroxide, Photochem. Photobiol. Sci., 2011, 10(4), 483–490.

    Article  CAS  Google Scholar 

  22. S. Yu, X. Zhu and J. Zhou, Biofilm inhibition and pathogenicity attenuation in bacteria by Proteus mirabilis, R. Soc. Open Sci., 2018, 1–11.

  23. M. C. Andrade, A. P. D. Ribeiro, L. N. Dovigo, I. L. Brunetti, E. T. Giampaolo, V. S. Bagnato and A. C. Pavarina, Effect of different pre-irradiation times on curcumin-mediated photodynamic therapy against planktonic cultures and biofilms of Candida spp, Arch. Oral Biol., 2013, 58(2), 200–210.

    Article  CAS  Google Scholar 

  24. L. Misba, S. Zaidi and A. U. Khan, A comparison of antibacterial and antibiofilm efficacy of phenothiazinium dyes between Gram positive and Gram negative bacterial biofilm, Photodiagn. Photodyn. Ther., 2017, 18, 24–33.

    Article  CAS  Google Scholar 

  25. G. A. Meerovich, I. G. Tiganova, E. A. Makarova, I. G. Meerovich, M. Romanova, E. R. Tolordova, N. V. Alekseeva, T. V. Stepanova, Y. Koloskova, E. A. Luk’anets, N. V. Krivospitskaya, I. P. Sipailo, T. V. Baikova, V. B. Loschenov and S. A. Gonchukov, Photodynamic inactivation of bacteria and biofilms using cationic bacteriochlorins, J. Phys.: Conf. Ser., 2016, 691(1), 012011.

  26. H. Lee, D. Ryu, S. Choi and D. Lee, Antibacterial Activity of Silver-nanoparticles Against Staphylococcus aureus and Escherichia coli, Korean J. Microbiol. Biotechnol., 2011, 39(1), 77–85.

    Google Scholar 

  27. H. Sheng, K. Nakamura, T. Kanno, K. Sasaki and Y. Niwano, Bactericidal effect of photolysis of H2O2 in combination with sonolysis of water via hydroxyl radical generation, PLoS One, 2015, 10(7), e0132445.

  28. L. Zhang, J. Gowardman, M. Morrison, N. Runnegar and C. M. Rickard, Microbial biofilms associated with intravascular catheter-related bloodstream infections in adult intensive care patients, Eur. J. Clin. Microbiol. Infect. Dis., 2016, 35(2), 201–205.

    Article  CAS  Google Scholar 

  29. N. Kashef and M. R. Hamblin, Can microbial cells develop resistance to oxidative stress in antimicrobial photodynamic inactivation?, Drug Resist. Updates, 2017, 3, 31–42.

    Article  Google Scholar 

  30. M. A. Biel, C. Sievert, M. Usacheva, M. Teichert and J. Balcom, Antimicrobial photodynamic therapy treatment of chronic recurrent sinusitis biofilms, Int. Forum Allergy Rhinol., 2011, 1(5), 329–334.

    Article  Google Scholar 

  31. U. Sah, K. Sharma, N. Chaudhri, M. Sankar and P. Gopinath, Colloids and Surfaces B : Biointerfaces Antimicrobial photodynamic therapy : Single-walled carbon nanotube (SWCNT) -Porphyrin conjugate for visible light mediated inactivation of Staphylococcus aureus, Colloids Surf., B, 2018, 162, 108–117.

    Article  CAS  Google Scholar 

  32. S. Khan, F. Alam, A. Azam and A. U. Khan, Gold nanoparticles enhance methylene blue-induced photodynamic therapy: a novel therapeutic approach to inhibit Candida albicans biofilm, Int. J. Nanomed., 2012, 3245–3257.

  33. O. V. Ovchinnikov, A. V. Evtukhova, T. S. Kondratenko, M. S. Smirnov, V. Y. Khokhlov and O. V. Erina, Manifestation of intermolecular interactions in FTIR spectra of methylene blue molecules, Vib. Spectrosc., 2016, 86, 181–189.

    Article  CAS  Google Scholar 

  34. J. H. Lehman, M. Terrones, E. Mansfield, K. E. Hurst and V. Meunier, Evaluating the characteristics of multiwall carbon nanotubes, Carbon, 2011, 9(8), 2581–2602.

    Article  Google Scholar 

  35. A. V. Borhade, D. R. Tope and B. K. Uphade, An Efficient Photocatalytic Degradation of Methyl Blue Dye by Using Synthesised PbO Nanoparticles, E. J. Chem., 2012, 9(2), 705–715.

    Article  CAS  Google Scholar 

  36. Y. Fang, T. Liu, Q. Zou, Y. Zhao and F. Wu, Water-soluble benzylidene cyclopentanone based photosensitizers for in vitro and in vivo antimicrobial photodynamic therapy, Sci. Rep., 2016, 6(1), 28357.

  37. S. George, M. R. Hamblina and A. Kishen, Uptake pathways of anionic and cationic photosensitizers into bacteria, Photochem. Photobiol. Sci., 2009, 8(6), 788.

  38. K. D. Wani, B. S. Kadu, P. Mansara, P. Gupta, A. V. Deore, R. C. Chikate, P. Poddar, S. D. Dhole and R. Kaul-Ghanekar, Synthesis, Characterization and In Vitro Study of Biocompatible Cinnamaldehyde Functionalized Magnetite Nanoparticles (CPGF Nps) For Hyperthermia and Drug Delivery Applications in Breast Cancer, PLoS One, 2014, 9(9), e107315.

  39. A. Hanakova, K. Bogdanova, K. Tomankova, K. Pizova, J. Malohlava, S. Binder, R. Bajgara, K. Langovaa, M. Kolarb, J. Mosingerc and H. Kolarova, The application of antimicrobial photodynamic therapy on S. aureus and, E. coli using porphyrin photosensitizers bound to cyclodextrin, Microbiol. Res., 2014, 169(2–3), 163–170.

  40. J. Wu, H. Xu, W. Tang, R. Kopelman, M. A. Philbert and C. Xi, Eradication of Bacteria in Suspension and Biofilms Using Methylene Blue-Loaded Dynamic Nanoplatforms, Antimicrob. Agents Chemother., 2009, 53(7), 3042–3048.

    Article  CAS  Google Scholar 

  41. A. Gollmer, A. Felgentrager, W. Baumler, T. Maisch and A. Spath, A novel set of symmetric methylene blue derivatives exhibits effective bacteria photokilling – a structure–response study, Photochem. Photobiol. Sci., 2015, 14(2), 335–351.

    Article  CAS  Google Scholar 

  42. E. Darabpour, N. Kashef and S. Mashayekhan, Chitosan nanoparticles enhance the efficiency of methylene blue-mediated antimicrobial photodynamic inactivation of bacterial biofilms: An in vitro study, Photodiagn. Photodyn. Ther., 2016, 14, 211–217.

    Article  CAS  Google Scholar 

  43. L. Misba, S. Zaidi and A. U. Khan, A comparison of antibacterial and antibiofilm efficacy of phenothiazinium dyes between Gram positive and Gram negative bacterial biofilm, Photodiagn. Photodyn. Ther., 2017, 18, 24–33.

    Article  CAS  Google Scholar 

  44. A. Yoshida, H. Sasaki, T. Toyama, M. Araki, J. Fujioka, K. Tsukiyama, N. Hamada and F. Yoshino, Antimicrobial effect of blue light using Porphyromonas gingivalis pigment, Sci. Rep., 2017, 7(1), 5225.

  45. A. Felgentrager, T. Maisch, D. Dobler and A. Spath, Hydrogen bond acceptors and additional cationic charges in methylene blue derivatives: Photophysics and antimicrobial efficiency, BioMed. Res. Int., 2013, 1–12.

  46. M. Grinholc, J. Nakonieczna, G. Fila, A. Taraszkiewicz, A. Kawiak, G. Szewczyk, T. Sarna, L. Lilge and K. P. Bielawski, Antimicrobial photodynamic therapy with fulleropyrrolidine: photoinactivation mechanism of Staphylococcus aureus, in vitro and in vivo studies, Appl. Microbiol. Biotechnol., 2015, 99(9), 4031–4043.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asad Syed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parasuraman, P., Anju, V.T., Lal, S.S. et al. Synthesis and antimicrobial photodynamic effect of methylene blue conjugated carbon nanotubes on E. coli and S. aureus. Photochem Photobiol Sci 18, 563–576 (2019). https://doi.org/10.1039/c8pp00369f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00369f

Navigation