Skip to main content
Log in

Photocatalytic abatement of emerging pollutants in pure water and wastewater effluent by TiO2 and Ce-ZnO: degradation kinetics and assessment of transformation products

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Here, the performances of two different catalysts, Ce-ZnO and TiO2 synthetized in our laboratories, were compared with the commercial TiO2-P25 for degradation of a mixture of seven emerging pollutants under UV irradiation. The investigation included monitoring pollutants abatement in Milli-Q water and in wastewater effluent and identifying their transformation products by HPLC-HRMS. Structural characterization of intermediates supported by data available from literature allowed elucidation of the transformation pathways occurring in the presence of all investigated catalysts in the wastewater effluent. Preliminary results showed a good removal efficacy for almost all examined contaminants, even in real water matrix (i.e. wastewater effluent). The type of matrix and catalyst affects the number and/or the abundance of transformation products, which suggests differences in their transformation routes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. C. Poynton and W. E. Robinson, in Green Chemistry: an inclusive approach, ed. B. Török and T. Dransfield, Elsevier, Amsterdam, 2018, ch. 3.7, pp. 291–311.

  2. S. D. Richardson and S. Y. Kimura, Water Analysis: Emerging Contaminants and Current Issues, Anal. Chem., 2016, 88(1), 546.

    Article  CAS  Google Scholar 

  3. S. Rainieri, N. Conlledo, B. K. Larsen, K. Granby and A. Barranco, Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish (Danio rerio), Environ. Res., 2018, 162, 135.

    Article  CAS  Google Scholar 

  4. C. Di Poi, K. Costil, V. Bouchart and M. P. Halm-Lemeille, Toxicity assessment of five emerging pollutants, alone and in binary or ternary mixtures, towards three aquatic organisms, Environ. Sci. Pollut. Res. Int., 2018, 25, 6122.

    Article  Google Scholar 

  5. U. I. Gaya and A. H. Abdullah, Heterogeneous Photocatalytic Degradation of Organic Contaminants over Titanium Dioxide: A Review of Fundamentals, Progress and Problems, J. Photochem. Photobiol., C, 2008, 9, 1.

    Article  CAS  Google Scholar 

  6. T. E. Doll and F. H. Frimmel, Removal of Selected Persistent Organic Pollutants by Heterogeneous Photocatalysis in Water, Catal. Today, 2005, 101, 195.

    Article  CAS  Google Scholar 

  7. M. J. López-Muñoz, A. Daniele, M. Zorzi, C. Medana and P. Calza, Investigation of the photocatalytic transformation of acesulfame K in the presence of different TiO2-based materials, Chemosphere, 2018, 193, 151.

    Article  Google Scholar 

  8. K. G. Kanade, B. B. Kale, J. O. Baeg, S. M. Lee, C. W. Lee, S. J. Moon and H. J. Chang, Self-assembled aligned Cu doped ZnO nanoparticles for photocatalytic hydrogen production under visible light irradiation, Mater. Chem. Phys., 2007, 102, 98.

    Article  CAS  Google Scholar 

  9. O. Bechambi, L. Jlaiel, W. Najjar and S. Sayadi, Photocatalytic degradation of bisphenol A in the presence of Ce–ZnO: Evolution of kinetics, toxicity and photodegradation mechanism, Mater. Chem. Phys., 2016, 173, 95.

    Article  CAS  Google Scholar 

  10. M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade and A. Z. Moshfegha, Recent progress on doped ZnO nano-structures for visible-light photocatalysis, Thin Solid Films, 2016, 605, 2.

    Article  CAS  Google Scholar 

  11. C. M. The and A. R. Mohamed, Roles of Titanium Dioxide and Ion-Doped Titanium Dioxide on Photocatalytic Degradation of Organic Pollutants (Phenolic Compounds and Dyes) in Aqueous Solutions: A Review, J. Alloys Compd., 2011, 509, 1648.

    Article  Google Scholar 

  12. M. C. Paganini, D. Dalmasso, C. Gionco, V. Polliotto, L. Mantilleri and P. Calza, Beyond TiO2: Cerium-Doped Zinc Oxide as a New Photocatalyst for the Photodegradation of Persistent Pollutants, ChemistrySelect, 2016, 1, 3377.

    Article  CAS  Google Scholar 

  13. P. Calza, C. Medana, E. Padovano, V. Giancotti and C. Baiocchi, Identification of the unknown transformation products derived from clarithromycin and carbamazepine using liquid chromatography/high-resolution mass spectrometry, Rapid Commun. Mass Spectrom., 2012, 26, 1687.

    Article  CAS  Google Scholar 

  14. C. Medana, P. Calza, F. Carbone, E. Pelizzetti, H. Hidaka and C. Baiocchi, Characterization of atenolol transformation products on light-activated TiO2 surface by high-performance liquid chromatography/high-resolution mass spectrometry, Rapid Commun. Mass Spectrom., 2008, 22, 301.

    Article  CAS  Google Scholar 

  15. P. Calza, V. A. Sakkas, C. Medana, C. Baiocchi, A. Dimou, E. Pelizzetti and T. Albanis, Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions, Appl. Catal., B, 2006, 67, 197.

    Article  CAS  Google Scholar 

  16. E. Ioannidou, A. Ioannidi, Z. Frontistis, M. Antonopoulou, C. Tselios, D. Tsikritzis, I. Konstantinou, S. Kennou, D. I. Kondarides and D. Mantzavinos, Correlating the properties of hydrogenated titania to reaction kineticsand mechanism for the photocatalytic degradation of bisphenol A under solar irradiation, Appl. Catal., B, 2016, 188, 65.

    Article  CAS  Google Scholar 

  17. L. Hu, P. M. Flanders, P. L. Miller and T. J. Strathmann, Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis, Water Res., 2007, 41, 2612.

    Article  CAS  Google Scholar 

  18. R. Rosal, A. Rodríguez, J. A. Perdigón-Melón, A. Petre, E. García-Calvo, M. J. Gómez, A. Agüera and A. R. Fernández-Alba, Degradation of caffeine and identification of the transformation products generated by ozonation, Chemosphere, 2009, 74, 825.

    Article  CAS  Google Scholar 

  19. I. Michael, A. Achilleos, D. Lambropoulou, V. Osorio Torrens, S. Pérez, M. Petrovìc, D. Barceló and D. Fatta-Kassinos, Proposed transformation pathway and evolution profile of diclofenac and ibuprofen transformation products during (sono)photocatalysis, Appl. Catal., B, 2014, 147, 1015.

    Article  CAS  Google Scholar 

  20. A. N. Rioja, S. Zorita and F. J. Penas, Effect of water matrix on photocatalytic degradation and general kinetic modelling, Appl. Catal., B, 2016, 180, 330.

    Article  CAS  Google Scholar 

  21. W. A. Adams and C. A. Impellitteri, The photocatalysis of N,N-diethyl-m-toluamide (DEET) using dispersions of Degussa P-25 TiO2 particles, J. Photochem. Photobiol., A, 2009, 202, 28–32.

    Article  CAS  Google Scholar 

  22. T. Ohno, K. Tokieda, S. Higashida and M. Matsumura, Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene, Appl. Catal., A, 2003, 244, 383.

    Article  CAS  Google Scholar 

  23. H.-Y. Ma, L. Zhao, D.-B. Wang, H. Zhang and L.-H. Guo, Dynamic Tracking of Highly Toxic Intermediates in Photocatalytic Degradation of Pentachlorophenol by Continuous Flow Chemiluminescence, Environ. Sci. Technol., 2018, 52, 2870.

    Article  CAS  Google Scholar 

  24. C. Berberidou, V. Kitsiou, S. Karahanidou, D. A. Lambropoulou, A. Kouras, C. I. Kosma, T. A. Albanis and I. Poulios, Photocatalytic degradation of the herbicide clopyralid: kinetics, degradation pathways and ecotoxicity evaluation, J. Chem. Technol. Biotechnol., 2016, 91, 2510.

    Article  CAS  Google Scholar 

  25. A. Jelica, I. Michael, A. Achilleos, E. Hapeshi, D. Lambropoulou, S. Pereza, M. Petrovic, D. Fatta-Kassinos and D. Barcelo, Transformation products and reaction pathways of carbamazepine during photocatalytic and sonophotocatalytic treatment, J. Hazard. Mater., 2013, 263P1, 177.

    Article  Google Scholar 

  26. P. Calza, C. Medana, M. Pazzi, C. Baiocchi and E. Pelizzetti, Photocatalytic transformations of sulphonamides on titanium dioxide, Appl. Catal., B, 2004, 53, 63.

    Article  CAS  Google Scholar 

  27. K. S. Tay, N. A. Rahman and M. R. B. Abas, Characterization of atenolol transformation products in ozonation by using rapid resolution high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry, Microchem. J., 2011, 99, 312.

    Article  CAS  Google Scholar 

  28. O. Koba, O. Golovko, R. Kode, A. Klement and R. Grabic, Transformation of atenolol, metoprolol, and carbamazepine in soils: The identification, quantification, and stability of the transformation products and further implications for the environment, Environ. Pollut., 2016, 218, 574.

    Article  CAS  Google Scholar 

  29. I. Dalmázio, L. S. Santos, R. P. Lopes, M. N. Eberlin and R. Augusti, Advanced Oxidation of Caffeine in Water: OnLine and Real-Time Monitoring by Electrospray Ionization Mass Spectrometry, Environ, Sci. Technol., 2005, 39(16), 5982.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debora Fabbri.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c8pp00311d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabbri, D., López-Muñoz, M.J., Daniele, A. et al. Photocatalytic abatement of emerging pollutants in pure water and wastewater effluent by TiO2 and Ce-ZnO: degradation kinetics and assessment of transformation products. Photochem Photobiol Sci 18, 845–852 (2019). https://doi.org/10.1039/c8pp00311d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c8pp00311d

Navigation