Skip to main content
Log in

A subphthalocyanine–pyrene dyad: electron transfer and singlet oxygen generation

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A light harvesting subphthalocyanine–pyrene dyad has been synthesized and characterized by linking pyrene (Py) with subphthalocyanine (SubPc) at its axial position with the B–O bond through the para position of the benzene group. Upon photoexcitation at the pyrene unit of the dyad, an efficient electron transfer from the singlet-excited state of Py to SubPc was observed. The electron transfer features were also observed by exciting the SubPc entity, but with slower rates (~108 s−1). From the electrochemical measurements, the negative driving forces for charge separation via both the singlet states of Py and SubPc in the polar solvents indicate that the electron transfer is thermodynamically feasible. Interestingly, the examined compounds showed relatively high efficiency for producing the singlet oxygen (ΦΔ = ~0.70). The collected data suggested the usefulness of the examined subphthalocyanine–pyrene dyad as a model of light harvesting system, as well as a sensitizer for photodynamic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Gust and T. A. Moore, Mimicking photosynthesis, Science, 1989, 244, 35–41.

    Article  CAS  PubMed  Google Scholar 

  2. M. R. Wasielewski, Photoinduced electron transfer in supramolecular systems for artificial photosynthesis, Chem. Rev., 1992, 92, 435–461.

    Article  CAS  Google Scholar 

  3. M. A. Steffen, K. Lao and S. G. Boxer, Dielectric asymmetry in the photosynthetic reactions centre, Science, 1994, 264, 810–816.

    Article  CAS  PubMed  Google Scholar 

  4. V. Balzani, A. Juris, M. Venturi, S. Campagna and S. Serroni, Luminescent and redox-active polynuclear tran- sition metal complexes, Chem. Rev., 1996, 96, 759–834.

    Article  CAS  PubMed  Google Scholar 

  5. S. Fukuzumi, H. Imahori, H. Yamada, M. E. El-Khouly, M. Fujitsuka, O. Ito and D. M. Guldi, Catalytic effects of dioxygen on intramolecular electron transfer in radical ion pairs of zinc porphyrin-linked fullerenes, J. Am. Chem. Soc., 2001, 123, 2571–2575.

    Article  CAS  PubMed  Google Scholar 

  6. H. Imahori, M. E. El-Khouly, M. Fujitsuka, O. Ito, Y. Sakata and S. Fukuzumi, Solvent dependence of charge separation and charge recombination rates in porphyrin-fullerene dyad, J. Phys. Chem. A, 2001, 105, 325–332.

    Article  CAS  Google Scholar 

  7. Advances in Photosynthesis, Volume 10, Photosynthesis: Photochemistry and Photobiophysics, ed. B. Ke, Kluwer Academic Publishers, UK, 2003.

    Google Scholar 

  8. H. Imahori and S. Fukuzumi, Porphyrin- and fullerene- based molecular photovoltaic devices, Adv. Funct. Mater., 2004, 14, 525–536.

    Article  CAS  Google Scholar 

  9. M. E. El-Khouly, O. Ito, P. M. Smith and F. D’Souza, Intermolecular and supramolecular photoinduced electron transfer processes of fullerene-porphyrin/phthalocyanine systems, J. Photochem. Photobiol., C, 2004, 5, 79–104.

    Article  CAS  Google Scholar 

  10. M. R. Wasielewski, Energy, charge, and spin transport in molecules and self-assembled nanostructures inspired by photosynthesis, J. Org. Chem., 2006, 71, 5051–5066.

    Article  CAS  PubMed  Google Scholar 

  11. S. Fukuzumi, Bioinspired electron-transfer systems and applications, Bull. Chem. Soc. Jpn., 2006, 79, 177–195.

    Article  CAS  Google Scholar 

  12. V. Balzani, A. Credi and M. Venturi, Photochemical conver- sion of solar energy, ChemSusChem, 2008, 1, 26–58.

    Article  CAS  PubMed  Google Scholar 

  13. A. C. Benniston and A. Harriman, Artificial photosynthesis, Mater. Today, 2008, 11, 26–34.

    Article  CAS  Google Scholar 

  14. S. Fukuzumi and T. Kojima, Photofunctional nano- materials composed of multiporphyrins and carbon-based n-electron acceptors, J. Mater. Chem., 2008, 18, 1427–1439.

    Article  CAS  Google Scholar 

  15. M. R. Wasielewski, Self-assembly strategies for integrating light harvesting and charge separation in artificial photo- synthetic systems, Acc. Chem. Res., 2009, 42, 1910–1921.

    Article  CAS  PubMed  Google Scholar 

  16. D. Gust, T. A. Moore and A. L. Moore, Solar fuels via artificial photosynthesis, Acc. Chem. Res., 2009, 42, 1890–1898.

    Article  CAS  PubMed  Google Scholar 

  17. M. E. El-Khouly, Y. Chen, X. Zhuang and S. Fukuzumi, Long-lived charge-separated configuration of a push-pull archetype of disperse red 1 end-capped poly[9,9-bis(4- diphenylaminophenyl)fluorene], J. Am. Chem. Soc., 2009, 131, 6370–6371.

    Article  CAS  PubMed  Google Scholar 

  18. K. Kalyanasundaram and M. Grätzel, Artificial photosyn- thesis: biomimetic approaches to solar energy conversion and storage, Curr. Opin. Biotechnol., 2010, 21, 298–310.

    Article  CAS  PubMed  Google Scholar 

  19. Y. Terazono, G. Kodis, K. Bhushan, J. Zaks, C. Madden, A. L. Moore, T. A. Moore, G. R. Fleming and D. Gust, Mimicking the role of antenna in photosynthetic photo- protection, J. Am. Chem. Soc., 2011, 133, 2916–2922.

    Article  CAS  PubMed  Google Scholar 

  20. F. D’Souza and O. Ito, Photosensitized electron transfer processes of nanocarbons applicable to solar cells, Chem. Soc. Rev., 2012, 41, 86–96.

    Article  PubMed  Google Scholar 

  21. Y. Tachibana, L. Vayssieres and J. R. Durrant, Artificial photosynthesis for solar water splitting, Nat. Photonics, 2012, 5, 511–518.

    Article  CAS  Google Scholar 

  22. S. Fukuzumi and K. Ohkubo, Long-lived photoinduced charge separation for solar cell applications in supramole- cular complexes of multi-metalloporphyrins and fullerenes, Dalton Trans., 2013, 42, 15846–15858.

    Article  CAS  PubMed  Google Scholar 

  23. S. Fukuzumi, K. Ohkubo and T. Suenobu, Long-lived charge separation and applications in artificial photo- synthesis, Acc. Chem. Res., 2014, 47, 455–1464.

    Article  CAS  Google Scholar 

  24. M. E. El-Khouly, F. D’Souza and S. Fukuzumi, Photosynthetic antenna-reaction center mimicry by using boron dipyrromethene sensitizers, ChemPhysChem, 2014, 15, 30–47.

    Article  CAS  PubMed  Google Scholar 

  25. S.-H. Lee, I. M. Blake, A. G. Larsen, J. A. McDonald, K. Ohkubo, S. Fukuzumi, J. R. Reimers and M. J. Crossley, Synthetically tunable biomimetic artificial photosynthetic reaction centres that closely resemble the natural system in purple bacteria, Chem. Sci., 2016, 7, 6534–6550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. M. E. El-Khouly, E. El-Mohsnawy and S. Fukuzumi, Solar energy conversion: from natural to artificial photo- synthesis, J. Photochem. Photobiol., C, 2017, 31, 36–83.

    Article  CAS  Google Scholar 

  27. F. Jin, B. Chu, W. Li, Z. Su, X. Yan, J. Wang, R. Li, B. Zhao, T. Zhang, Y. Gao, C. S. Lee, H. Wu, F. Hou, T. Lin and Q. Song, Highly efficient organic tandem solar cell based on SubPc:C70 bulk heterojunction, Org. Electron., 2014, 15, 3756–3760.

    Article  CAS  Google Scholar 

  28. S. E. Morris, D. Bilby, M. E. Sykes, H. Hashemi, M. J. Waters, J. Kieffer, J. Kim and M. Shtein, Effect of axial halogen substitution on the performance of subphthalo- cyanine based organic photovoltaic cells, Org. Electron., 2014, 15, 3660–3665.

    Article  CAS  Google Scholar 

  29. G. E. Morse and T. P. Bender, Boron subphthalocyanines as organic electronic materials, ACS Appl. Mater. Interfaces, 2012, 4, 5055–5068.

    Article  CAS  PubMed  Google Scholar 

  30. D. D. Díaz, H. J. Bolink, L. Cappelli, C. G. Claessens, E. Coronado and T. Torres, Subphthalocyanines as narrow band red-light emitting materials, Tetrahedron Lett., 2007, 48, 4657–4660.

    Article  CAS  Google Scholar 

  31. G. E. Morse, M. G. Helander, J. F. Maka, Z.-H. Lu and T. P. Bende, Fluorinated phenoxy boron subphthalo- cyanines in organic light-emitting diodes, ACS Appl. Mater. Interfaces, 2010, 2, 1934–1944.

    Article  CAS  Google Scholar 

  32. G. De la Torre, T. Torres and F. Agulló-López, The phthalo- cyanine approach to second harmonic generation, Adv. Mater., 1997, 9, 265–269.

    Article  Google Scholar 

  33. M. Hanack, H. Heckman and R. Polley, in Methods in Organic Chemistry, ed. E. Schauman, Georg Thieme Verlag, Stuttgart, 1998, vol. E94, p. 717.

    Google Scholar 

  34. R. A. Kipp, J. A. Simon, M. Beggs, H. E. Ensley and R. H. Schmehl, Photophysical and photochemical investi- gation of a dodecafluorosubphthalocyanine derivative, J. Phys. Chem. A, 1998, 102, 5659–5664.

    Article  CAS  Google Scholar 

  35. N. Kobayashi, T. Ishizaki, K. Ishii and H. Konami, Synthesis, spectroscopy, and molecular orbital calculations of subazaporphyrins, subphthalocyanines, subnaphthalo- cyanines, and compounds derived therefrom by ring expan- sion, J. Am. Chem. Soc., 1999, 121, 9096–9110.

    Article  CAS  Google Scholar 

  36. S. H. Kang, Y. S. Kang, W. C. Zin, G. Olbrechts, K. Wostyn, K. Clays, A. Persoons and K. Kim, Novel columnar mesogen with octupolar optical nonlinearities: synthesis, mesogenic behavior and multiphoton-fluorescence-free hyperpolariz- abilities of subphthalocyanines with long aliphatic chains, Chem. Commun., 1999, 1661–1662.

    Google Scholar 

  37. C. G. Claessens and T. Torres, Subphthalocyanine enantio- mers: first resolution of a C3 aromatic compound by HPLC, Tetrahedron Lett., 2000, 41, 6361–6365.

    Article  CAS  Google Scholar 

  38. N. Kobayashi, Design, synthesis, structure, and spectro- scopic and electrochemical properties of phthalocyanines, Bull. Chem. Soc.Jpn., 2002, 75, 1–19.

    Article  CAS  Google Scholar 

  39. T. Torres, From subphthalocyanines to subporphyrins, Angew. Chem., Int. Ed., 2006, 45, 2834–2837.

    Article  CAS  Google Scholar 

  40. J. Guilleme, L. M. Fernández, D. Gonzalez-Rodríguez, I. Corral, M. Yáñez and T. Torres, An insight into the mech- anism of the axial ligand exchange reaction in boron sub- phthalocyanine macrocycles, J. Am. Chem. Soc., 2014, 136, 14289–14298.

    Article  CAS  PubMed  Google Scholar 

  41. Á. Sastre-Santos, T. Torres, M. A. Diaz-Garcia, F. Agulló-López, C. Dhenaut, S. Brasselet, I. Ledoux and J. Zyss, Subphthalocyanines: novel targets for remarkable second- order optical nonlinearities, J. Am. Chem. Soc., 1996, 118, 2746–2747.

    Article  Google Scholar 

  42. B. del Rey, U. Keller, T. Torres, G. Rojo, F. Agulló-López, S. Nonell, C. Martín, S. Brasselet, I. Ledoux and J. Zyss, Synthesis and nonlinear optical, photophysical, and electrochemical properties of subphthalocyanines, J. Am. Chem. Soc., 1998, 120, 12808–12817.

    Article  CAS  Google Scholar 

  43. M. Trelka, A. Medina, D. Écija, C. Urban, O. Gröning, R. Fasel, J. M. Gallego, C. G. Claessens, R. Otero, T. Torres and R. Miranda, Subphthalocyanine-based nanocrystals, Chem. Commun., 2011, 47, 9986–9988.

    Article  CAS  Google Scholar 

  44. C. G. Claessens, D. Gonzalez-Rodríguez, M. S. Rodriguez-Morgade, A. Medina and T. Torres, Subphthalocyanines, subporphyrazines, and subporphyrins: Singular nonplanar aromatic systems, Chem. Rev., 2014, 114, 2192–2227.

    Article  CAS  PubMed  Google Scholar 

  45. G. Zango, J. Zirzimerier, C. G. Classens, T. Clark, M. V. Martinez, D. M. Guldi and T. Torres, A push-pull unsymmetrical subphthalocyanines dimer, Chem. Sci., 2015, 6, 5571–5577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. S. Nakano, Y. Kage, H. Furuta, N. Kobayashi and S. Shimizu, Pyrene-bridged boron subphthalocyanine dimers: Combination of planar and bowl-shaped n-conjugated systems for creating uniquely curved n-conjugated systems, Chem. - Eur.J., 2016, 22, 7706–7710.

    Article  CAS  PubMed  Google Scholar 

  47. M. Shi, J. Mack, X. Wang and Z. Shen, Photoisomerization and optical behavior study of a subphthalocyanine-bisazo- benzene-subphthalocyanine triad with visible-light response, J. Mater. Chem. C, 2016, 4, 7783–7789.

    Article  CAS  Google Scholar 

  48. D. Chercka, Thesis, Johannes Gutenberg-Universität Mainz, 2014.

    Google Scholar 

  49. D. Kumar and K. R. J. Thomas, Optical properties of pyrene and anthracene containing imidazoles: Experimental and theoretical investigations, J. Photochem. Photobiol., A, 2011, 218, 162–173.

    Article  CAS  Google Scholar 

  50. S. Q. Zhuang, R. G. Shangguan, H. Huang, G. L. Tu, L. Wang and X. J. Zhu, Synthesis, characterization, physical properties, and blue electroluminescent device appli- cations of phenanthroimidazole derivatives containing anthracene or pyrene moiety, Dyes Pigm., 2014, 101, 93–102.

    Article  CAS  Google Scholar 

  51. N. Prachumrak, A. Thangthong, R. Tarsang, T. Keawin, S. Jungsuttiwong, T. Sudyoadsuk and V. Promarak, Synthesis, characterization, physical properties, and appli- cations of highly fluorescent pyrene-functionalized 9,9-bis (4-diarylaminophenyl)fluorene in organic light-emitting diodes, Tetrahedron Lett., 2012, 53, 5492–5496.

    Article  CAS  Google Scholar 

  52. Y. Zhang, T. W. Ng, F. Lu, Q. X. Tong, S. L. Lai, M. Y. Chan, H. L. Kwong and C. S. Lee, A pyrene-phenanthroimidazole derivative for non-doped blue organic light-emitting devices, Dyes Pigm., 2013, 98, 190–194.

    Article  CAS  Google Scholar 

  53. Y. Niko, S. Kawauchi and G. Konishi, Synthesis, lumine- scence properties, and theoretical insights of N-alkyl- or N,N-dialkyl-pyrene-1-carboxamide, Tetrahedron Lett., 2011, 52, 4843–4847.

    Article  CAS  Google Scholar 

  54. J.-H. Kim, M. E. El-Khouly, Y. Araki, O. Ito and K.-Y. Kay, Photoinduced processes of subphthalocyanine-diazoben- zene-fullerene triad as an efficient excited energy transfer system, Chem. Lett., 2008, 37, 544–545.

    Article  CAS  Google Scholar 

  55. M. E. El-Khouly, D. K. Ju, K.-Y. Kay, F. D’Souza and S. Fukuzumi, Supramolecular tetrad of subphthalocyanine- triphenylamine-zinc porphyrin coordinated to fullerene as an “antenna-reaction-center” mimic: formation of a long- lived charge-separated state in nonpolar solvent, Chem. - Eur.J., 2010, 16, 6193–6202.

    Article  CAS  PubMed  Google Scholar 

  56. D. Gonález-Rodríguez, T. Torres, M. M. Olmstead, J. Rivera, M. Á. Herranz, L. Echegoyen, C. A. Castellanos and D. M. Guldi, Photoinduced charge-transfer states in sub- phthalocyanine-ferrocene dyads, J. Am. Chem. Soc., 2006, 128, 10680–10681.

    Article  CAS  Google Scholar 

  57. M. E. El-Khouly, S. H. Shim, Y. Araki, O. Ito and K.-Y. Kay, Effect of dual fullerenes on lifetimes of charge-separated states of subphthalocyanine-triphenylamine-fullerene molecular systems, J. Phys. Chem. B, 2008, 112, 3910–3917.

    Article  CAS  PubMed  Google Scholar 

  58. M. E. El-Khouly, J.-H. Kim, J.-H. Kim, K.-Y. Kay and S. Fukuzumi, Subphthalocyanines as light-harvesting elec- tron donor and electron acceptor in artificial photosynthetic systems, J. Phys. Chem. C, 2012, 116, 19709–19717.

    Article  CAS  Google Scholar 

  59. M. E. El-Khouly, J. B. Ryu, K.-Y. Kay, O. Ito and S. Fukuzumi, Long-lived charge separation in a dyad of closely-linked subphthalocyanine-zinc porphyrin bearing multiple triphenylamines, J. Phys. Chem. C, 2009, 113, 15444–15453.

    Article  CAS  Google Scholar 

  60. C. E. Mauldin, C. Piliego, D. Poulsen, D. A. Unruh, C. Woo, B. Ma, J. L. Mynar and J. M. Frèchet, Axial thiophene- boron(subphthalocyanine) dyads and their application in organic photovoltaics, ACS Appl. Mater. Interfaces, 2010, 2, 2833–2838.

    Article  CAS  Google Scholar 

  61. S. Shimizu, S. Nakano, T. Hosoya and N. Kobayashi, Pyrene-fused subphthalocyanines, Chem. Commun., 2011, 47, 316–318.

    Article  CAS  Google Scholar 

  62. D. D. Perrin and W. L. F. Armarego, Purification of labora- tory chemicals, Pegamon Press, Oxford, 2nd edn, 1989.

    Google Scholar 

  63. A. S. Paton, A. J. Lough and T. P. Bender, A role for n-Br interactions in the solid-state molecular packing of para- halo-phenoxy-boronsubphthalocyanines, CrystEngComm, 2011, 13, 3653–3656.

    Article  CAS  Google Scholar 

  64. The driving forces for charge recombination (ΔGCR) and charge separation (ΔGCS) processes were calculated by equations: —Δgcr = e(Eox — Ered); —ΔGCS = ΔE00 — (—ΔGCR), where ΔE00 is the energy of the 0-0 transition of 1SubPc* (2.15 eV) and 1Py* (3.12 eV).

  65. M. E. El-Khouly, M. El-Kemary, A. El-Refaey, K.-Y. Kay and S. Fukuzumi, Light harvesting subphthalocyanine-ferro- cene dyads: Fast electron transfer process studied by femto- second laser photolysis, J. Porphyrins Phthalocyanines, 2016, 20, 1148–1155.

    Article  CAS  Google Scholar 

  66. W. Shao, H. Wang, S. He, L. Shi, K. Peng, Y. Lin, L. Zhang, L. Ji and H. Liu, Photophysical properties and singlet oxygen generation of three sets of halogenated corroles, J. Phys. Chem. B, 2012, 116, 14228–14234.

    Article  CAS  PubMed  Google Scholar 

  67. P. R. Ogilby, Singlet oxygen: there is indeed something new under the sun, Chem. Soc. Rev., 2010, 39, 3181–3209.

    Article  CAS  PubMed  Google Scholar 

  68. M. C. DeRosa and R. J. Crutchley, Photosensitized singlet oxygen and its applications, Coord. Chem. Rev., 2002, 233/ 234, 351–371.

    Article  Google Scholar 

  69. R. W. Redmond and J. N. Gamlin, A compilation of singlet oxygen yields from biologically relevant molecules, Photochem. Photobiol., 1999, 70, 391–475.

    Article  CAS  PubMed  Google Scholar 

  70. W. Bäumler, J. Regensburger, A. Knak, A. Felgenträger and T. Maisch, UVA and endogenous photosensitizers - the detection of singlet oxygen by its luminescence, Photochem. Photobiol. Sci., 2012, 11, 107–117.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the Science and Technology Development Fund (STDF), Egypt (Grant Numbers 5537 and 12436 to MEK) and JSPS KAKENHI (16H02268 to S.F.), Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed E. El-Khouly, Wonwoo Nam, Shunichi Fukuzumi or Mahmut Durmuş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Khouly, M.E., El-Refaey, A., Nam, W. et al. A subphthalocyanine–pyrene dyad: electron transfer and singlet oxygen generation. Photochem Photobiol Sci 16, 1512–1518 (2017). https://doi.org/10.1039/c7pp00166e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00166e

Navigation