Issue 11, 2017

HIV/HAART-associated oxidative stress is detectable by metabonomics

Abstract

Chronic human immunodeficiency virus (HIV) infection, separately and in combination with highly active antiretroviral therapy (HAART) is closely associated with oxidative stress (OS). Most studies demonstrating redox imbalances in HIV-infected individuals have done so using conventional biochemical methodologies. The limited simultaneous detection of multiple OS markers within one sample is a major drawback of these methodologies and can be addressed through the use of metabonomics. HIV-metabonomic studies utilizing biofluids from HAART cohorts as the investigative source, are on the increase. Data from many of these studies identified metabolic markers indicative of HIV-induced OS, usually as an outcome of an untargeted metabonomics study. Untargeted studies cast a wide net for any and all detectable metabolites in complex mixtures. Given the prevalence of OS during HIV infection and antiviral treatment, it is perhaps not surprising that indicators of this malady would become evident during metabolite identification. At times, targeted studies for specific (non-OS) metabolites would also yield OS markers as an outcome. This review examines the findings of these studies by first providing the necessary background information on OS and the main ways in which free radicals/reactive oxygen species (ROS) produced during OS, cause biomolecular damage. This is followed by information on the biomarkers which come about as a result of free radical damage and the techniques used for assaying these stress indicators. The established links between elevated ROS and lowered antioxidants during HIV infection and the subsequent use of HAART is then presented followed by a review of the OS markers detected in HIV metabonomic studies to date. We identify gaps in HIV/HAART-associated OS research and finally suggest how these research gaps can be addressed through metabonomic analysis, specifically targeting the multiple markers of HIV-induced OS.

Graphical abstract: HIV/HAART-associated oxidative stress is detectable by metabonomics

Article information

Article type
Review Article
Submitted
05 Jun 2017
Accepted
07 Sep 2017
First published
18 Sep 2017

Mol. BioSyst., 2017,13, 2202-2217

HIV/HAART-associated oxidative stress is detectable by metabonomics

A. A. Williams, L. J. Sitole and D. Meyer, Mol. BioSyst., 2017, 13, 2202 DOI: 10.1039/C7MB00336F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements