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Abstract  

Photodynamic therapy (PDT) is an anti-tumor treatment administered for the elimination of 

early-stage malignancies and the palliation of symptoms in patients with late -stage 

tumors, which involves the activation of a photosensitizer (PS) using light of a specific 

wavelength, which also generates singlet oxygen and other reactive oxygen species 

(ROS) that cause tumor cell death. Several mechanisms are involved in the protective 

responses to PDT including the expression of the chaperone/heat shock proteins (HSPs). 

The HSPs are a family of proteins that are induced by cells in response to exposure to 

stressful conditions. In the last few decades, it has been discovered that HSPs can play an 

important role in cell survival, due to the fact that they are responsible for many 

cytoprotective mechanisms. These proteins have different functions depending on their 

intracellular or extracellular location. In general, intracellular HSPs havebeen related to an 

anti-apoptotic function and recently, HSPs-induced autophagy has shown to have a 

protective role in these chaperones. In contrast, extracellular HSPs or membrane-bound 

HSPs mediate immunological functions. In the present article, we attempt to review the 

current knowledge concerning the role of HSPs in the outcome of PDT in relation to 

autophagy and apoptosis mediated-resistance to photodynamic treatment. We will also 

discuss how certain PDT protocols optimally stimulate the immune system through HSPs. 
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immunogenic cell death. 

Background 

 

PDT is an anti-tumor treatment administered for the elimination of early-stage 

malignancies and the palliation of symptoms in patients with late-stage tumors (1)(2) which 

consists in the administration of a drug called photosensitizer, which can be topically or 

systemically given to the patient , followed by light irradiation in the visible range of 

electromagnetic wave. This combination, along with  the presence of molecular oxygen, is 

used in order to cause the photodynamic reaction needed to generate reactive oxygen 

species, (ROS)  which  kills nearby cells (3)(4). 

The greatest advantages of PDT over the conventional cancer treatments, are minimal 

systemic toxicity and high selectivity to the tumor, due to the fact that PSs tend to build up 

in tumors and irradiation is focused on the tumor tissue. As a result, damage to healthy 

tissue is minimal (5). In addition, PDT offers the possibility of repetitive cycles of these 

treatments and the combination of PDT/chemotherapy or PDT/radiotherapy. However, one 

of the problems of PDT, as well as other therapies, is the existence of resistant cells 

(4,6,7).The inability of these cells  to suffer from death after several treatments brings  a 

selective advantage in the tumor progression and resistance to therapies. The major 

obstacle to improving the overall response of the treatment and ensuring the survival of 

cancer patients is to attack the problem of cancer cells resistance (8).  

PDT appears to stimulate several different signaling pathways, some of which lead to cell 

death, whereas others mediate cell survival. Therefore, the ultimate outcome after PDT 

comes from the combined action or interaction (or both) of these different pathways (9–

12). PDT induces cancer cell death by apoptosis or necrosis (13), and these mechanisms 

can operate concurrently. Moreover, when the apoptotic pathway is unavailable, PDT can 

cause cancer cell death through induction of autophagy -related cell death (14).  However, 

it has been shown that PDT can induce autophagy as a death or as a survival mechanism, 

depending on a variety of parameters including the nature of the 

photosensitizer, PDT dose, and cell type (14).  

Several mechanisms are involved in the protective responses to PDT which include: 

activation of transcription factors, antioxidant enzymes, anti-apoptotic pathways, multidrug 

resistance family proteins (MDRs), and overexpression of the chaperone/heat shock 

proteins (HSPs) (15–18). 
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HSPs were first characterized as intracellular molecular chaperones of nascent proteins: 

they help the nascent polypeptide chain attain a functional conformation through the 

facilitation of protein folding, assembly, stabilization and transport, and the proteolytic 

turnover necessary for protein intracellular localization and function. Also, they lead to 

degradation of naïve, aberrantly folded, damaged or mutated proteins (19). HSPs have 

been classified according to their size into: HSP90, HSP70, HSP60, HSP40 and small 

HSPs including HSP27 (20). Moreover, in the last decades it has also been  discovered 

that HSPs  can play an important role in cell survival because they are responsible for 

many cytoprotective mechanisms, especially under stress conditions (21). The 

cytoprotective function of HSPs is  not only fulfilled  due to their role in repairing the 

damaged proteins by different agents, but also for their anti-apoptotic properties (19). In 

addition, these molecules are now recognized to be  participants in signal transduction 

pathways, autophagy modulation and important regulators of inflammatory and immune 

response (16,22,23). Therefore, an integrated response to cellular stress could be 

mediated by HSPs following PDT. 

In this article, we provide a comprehensive review on the current status of the global 

response that could be triggered by HSPs after photodynamic treatment. We have focused 

on the survival role of HSPs as modulators of PDT-induced autophagy and inhibition of 

apoptosis as well as their implications in PDT-induced immunogenic cell death. 

 

HSPs and autophagy: an integrated protective response following PDT 

 

The ROS production following PDT leads to oxidative damage of cellular macromolecules, 

including numerous proteins that undergo multiple modifications such as fragmentation, 

cross-linking, unfolding and aggregation (24). In this situation, the cells normally handle 

damage through Chaperones Heat Shock-mediated response (25). The chaperones (e.g. 

HSP90, HSP70, HSP60 and small HSPs) identify unfolding proteins and help to refold 

them (26). If the refold is not possible, the chaperones will target this protein for 

destruction and delivery on the proteolytic system (27)(26). However, after exacerbated 

accumulation of unfolded proteins in PDT treated cells, the incapacity of 

chaperone/proteolytic system to repair or to clean the damage results in accumulations of 

abnormal proteins, leading to the formation of aggregates that are toxic for the cells (28) 

(Figure 1 A-E). 
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In mammalian cells, the autophagic-lisosomal system represents a major proteolytic 

system for clearance of irreversibly oxidized cytosolic aggregated proteins and ROS-

damage organelles (28). There are three primary forms of autophagy: chaperone-

mediated autophagy, microautophagy and macroautophagy. Chaperone mediated 

autophagy (CMA) involves direct translocation of the targeted proteins across the 

lysosomal membrane (29).  

During CMA, the cytosolic chaperone heat shock cognate (Hsc)70 binds proteins targeted 

for degradation and translocates them into the lysosomes (30) by interacting with lysosome-

associated membrane protein type 2A (LAMP-2A) (31). Microautophagy is the least-

characterized process, but it is used to sequester cytoplasm by invagination and/or 

septation of the lysosomal/vacuolar membrane. Finally, macroautophagy involves the 

formation of cytosolic double-membrane vesicles that sequester portions of the cytoplasm 

(32). In the review, we refer to “macroautophagy” as “autophagy”. During autophagy, the 

cytoplasmic material is engulfed into double membrane structures called autophagosomes. 

The autophagosomes fuse with lysosomes where the content is degraded and recycled (33) 

(Figure 1 F-I).  

In the past, it was believed that the main function of autophagy was to supply energy to the 

cells because, under starved conditions, the cells activated autophagy to degrade part of its 

cytoplasm in order to obtain the energy necessary to maintain cell homeostasis (34)(35).  In 

more recent studies, it has been shown that autophagy plays a protective role against ROS-

induced stress (36), cell death, pathogen infection, neurodegenerative diseases and 

tumorigenesis (37). Thus, autophagy serves as an adaptive response that protects cells 

during periods of prolonged stress (33). Nowadays, it has been reported that more than 

thirty-five Autophagy-Related Genes (ATG) participate in autophagy processes including 

those that express microtubule-associated protein light chain 3 (LC3), Beclin-1, and other 

autophagy-related proteins (38). 

Protein aggregates can be resolved after becoming ubiquitinated on multiple sites 

following  interaction with the ubiquitin ligase parkin (39,40). 

Aggregates marked by polyubiquitination form aggresomes and these are retro-

transported to the microtubule organizing centre (MTOC) and become enclosed in 

autophagosomes. It is thought that  protein p62/SQSTM1 may play a key role in this 

process, based on its ability to bind both UBL domain protein LC-3 and the 

polyubiquitinated proteins in the aggresome through its UBA domain (39,41) (Figure 1E).  
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It has been seen that autophagy could increase cell survival through the resolution of 

intracellular protein aggregates within the autophagosomes after PDT treatment. In cells 

pre-treated with a proteosomal inhibitor bortezomib, PDT induced robust vacuolization of 

the cytoplasm, with frequent lysosomal/autophagosomal vesicles and extended ER (24).   

Autophagy appears to be a common outcome in photodynamic therapy protocols, and its 

role as cell survival or cell death mechanism in relation to PDT was well summarized by 

Reiners and colleagues, as well as by  Milla and colleagues (14,42). However, the 

molecular mechanism involved in autophagy induction after PDT protocols remains 

unclear.  

On the other hand, HSPs can help the cells recover from PDT damage. PDT, with several 

photosensitizers, induces a wide panel of different HSPs, such as HSP27 (43), HSP70 

(44) and HSP60 (45). 

In the last years, it has also been shown that molecular chaperones can mediate the 

formation of the autophagosomes. Therefore, we propose that HSPs proteins could 

promote resistance to PDT, and this involves not only their properties as chaperones and 

transporters to proteolytic systems, but also the induction of autophagy.  

In this sense, the small HSPs family appears to play a key role in macroautophagy. HSP22 

forms a complex with  HSP70 co-chaperone BAG3 that can prevent protein aggregates 

formation, increase the levels of LC3-II and stimulate autophagy-mediated degradation of 

aggregates in an eIF2 alpha-dependent manner (46) (Figure 1E,H). BAG3 was reported to 

inhibit proteasomal degradation of Hsp90 client proteins (47) and to enhance degradation 

of polyQ aggregates by autophagy (46). The role of the other small HSPs in autophagy is 

largely poor. Chen et al. have shown that HSP27 induces resistance to cisplatin-induced 

apoptosis in hepatocellular carcinoma cells through activation of autophagy (48). 

Moreover, Matsumoto and colleagues showed that HSP27 induces autophagic flux and 

inhibits apoptosis in renal tubular cells (23).  It is possible that the presence of aggregated 

proteins may be detected by small HSPs family molecules through their molecular 

chaperone properties, bound and delivered to the autophagosome (49) (Figure 1H). 

Furthermore, it has been reported that HSP70 could induce autophagy. Overexpression of 

HSP72 augmented autophagy through c-Jun N-terminal kinase (JNK) phosphorylation and 

Beclin-1 up-regulation. Up-regulation of HSP72 by geranylgeranylacetone increased 

autophagy and inhibited apoptosis (50). Bhalla and colleagues demonstrated that stress 

increases intracellular levels of acetylated inducible HSP70, which binds to the Beclin-1–

Vps34 complex (essential to induce autophagy). Acetylated HSP70 also recruits E3 ligase 
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for SUMOylation, KRAB–ZFP-associated protein 1 (KAP1), inducing Lys840 SUMOylation 

and increasing Vps34 activity bound to Beclin 1. Knockdown of HSP70 abolished the 

Beclin-1–Vps34 complex formation, as well as inhibiting KAP1 binding to Vps34 and 

autophagosomes formation (51) (Figure 1G). 

The role of HSP90 in autophagy is controversial. Joo JH. et al. show that the interaction of 

Ulk1 and HSP90-Cdc37 stabilizes and activates Ulk1, which in turn is required for the 

phosphorylation and release of Atg13 from Ulk1. It is also a requirement of the recruitment 

of Atg13 to damaged mitochondria and subsequent elimination by autophagy. Hsp90-

Cdc37, Ulk1, and Atg13 phosphorylation are all required for efficient mitochondrial 

elimination mediated by autophagy (52) (Figure 1 F,H). Additionally, HSP90 forms a 

complex with Beclin 1 through an evolutionarily conserved domain to maintain the stability 

of Beclin 1 (Figure 1G). In monocytic cells, geldanamycin (GA) (an Hsp90 inhibitor) 

effectively promoted proteasomal degradation of Beclin 1 (53). In contrast, the specific 

inhibition of HSP90 by some chemicals can lead to degradation of its clients via either, the 

ubiquitin proteasome system, or autophagy (54). Besides, HSP90 inhibits the activities of 

the IκB kinase/nuclear factor-κB (IKK/NF-κB) signaling pathway, leading to less nuclear 

translocation and inactivation of NF-κB and the subsequent weak binding of the beclin1 

promoter, which facilitates the transition from autophagy to apoptosis (55). 

Finally, the autophagy pathway could be regulated directly by Heat Shock Factor (HSF1). 

HSF1 is a master regulator of heat shock response, and it has been revealed that HSF1 

regulates autophagy by directly binding to ATG7 promoter and transcriptionally up-

regulating its expression (56) (Figure 1J). 

The family of HSPs 27, 60, 70 and 90, have been strongly linked to resistance to PDT 

(57). In our laboratory, we observed an augmented level of these chaperones in squamous 

carcinoma PDT-resistant cells. Moreover, we discovered that PDT-induced autophagy was 

controlled by HSP27, and resistance to ALA-Met/PDT in colon and skin carcinoma cells 

was induced by this chaperone (unpublished results). These HSPs have been implicated 

in resistance to PDT through the binding to denatured proteins or protein translocation and 

they are components of signal transduction pathways or anti-apoptotic activity (15–17) . 

Therefore, autophagy could be an important HSPs-induced mechanism of resistance to 

PDT. 

Accordingly, an integrated response can be induced after PDT in an attempt to eliminate 

unfolded and aggregated proteins as well as whole ROS-damage organelles in order to 

protect the cellular integrity. 
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Further investigations are needed to increase our understanding of the molecular 

interaction between HSPs and autophagy machinery as well ashow could PDT modulate 

autophagy through heat shock proteins. 

 

HSPs and apoptosis: dual role in the PDT-effect 

 

Apoptosis has been reported as the main mode of PDT-mediated cell death, through 

excessive ROS levels. Apoptotic pathways are triggered by PDT according to the target 

cells, the photosensitizer and the irradiation doses used (58–60).  However, several 

studies have demonstrated direct evidence of altered apoptosis pathways in cells which 

rendered resistance to PDT. HSPs are powerful anti-apoptotic proteins and they have the 

capacity to block the cell death process at different levels.  It has been shown that PDT 

induces transcription and translation of HSPs (57). The role of these chaperones in 

regulating the apoptotic death way triggered by PDT has been seldom studied. There were 

few publications on this topic, which employed different treatment conditions and cell lines. 

Due to the fact that challenges have been met at the time of reaching general conclusions, 

we strongly believe that the field needs to be updated. Some research has been focused 

on the response to PDT in cells with different HSPs expression levels while others have 

laid emphasis on  the study of induction of HSPs after PDT. 

HSP27 is thought to regulate apoptosis by maintaining the redox equilibrium of the cell and 

it has been demonstrated to inhibit apoptosis by increasing the intracellular level of 

antioxidant glutathione (GSH) (61). HSP27 can also inhibit apoptosis by either inhibiting 

the release of mitochondrial cytochrome c or by binding directly to cytochrome c (Figure 2) 

(62). 

The effects of HSP27 on PDT response are controversial and unclear. The death 

response (both apoptosis and necrosis) to aminolevulinic acid-PDT is lower in a breast 

cancer cell line that expresses higher constitutive levels of HSP27, than in a cell line that 

expresses normal lower levels of HSP27 (63). On the contrary, in human oral cancer cells, 

the silencing of HSP27 attenuated apoptosis through the caspase-mediated pathway and 

regulated Bax, Bcl-2 and PARP protein expression in PDT-treated cells employing 

hematoporphyrin (64).  

The HSP27 effects in inducing or attenuating cell death after PDT would depend of the 

photodynamic treatment conditions, the photosensitizer and/or the cancer cell type. 
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Interestingly, the HSP27 inhibitor Quercetin (3,3’,4’,5,7-pentahydroxy flavone) has been 

studied in clinical trials. It is one of the most widely distributed bioflavonoids in the plant 

kingdom and it is known to have antitumor activity by triggering apoptosis (65,66). For this 

reason, we can speculate that Quercetin would be included in some PDT regimens with 

the aim to enhance the response to the treatment.  

For many years, HSP60 was considered a typical intraorganellar chaperone. However, it 

has lately been demonstrated that HSP60 is also found in the cytosol, not only after 

mitochondrial release, but also independently of such release, and the evidence also 

indicates that both, the mitochondrial and the cytosolic forms of HSP60 can function in pro-

survival or pro-apoptotic pathways, depending on the cellular situation (65). 

Inhibition of apoptosis by HSP60 is associated with up-regulation of the anti-apoptotic 

molecules Bcl-2, Bcl-xL and survivin, maintenance of the mitochondrial transmembrane 

potential, and inhibition of caspase 3 activation (66). In addition, HSP60 interacts with 

mitochondrial HSP70 (67),survivin and p53, inhibiting the process of apoptosis (68). 

HSP60 is a regulator of mitochondrial permeability transition, contributing to a 

cytoprotective chaperone network that antagonizes cancer cell death dependent from 

cyclophilin D (CypD), a component of the mitochondrial permeability transition pore (Figure 

2). The molecular chaperone HSP60, is directly associated with CypD. This interaction 

occurs in a multichaperone complex comprising HSP60, HSP90 and tumor necrosis factor 

receptor-associated protein-1 (TNFRP1), selectively assembled in tumor but not in normal 

mitochondria. The inhibition of HSP60 by siRNA triggers CypD–dependent mitochondrial 

permeability transition, caspase-dependent apoptosis and suppression of intracranial 

glioblastoma growth in vivo (69). Opposite to the anti-apoptotic effects, it is also known 

that HSP60 can enhance caspase activation. Thus, HSP60 can have opposite effects with 

regard to tumor cell survival (70). 

The photodynamic treatment induces HSP60 and this may contribute to cell resistance. 

Two resistant induced Photofrin-PDT human cell populations have increased basal levels 

of HSP60, relative to the parental populations. This increase is caused by Photofrin alone 

or photosensitization. Besides, HSP60 induction was found to be greater in the two 

resistant variants, compared with parental populations (45). This investigation does not 

directly study the relation between HSP60 and the reduction of apoptosis after PDT, but it 

suggests the correlation between the two.  

The levels of HSP60 can be reduced with therapeutic purposes. Flavonoids can lower the 

levels of HSP60 in a number of human tumor cell lines. On the contrary, cadmium induces 
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HSP60 expression (67). In the PDT applications, it should be analysed whereas it is 

convenient to inhibit or increase HSP60 expression, due to its dual role in apoptosis.  

The HSP GRP78 (glucose-regulated protein 78) is upregulated under several reticulum 

stress-inducing stimulus, including antitumor PDT (71). GRP78 resides in reticulum and 

regulates the unfolded protein response promoting cell survival (72). However, the role of 

GRP78 in response to PDT is controversial and it can induce cellular resistance or cellular 

sensitivity in a PDT dose-dependent manner or type of PSs employed (73). In a recent 

study, Firczuk and collaborators indicated that GRP78 mRNA and protein expression were 

upregulated after PDT in different cancer cells and it promoted resistance to cell death. 

Moreover, the specific inhibition of GRP78 employing the cytotoxin catalytic A subunit 

(SubA) fused with epidermal growth factor (EGF) sensitizes cancer cells to Photofrin-

mediated PDT. However, the inhibition of GRP78 increased the atypical non apoptotic cell 

death, either in apoptosis competent cells or apoptosis incompetent cells, suggesting that 

the combination of PDT and GRP78 inhibitor could be employed to kill apoptosis resistant 

cells (74).  

It has been demonstrated that HSP70 overexpression can inhibit multiple cell death 

pathways including intrinsic apoptosis, and this  is due to the ability of HSP70 to bind 

directly to pro-apoptotic protein BAX and prevent its translocation to mitochondria (75,76). 

Furthermore, HSP70 blocks apoptosome formation via association and inhibition of APAF-

1 and procaspase 9 recruitment (77). On the other hand, extrinsic apoptosis can be also 

hindered by HSP70. In this context, Guo and co-workers have revealed that HSP70 binds 

to death receptors DR4 and DR5; consequently, the death-inducing signaling complex 

(DISC) cannot be assembled (78). Additionally, HSP70 suppresses the cleavage of 

proapoptotic protein Bid and cytochrome c release from mitochondria through inhibition of 

JNK activity (79). HSP70 can also bind to apoptosis-inducing factor (AIF) leading to 

inhibition of caspase-independent apoptosis (80) (Figure 2).  

It has been proposed that HSP70 contributes to resistance to PDT via apoptosis inhibition. 

In this sense, the overexpression of HSP70 through heat treatment induces a significant 

reduction of apoptosis after PDT (74).  Also, Helbig and collaborators manifested that 

HSP70 blocks the caspase recruitment domain (CARD) of APAF-1, which in turn inhibits 

the association between APAF- 1 and procaspase 9 necessary to form the apoptosome 

(75). 

HSP70 is present in almost all intracellular compartments. In PDT context, it has been 

demonstrated that under apoptosis-inducing PDT conditions, HSP70 can be translocated 
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from cytoplasm to cell surface, where it can be released into the medium. Furthermore, the 

translocation of HSP70 depends on PDT dose and it is related to either mitochondrial 

disruption or direct surface stress, and its main function is to stabilize the plasma 

membrane integrity. However, under lethal PDT treatment, membrane HSP70 fails to 

prevent apoptosis and contrarily promotes immunogenic cell death (76,78). 

As it was previously mentioned, HSP70 can induce autophagy under stress conditions and 

it has been shown that autophagy can promote cell survival by inhibiting apoptosis (81–

83). Therefore, the role of HSPs in apoptosis resistance could be more complex.    

Several types of HPS70 inhibitor compounds have been developed and tested as 

anticancer agents in pre-clinical or clinical trials, such as derivatives of flavonoids 

(Epigallocatechin Gallate, Myricetin), sulfoglycolipids (Sulfogalactoglycerolipid, 

Sulfogalactosylceramide (SGC), AdamantylSGC), dihydropyrimidines (NSC 630668-R/I, 

MAL3-I0I, MAL 2-IIB, SW02)  and others (15-DSG, Dibenzyl-8-aminoadenosine analog, 

MKT-077, Pyrrhocoricin, Geranylgeranylacetone, Fatty acid acyl benzamides, Pifithrin-µ, 

Apoptozole) (19). A combinatorial treatment of PDT and HSP70 inhibitors would be 

designed. However, as mentioned later in this review, it would be preferred not to inhibit 

this chaperone, but to promote its immunogenic cell death effect regulating the PDT 

doses. 

HSP90 enhances the survival pathway regulated by Akt and reduces the intrinsic apoptotic 

pathway. Anna Rodina et al. have demonstrated that apoptosis following HSP90 inhibition 

in small-cell lung cancer is triggered by inactivation of Akt. This leads to reduction in BAD 

phosphorylation, releasing the protein from 14-3-3 so that it is free to heterodimerize with 

antiapoptotic members of the Bcl-2 family of proteins and/or to activate the proapoptotic 

proteins Bax and Bak in the mitochondrial membrane. Abolition of Bcl-2 antiapoptotic role 

leads to mitochondrial depolarization and cytochrome c release from the mitochondria. 

Inhibition of HSP90 also releases Apaf-1 from the HSP90 complex, freeing it to interact 

with caspase-9, and induces the apoptotic cascade by activation   of procaspase-3 (86).  

HSP90 inhibitors are being developed as anticancer agents, and they have shown 

promising results in solid tumours and some haematological malignancies. HSP90 

inhibitors are the most numerous of the HSPs inhibitors in clinical development. They 

include geldanamycin derivatives (Tanespimycin (17-AAG), Alvespimycin (17-DMAG), 

Retaspimycin (IPI-504), IPI-493), resorcinol derivatives (Ganetespib (STA-9090), NVP-

AUY922 (VER52296), AT-13387, KW-2478), purine analogues (BIIB021 (CNF 2024), 

MPC-3100, Debio 0932 (CUDC-305), PU-H71), and other synthetic inhibitors (SNX-5422, 
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DS-2248, XL-888) (87). The optimal use of HSP90-targeted therapeutics will depend on 

understanding the complexity of HSP90 regulation (88).  

Ferrario A. et al. have demonstrated that targeting HSP90 with the geldanamycin 

derivative 17-AAG enhances the therapeutic efficacy of PDT. PDT increases the 

expression of the anti-apoptotic and pro-angiogenic proteins survivin, Akt, HIF-1α, MMP-2 

and VEGF in mouse mammary carcinoma cells and tumors. This expression decreases 

significantly when 17-AAG is included in the treatment regimen (89).  

 

Role of HSPs in the immunostimulatory effect of PDT: the other side of the coin?  

The direct cytotoxic effect of a treatment on tumor cells, which  allows  the recognition of 

molecular immunogenic determinants in dying cells by immune cells makes this an ideal 

therapy treatment. In the past few years, the concept of immunogenic cell death (ICD) has 

emerged and it has not been associated with any specific cell death pathway. In particular, 

ICD stimulates an immune response against dead-cell antigens and especially when they 

derive from cancer cells (84).  

The importance of a cancer treatment to cause an ICD is clinically relevant because it is 

associated with an immune response against the cancer cells that emphasizes the effect 

of therapy (85). This means that patient’s dying cancer cells act as a vaccine that 

stimulates a tumor-specific immune response, which will result in the control or eradication 

of residual cancer cells. These damaged/dying cells acquired inmmunostimulatory 

properties upon exposure or secretion of intracellular molecules known as Damage-

Associated Molecular Patterns (DAMPs) most of which are recognized by pattern 

recognition receptors (86). 

It is well-known that PDT-killed tumor cells tend to stimulate an anti-tumor immunity (87). 

Particularly, this response is fully  explained by  PDT-mediated cytotoxicity, which takes 

place due to  ROS production and it has also been found that ICD is  stressor-dependent 

(88).  

In the last years, PDT has been associated with certain DAMPs and it has been observed  

that photosensitizers localization at subcellular level was important in ICD triggering upon 

PDT, especially endoplasmic reticulum (ER) (71) . The principals DAMPs associated to 

PDT are adenosine triphosphate (ATP), high-mobility group protein B1 (HMBG1), and 

exposed molecules on the outer membrane of dying cells such as CRT (ecto-CRT), heat-

shock proteins and ER sessile proteins (86). However, HSPs proteins, especially HSP70, 
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are the best characterized DAMPs involved in PDT-triggered cell death which are able to 

confer immunogenicity (89) (Table 1).  

Initially, HSPs were thought to be exclusively intracellular proteins that only access the 

extracellular compartments after severe damage. Now it is known that a fraction of these 

proteins, normally localized in  the cytoplasm or nucleus, can be released from cells and 

function as intercellular-signaling ligands, even when these cells are completely 

viable(90,91). At least two members of HSPs, HSP70 and 90 move from  the intracellular 

side to the plasma membrane after stress conditions (92). These characteristics allow 

categorizing HSPs as prototypic “danger” associated molecular patterns or DAMPs.  

It has been shown that Photofrin-PDT treated SCCVII cancer cells can expose molecules 

superficially such as, ecto-HSP70, ecto-HSP60, and ecto-GRP94 (GRP -glucose-

regulated protein) more strongly in apoptotic state rather than in healthy conditions (16). 

Furthermore, these PDT-treated cells were also found to release HSP70 and it is captured 

by macrophages triggering aToll-like receptor (TLR)–based signal transduction activity 

resulting in the production of inflammatory cytokine tumor necrosis factor α (TNFα) (16). 

When these processes were extended to in vivo settings, it was found that the spectrum of 

DAMPs exposed to the PDT treated SCCVII tumor cells was different. SCCVII tumor cells 

still engaged with ecto-HSP70, but they no longer exposed ecto-HSP60 and ecto-GRP94, 

instead exposed GRP78 on their surface (16).  

Furthermore, these authors implicated ecto-HSP70 in the opsonisation of cancer cells by 

C3 complement protein (98). Likewise, Zhou et al. (99), demonstrated that Photofrin-PDT 

induced HSP70 secretion and release in murine mammary tumor cells and this 

orchestrated an immunological regulatory mechanism towards murine macrophages. In 

fact, macrophages incubated with PDT-treated cells showed a high level of TNFα 

secretion (99). What is more, Mitra et al. (100) also observed intracellular activation of 

HSP70 and its extracellular release in EMT6 cells during meso-tetrahydroxyphenyl chlorin 

(mTHPS, Foscan)-PDT, they also observed a strong correlation between high levels of 

surface exposed or extracellular released HSP70s with mTHPC-PDT doses that resulted 

in long-term tumor cure (100). Additionally, Etminan et al. (101) observed upregulation of 

HSP70 surface expression for glioblastoma cell lines U87 and U251 during 5-ALA-PDT. 

Moreover, when Etminan et al. blocked HSP70 by the addition of antibodies, they 

observed that the tumor antigens as well as DC maturation induced by the ALA/PDT 

treated cells was almost completely inhibited (101). Another photosensitizer associated 

with HSP70 exposure is Hypericin. Human bladder carcinoma cells T24 treated with 
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hypericin-based PDT (Hyp-PDT), present surface-exposure of HSP70 in absence of 

HSP90 (102). 

Recently, Panzarini and co-workers showed that apoptotic and autophagic cells treated 

with RBAc-PDT increased surface exposition and release of HSP70 and HSP90. 

Interestingly, however, this event was always higher in cells dying by apoptosis than 

autophagy (103).  Accordingly, Garg et al. express in their revision that cancer cell-

associated autophagy (specifically macroautophagy) controlled the emission of DAMPs, 

therefore this suppress key mechanisms that trigger anticancer immune responses as 

elicited by immunogenic cell death. Particularly, Gar et al. have detected the increase of 

phenotypic maturation of Dendritic Cells and clonal expansion of CD4+/CD8+ T cells after 

autophagy knock-down in Hyp-PDT treated cancer cells (104). 

Consequently, PDT-triggered cell death is associated with DAMPs expression and 

particularly HSP70 (89).  Extracellular HSP70 is a powerful agent for tumor 

immunotherapy,which can break tolerance to tumor-associated antigens and origin 

specific tumor cell killing by cytotoxic CD8+ T cells (90). The pro-immune effects of 

extracellular HSP70 are, to some level, extensions of its molecular properties as an 

intracellular stress protein (105). The HSP70 family are induced massively after stress, 

preventing cell death by inhibiting aggregation of cell proteins and directly antagonizing 

multiple cell death pathways (106). HSP70 family members possess a domain in the C 

terminus that chaperones unfolded proteins and peptides, and an N-terminal ATPase 

domain that controls the opening and closing of the peptide binding domain. These 

properties not only enable intracellular HSP70 to inhibit tumor apoptosis, but also promote 

formation of stable complexes with cytoplasmic tumor antigens that can then escape intact 

from dying cells to interact with APC and stimulate anti-tumor immunity (107).  

Pre-clinical and clinical studies have demonstrated that PDT eliminates tumors directly by  

tumor cell death and indirectly by enhancing anti-tumor immunity. PDT can trigger not only 

innate immunity but also the adaptive one (42).  

 

Conclusion  

 

HSPs and autophagy have been proposed as resistance mechanisms to PDT, possibly 

through apoptosis inhibition. However, how HSPs and autophagy could work together to 

avoid cells death after phototherapy needs to be studied in detail.   
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Autophagy and HSP response share common features, since both represent inducible 

response to stress, particularly those that induce accumulation of abnormal proteins (e.g. 

PDT). Recent studies suggest a molecular interplay between HSPs and autophagy. In this 

review, we propose that after PDT protocol, the heat shock chaperones could inhibit 

apoptosis and induce autophagy as a resistance mechanism (Figure 3). Moreover, the 

autophagy induction could inhibit the PDT- induced immunogenic cell death, emphasizing 

the role as a resistance mechanism (Figure 3). In this sense, the use of combined PDT 

protocols that produce HSPs expression, such as HSP70, with an HSP27 inhibitor, which 

in turn blocks autophagy, could improve the PDT efficiency and increase the cure rate 

(Figure 3). Nevertheless, we believe that it is crucial to discover other DAMPs involved in 

cell death induced by PDT and this would help to establishing better therapeutic design for 

cancer patients.  

However, much is still unknown and additional preclinical and clinical experiments need to 

be done. Further experiments need to join a PDT provoking immunologic response, and 

the inhibition of autophagy to potentially optimize photodynamic treatment. 
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Table 1.  HSPs expression associated with different photosensitizers used in PDT 

Cell Type Photosensitizer 

used for PDT 

HSPs expression Ref. 

Squamous cells 

carcinoma SCCVII 

Photofrin HSP70, HSP60 and 

GRP94 (in vitro) 

HSP70 and GRP78 

(in vivo) 

(16) 

Murine mammary 

tumor cells C127 

Photofrin HSP70 (99) 

EMT6 cells Foscan HSP70 (100) 

Glioblastoma cell 

lines U87 and U251 

5-ALA HSP70 (101) 

Human bladder 

carcinoma cells 

T24 

Hypericin HSP70 (102) 

HeLa cells Rose Bengal 

Acetate(RBAc) 

HSP70 and 
HSP90 

(103) 
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Integrative HSPs/autophagy response after photodynamic therapy. The ROS produced following PDT induce 
proteins denaturalization (A,B). In response to unfolded protein, the chaperones HSPs identify this proteins 
and help to refold them (C). If the refold is not possible, the HSPs will target this protein for destruction on 
the proteolytic system for recycling and synthesis of new proteins (D). If the ability of chaperones to refold 
or target unfolded proteins to proteolytic system is compromised, the accumulation of abnormal proteins will 
result in protein aggregates formation (E). The HSPs can also modulate the degradation of this aggregated 
into the lysosomes through autophagic process. The heat shock chaperones can modulate the formation of 
autophagosomes. The autophagy (macroautophagy) is initiated by the regulatory complex (ULK1, atg13, 

FIP200) which receives stress signals from mTORC1 complex and can be stabilized by HSP90 which 
stabilizes and activates ULK1 (F). Then, the initiation complex (PI3KIII) which relocates to the area of 

formation of autophagosomes (formation of limiting membrane) is stabilized and activated by HSP70 which 
binds to the Beclin-1–Vps34 complex inducing Vps34 activity. The stability of Beclin-1 also depends of the 

HSP90 binding (G). Autophagosome formation also require Atg12 and LC3 conjugation systems, LC3 system 
is important for transport, cargo selection, and maturation of autophagosomes and the levels of LC3 can be 
induced by HSP22. On the other hand, the autophagic degradation of protein aggregates can be stimulated 
by HSP22/BAG3 complex. Moreover, this aggregates could be transported to the autophagosomes by small 
HSPs and be recognized by the LC3 complex through interaction with p62 (H). The aggregates and other 

cellular components (e.g. damaged mitochondrion) are degraded by lysosomal enzymes after 
autophagosome/lysosome fusion (I). Finally, in presence of denatured proteins, the HSF1 transcription 
factor translocate to the nucleus and induce expression of genes involved in the heat shock response. 

Interestingly, HSF1 also induce Atg7 expression contributing to the autophagosome formation (J).  
Figure 1  
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HSPs in PDT-induced apoptosis. PDT induces transcription and translation of HSPs. HSP27 inhibits apoptosis 
by increasing the intracellular level of antioxidant glutathione (GSH). Also, HSP27 prevents the release of 

mitochondrial cytochrome c or binds directly to cytochrome c. Inhibition of apoptosis by HSP60 is associated 

with up-regulation of the anti-apoptotic molecules Bcl-2, Bcl-xL and survivin, maintenance of the 
mitochondrial transmembrane potential, and inhibition of caspase 3 activation. Also, HSP60 interacts with 
mitochondrial HSP70, with survivin and p53, inhibiting the process of apoptosis. HSP60 is a regulator of 

mitochondrial permeability transition, contributing to a cytoprotective chaperone network that antagonizes 
cancer cell death dependent from cyclophilin D (CypD). HSP70 can bind directly to the pro-apoptotic Bcl-2 
family member BAX and prevent it from translocation to mitochondria. Additionally, HSP70 prevents the 

recruitment of APAF-1 and procaspase-9 to the apoptosome. HSP70 binds to the death receptors DR4 and 
DR5, inhibiting the assembly of the death-inducing signaling complex (DISC). HSP70 also prevents the 
tumor necrosis factor-α (TNF-α) pathway. Moreover, HSP70 inhibits caspase-independent cell death, by 

binding directly to apoptosis-inducing factor (AIF). HSP90 enhances the survival pathway regulated by Akt 
and reduces the intrinsic apoptotic pathway. Akt leads to BAD phosphorylation retaining 14-3-3, so that it is 

not free to heterodimerize with antiapoptotic members of the Bcl-2 family of proteins and/or to activate the 
proapoptotic proteins Bax and Bak in the mitochondrial membrane. HSP90 also retains Apaf-1 in the HSP90 

complex.  
Figure 2  
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Pro-survival and Pro-death role of PDT-induced HSPs. HSPs induced by PDT control autophagy and inhibit 
apoptosis through the binding to denatured proteins or protein translocation and they are components of 
signal transduction pathways or antiapoptotic activity, and hence provoke the survival of the cancer cell. 

Moreover, it incites the reduction of the immunogenicity cell death and therefore prevents the elicitation of 
anticancer immune responses. Although, HSPs can induce autophagy as a death mechanism depending on a 
variety of parameters including the nature of the photosensitizer, PDT dose, and cell type. Beside, HSP70 is 
the best characterized DAMPs involved in PDT-triggered cell death able to confer immunogenicity. This 

HSP70 is exposed and released by apoptotic and autophagic cells death after PDT provoking an elicitation of 
anticancer immune responses.  

Figure 3  
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