Issue 8, 2015

Highly air stable passivation of graphene based field effect devices

Abstract

The sensitivity of graphene based devices to surface adsorbates and charge traps at the graphene/dielectric interface requires proper device passivation in order to operate them reproducibly under ambient conditions. Here we report on the use of atomic layer deposited aluminum oxide as passivation layer on graphene field effect devices (GFETs). We show that successful passivation produce hysteresis free DC characteristics, low doping level GFETs stable over weeks though operated and stored in ambient atmosphere. This is achieved by selecting proper seed layer prior to deposition of encapsulation layer. The passivated devices are also demonstrated to be robust towards the exposure to chemicals and heat treatments, typically used during device fabrication. Additionally, the passivation of high stability and reproducible characteristics is also shown for functional devices like integrated graphene based inverters.

Graphical abstract: Highly air stable passivation of graphene based field effect devices

Supplementary files

Article information

Article type
Paper
Submitted
17 Dec 2014
Accepted
13 Jan 2015
First published
15 Jan 2015

Nanoscale, 2015,7, 3558-3564

Highly air stable passivation of graphene based field effect devices

A. A. Sagade, D. Neumaier, D. Schall, M. Otto, A. Pesquera, A. Centeno, A. Z. Elorza and H. Kurz, Nanoscale, 2015, 7, 3558 DOI: 10.1039/C4NR07457B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements