Issue 14, 2014

Red-green-blue fluorescent hollow carbon nanoparticles isolated from chromatographic fractions for cellular imaging

Abstract

An as-synthesised hollow carbon nanoparticle (HC-NP) sample has been proved to be a relatively complex mixture, and its complexity can be reduced significantly by high-performance liquid chromatography. An unprecedented reduction in such complexity can reveal fractions of HC-NP with unique luminescence properties. While the UV-vis absorption profile for the HC-NP mixture is featureless, the HC-NP fractions do possess unique absorption bands and specific emission wavelengths. The HC-NP fractions are fully anatomised by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry, displaying their fragmentation mass ion features. The shell thickness and crystal lattices of the selected HC-NP fractions are determined as 6.13, 8.31, 2.22, and 8.66 nm, and 0.37, 0.35, 0.33, and 0.32 nm by transmission electron microscopy, respectively. The fractionated HC-NP show profound differences in emission quantum yield, allowing for brighter HC-NP to be isolated from an apparent low quantum yield mixture. Finally, red, green and blue emissive HC-NP are isolated from the as-synthesised HC-NP sample. They show good photostability and have been demonstrated to be excellent probes for cellular imaging.

Graphical abstract: Red-green-blue fluorescent hollow carbon nanoparticles isolated from chromatographic fractions for cellular imaging

Supplementary files

Article information

Article type
Paper
Submitted
16 Mar 2014
Accepted
17 May 2014
First published
22 May 2014

Nanoscale, 2014,6, 8162-8170

Red-green-blue fluorescent hollow carbon nanoparticles isolated from chromatographic fractions for cellular imaging

X. Gong, Q. Hu, M. C. Paau, Y. Zhang, S. Shuang, C. Dong and M. M. F. Choi, Nanoscale, 2014, 6, 8162 DOI: 10.1039/C4NR01453G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements