Issue 44, 2014

Computational Raman spectroscopy of organometallic reaction products in lithium and sodium-based battery systems

Abstract

A common approach to understanding surface reaction mechanisms in rechargeable lithium-based battery systems involves spectroscopic characterization of the product mixtures and matching of spectroscopic features to spectra of pure candidate reference compounds. This strategy, however, requires separate chemical synthesis and accurate characterization of potential reference compounds. It also assumes that atomic structures are the same in the actual product mixture as in the reference samples. We propose an alternative approach that uses first-principles computations of spectra of the possible reaction products and by-products present in advanced battery systems. We construct a library of computed Raman spectra for possible products, achieving excellent agreement with reference experimental data, targeting solid-electrolyte interphase in Li-ion cells and discharge products of Li–air cells. However, the solid-state crystalline structure of Li(Na) metal–organic compounds is often not known, making the spectra computations difficult. We develop and apply a novel technique of simplifying spectra calculations by using dimer-like representations of the solid state structures. On the basis of a systematic investigation, we demonstrate that molecular dimers of Li(Na)-based organometallic material provide relevant information about the vibrational properties of many possible solid reaction products. Such an approach should serve as a basis to extend existing spectral libraries of molecular structures relevant for understanding the link between atomic structures and measured spectroscopic data of materials in novel battery systems.

Graphical abstract: Computational Raman spectroscopy of organometallic reaction products in lithium and sodium-based battery systems

Supplementary files

Article information

Article type
Paper
Submitted
05 Sep 2014
Accepted
01 Oct 2014
First published
02 Oct 2014

Phys. Chem. Chem. Phys., 2014,16, 24549-24558

Author version available

Computational Raman spectroscopy of organometallic reaction products in lithium and sodium-based battery systems

R. S. Sánchez-Carrera and B. Kozinsky, Phys. Chem. Chem. Phys., 2014, 16, 24549 DOI: 10.1039/C4CP03998J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements