Issue 43, 2013

Graphene quantum dots as the hole transport layer material for high-performance organic solar cells

Abstract

We present an investigation of organic photovoltaic (OPV) cells with solution-processable graphene quantum dots (GQDs) as hole transport layers (HTLs). GQDs, with uniform sizes and good conductivity, are demonstrated to be excellent HTLs in both polymer solar cells (PSCs) and small-molecule solar cells (SMSCs) with the blend of poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC61BM) and small molecule DR3TBDT:[6,6]-phenyl-C71-butyric acid methyl ester (DR3TBDT:PC71M) as the active layer, respectively. The PSCs and SMSCs based on GQDs yield power conversion efficiencies of 3.51% and 6.82%, respectively, both comparable to those of solar cells with PEDOT:PSS as the HTLs. In addition, the cells with GQDs as HTLs exhibit much more reproducible performance and longer lifetime. In light of the high stability, low cost and easy processing, these results indicate that GQDs can be potentially used to replace PEDOT:PSS for producing high-performance and stable organic photovoltaic cells.

Graphical abstract: Graphene quantum dots as the hole transport layer material for high-performance organic solar cells

Supplementary files

Article information

Article type
Paper
Submitted
02 Aug 2013
Accepted
25 Sep 2013
First published
26 Sep 2013

Phys. Chem. Chem. Phys., 2013,15, 18973-18978

Graphene quantum dots as the hole transport layer material for high-performance organic solar cells

M. Li, W. Ni, B. Kan, X. Wan, L. Zhang, Q. Zhang, G. Long, Y. Zuo and Y. Chen, Phys. Chem. Chem. Phys., 2013, 15, 18973 DOI: 10.1039/C3CP53283F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements