Issue 40, 2013

Redox activity distinguishes solid-state electron transport from solution-based electron transfer in a natural and artificial protein: cytochrome C and hemin-doped human serum albumin

Abstract

Integrating proteins in molecular electronic devices requires control over their solid-state electronic transport behavior. Unlike “traditional” electron transfer (ET) measurements of proteins that involve liquid environments and a redox cycle, no redox cofactor is needed for solid-state electron transport (ETp) across the protein. Here we show the fundamental difference between these two approaches by macroscopic area measurements, which allow measuring ETp temperature dependence down to cryogenic temperatures, via cytochrome C (Cyt C), an ET protein with a heme (Fe-porphyrin) prosthetic group as a redox centre. We compare the ETp to electrochemical ET measurements, and do so also for the protein without the Fe (with metal-free porphyrin) and without porphyrin. As removing the porphyrin irreversibly alters the protein's conformation, we repeat these measurements with human serum albumin (HSA), ‘doped’ (by non-covalent binding) with a single hemin equivalent, i.e., these natural and artificial proteins share a common prosthetic group. ETp via Cyt C and HSA–hemin are very similar in terms of current magnitude and temperature dependence, which suggests similar ETp mechanisms via these two systems, thermally activated hopping (with ∼0.1 eV activation energy) >190 K and tunneling by superexchange <190 K. Also, ET rates to and from the Fe redox centres (Fe2+ [leftrightharpoons] Fe3+ + e), measured by electrochemistry of HSA–hemin are only 4 times lower than those for Cyt C. However, while removing the Fe redox centre from the porphyrin ring markedly affects the ET rate, it hardly changes the ETp currents through these proteins, while removing the macrocycle (from HSA, which retains its conformation) significantly reduces ETp efficiency. These results show that solid-state ETp across proteins does not require the presence of a redox cofactor, and that while for ET the Fe ion is the main electron mediator, for ETp the porphyrin ring has this function.

Graphical abstract: Redox activity distinguishes solid-state electron transport from solution-based electron transfer in a natural and artificial protein: cytochrome C and hemin-doped human serum albumin

Supplementary files

Article information

Article type
Paper
Submitted
10 Jul 2013
Accepted
16 Aug 2013
First published
16 Aug 2013

Phys. Chem. Chem. Phys., 2013,15, 17142-17149

Redox activity distinguishes solid-state electron transport from solution-based electron transfer in a natural and artificial protein: cytochrome C and hemin-doped human serum albumin

N. Amdursky, D. Ferber, I. Pecht, M. Sheves and D. Cahen, Phys. Chem. Chem. Phys., 2013, 15, 17142 DOI: 10.1039/C3CP52885E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements