Skip to main content
Log in

Self sensitized photooxidation of N-methyl phenothiazine: acidity control of the competition between electron and energy transfer mechanisms

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The reaction pathways following electronic excitation of 10-methyl phenothiazine (MPS) in the presence of oxygen have been investigated as a contribution to establish the mechanisms involved in the phototoxic reactions related to phenothiazine drugs. In the context of previously published results, the pathways of oxidation via the radical cation and/or by reactive oxygen species, such as singlet oxygen and superoxide anion, are of particular interest. The effects of polarity of the medium as well as of proton donors on the different reaction pathways, in particular on the formation of reactive oxygen species and the intermediates of the oxidation of 10-methyl phenothiazine, have been investigated. No reaction was observed in non-polar solvents. In polar solvents, both self-sensitized and sensitized singlet oxygen generation lead to the oxidation of MPS and the production of 10-methyl phenothiazine sulfoxide (MPSO) most probably via a zwitterionic persulfoxide. During self-sensitized photooxidation of MPS in the presence of proton donors, such as carboxylic acids, the zwitterionic intermediate is protonated to the corresponding cation that in turn facilitates the reaction with a second molecule of MPS. In the presence of strong acids however, the formation of the radical cation of MPS and of the superoxide anion, by electron transfer from the triplet excited state of MPS to molecular oxygen, competes efficiently with singlet oxygen formation. In this case, the scavenging of the superoxide anion by protons to yield its conjugated acid (hydroperoxyl radical) and the subsequent disproportionation of the latter prevents back electron transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. O. Okafor, Studies in the heterocyclic series 27. New phenothiazine dyes and pigments, Dyes Pigm. 1985, 6, 405–415.

    Article  CAS  Google Scholar 

  2. H. O. Strange, J. J. McGrath, J. P. Pellegrini Jr., Improved phenothiazine antioxidants for synthetic lubricants, Ind. Eng. Chem. Prod. Res. Dev. 1967, 6, 33–35.

    CAS  Google Scholar 

  3. G. Taurand, Phenothiazine and derivatives, in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley, Weinheim, 2000 10.1002/14356007.a19_387.

    Google Scholar 

  4. Q. Chi and S. Dong, Electrocatalytic oxidation of reduced nicotinalide coenzymes at methylene-green modified electrodes and fabrication of amperometric alcohol biosensors, Anal. Chim. Acta 1994, 285, 125–133.

    Article  CAS  Google Scholar 

  5. M. Lucarini, P. Pedrielli, G. F. Pedulli, L. Valgimigli, D. Gigmes and P. Tordo, Bond dissociation energy of the N–H bond and rate constants for the reaction with alkyl, alkoxyl and peroxyl radicals of phenothiazines and related compounds, J. Am. Chem. Soc. 1999, 121, 11546–11553.

    Article  CAS  Google Scholar 

  6. N. J. Turro, I. V. Khudyakov, H. van Willigen, Photoionization of phenothiazine: EPR detection of reactions of the polarized solvated electron, J. Am. Chem. Soc. 1995, 117, 12273–12280.

    Article  CAS  Google Scholar 

  7. E. Wagner, S. Filipek and M. K. Kalinowski, Visible absorption spectra of the phenothiazine radical cation and its 10-substituted derivatives, Monatsh. Chem. 1988, 119, 929–932.

    Article  CAS  Google Scholar 

  8. R. A. Singh, R. Singh, O. S. Rao and S. M. Verma, Molecular semiconductors based on charge transfer complexes of some substituted phenothiazines with tetracyanoethylene, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 1993, 237, 419–433.

    Article  CAS  Google Scholar 

  9. C. F. Chignell, A. G. Motten and G. R. Buettner, Photoinduced free radicals from chlorpromazine and related phenothiazines: relationship to phenothiazine induced photosensitization, Environ. Health Perspect. 1985, 64, 103–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. C. Garcia, L. Pinero, R. Oyola and R. Arce, Photodegradation of 2-chloro substituted phenothiazines in alcohols, Photochem. Photobiol. 2009, 85, 160–170.

    Article  CAS  PubMed  Google Scholar 

  11. J. H. Epstein, Photoallergy: a review, Arch. Dermatol. 1972, 106, 741–748.

    Article  CAS  PubMed  Google Scholar 

  12. G. Miolo, L. Levorato, F. Gallocchio, S. Caffieri, C. Bastianon, R. Zanoni and E. Reddi, In vitro phototoxicity of phenothiazines: involvement of stable UV-A photolysis products formed in aqueous medium, Chem. Res. Toxicol. 2006, 19, 156–163.

    Article  CAS  PubMed  Google Scholar 

  13. H. A. Wagenknecht, Charge Transfer in DNA, Wiley, Weinheim, 2005, ch. 9, p.209.

    Book  Google Scholar 

  14. N. J. Bunce, Y. Kumar and L. Ravanal, Phototoxicity of chlorpromazine, J. Med. Chem. 1979, 22, 202–204.

    Article  CAS  PubMed  Google Scholar 

  15. M. Barra, G. S. Calabrese, M. T. Allen, R. W. Redmond, R. Sinta, A. A. Lamola, R. D. Small and J. C. Scaiano, Photophysical and photochemical studies of phenothiazine and some derivatives: exploratory studies of novel photosensitizers for photoresist technology, Chem. Mater. 1991, 3, 610–616.

    Article  CAS  Google Scholar 

  16. R. Boch, B. Mehta, T. Connolly, T. Durst, J. T. Arnason, R. W. Redmond and J. C. Scaiano, Singlet oxygen photosensitizing properties of bithiophene and terthiophene derivatives, J. Photochem. Photobiol., A 1996, 3, 39–47.

    Article  Google Scholar 

  17. G. O. Schenck and C. H. Krauch, Zur photosensibilisierten O2-Übertragung auf Schwefel-Verbindungen. Neuer Weg zu Sulfoxyden, Angew. Chem. 1962, 74, 510–517.

    Article  Google Scholar 

  18. E. L. Clennan, Persulfoxide: key intermediate in reactions of singlet oxygen with sulfides, Acc. Chem. Res. 2001, 34, 875–884.

    Article  CAS  PubMed  Google Scholar 

  19. G. O. Schenck and C. H. Krauch, Sulfone durch photosensibilisierte O2-Übertragung auf sulfoxyde, Chem. Ber. 1963, 96, 517–519.

    Article  CAS  Google Scholar 

  20. C. S. Foote and J. W. Peters, Chemistry of singlet oxygen. XIV. Reactive intermediate in sulfide photooxidation, J. Am. Chem. Soc. 1971, 93, 3795–3796.

    Article  CAS  Google Scholar 

  21. K. Nahm, A theoretical study on the reaction of phosphadioxiranes and thiadioxiranes; disproportionation versus epoxidation, Bull. Korean Chem. Soc. 2009, 30, 2217–2222.

    Article  CAS  Google Scholar 

  22. C. G. Martinez, A. Neuner, C. Marti, S. Nonell, A. M. Braun and E. Oliveros, Effect of the media on the quantum yield of singlet oxygen (O2(1?g)) production by 9 H-Fluoren-9-one: solvents and solvent mixtures, Helv. Chim. Acta 2003, 86, 384–397.

    Article  CAS  Google Scholar 

  23. E. Oliveros, P. Murasecco-Suardi, T. Aminian-Saghafi and A. M. Braun, 1 H-Phenalen-1-one: photophysical properties and singlet oxygen production, Helv. Chim. Acta 1991, 74, 79–90.

    Article  CAS  Google Scholar 

  24. A. M. Braun and E. Oliveros, Applications of singlet oxygen reactions: mechanistic and kinetic investigations, Pure Appl. Chem. 1990, 62, 1467–1476.

    Article  CAS  Google Scholar 

  25. C. Martí, O. Jürgens, O. Cuenca, M. Casals and S. Nonell, Aromatic ketones as standards for singlet molecular oxygen (1?g) photosensitization. Time-resolved photoacoustics and near-IR emission studies, J. Photochem. Photobiol., A 1996, 97, 11–18. and references therein

    Article  Google Scholar 

  26. T. Aminian-Saghafi, G. Nasini, T. Caronna, A. M. Braun and E. Oliveros, Quantum yields of singlet oxygen production by some natural quinonoid fungal metabolites, Helv. Chim. Acta 1992, 75, 531–538.

    Article  CAS  Google Scholar 

  27. C. Lorente, A. H. Thomas, A. L. Capparelli, C. G. Martinez, A. M. Braun and E. Oliveros, Singlet oxygen (1?g) production by pterin derivatives in aqueous solutions, Photochem. Photobiol. Sci. 2003, 2, 245–250. and references therein

    Article  PubMed  Google Scholar 

  28. F. M. Cabrerizo, L. Dantola, G. Petroselli, A. H. Thomas, A. L. Capparelli, A. M. Braun, C. Lorente and E. Oliveros, Reactivity of conjugated and unconjugated pterins with singlet oxygen (O2(1?g)): physical quenching and chemical reaction, Photochem. Photobiol. 2007, 833, 526–534.

    Article  CAS  Google Scholar 

  29. L. A. Martinez, C. G. Martinez, B. B. Klopotek, J. Lang, A. Neuner, A. M. Braun and E. Oliveros, Non radiative and radiative deactivation of singlet molecular oxygen in micellar media and microemulsions, J. Photochem. Photobiol., B 2000, 58, 94–107.

    Article  CAS  Google Scholar 

  30. R. D. Scurlock, S. Nonell, S. E. Braslavsky and P. R. Ogilby, Effect of solvent on the radiative decay of singlet molecular oxygen (1?g), J. Phys. Chem. 1995, 99, 3521–3526.

    Article  CAS  Google Scholar 

  31. F. Wilkinson, H. P. Helman and A. B. Ross, Rate constants for the decay and reaction of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation, J. Phys. Chem. Ref. Data 1995, 24, 663–934.

    Article  CAS  Google Scholar 

  32. C. Tournaire, S. Croux, M.-T. Maurette, I. Beck, M. Hocquaux, A. M. Braun and E. Oliveros, Antioxidant activity of flavonoids: efficiency of singlet oxygen (1?g) quenching, J. Photochem. Photobiol., B 1993, 19, 205–215.

    Article  CAS  Google Scholar 

  33. P. Murasecco-Suardi, E. Gassmann, A. M. Braun and E. Oliveros, Determination of the quantum yield of intersystem crossing of Rose Bengal, Helv. Chim. Acta 1987, 70, 1760–1773.

    Article  CAS  Google Scholar 

  34. D. C. J. Neckers, Review Rose Bengal, J. Photochem. Photobiol., A: Chem. 1989, 47, 1–29.

    Article  CAS  Google Scholar 

  35. A. M. Braun, M. T. Maurette and E. Oliveros, Photochemical Technology, John Wiley & Sons, Chichester, 1991, ch. 2.

    Google Scholar 

  36. H. J. Kuhn, S. E. Braslavsky and R. Schmidt, Chemical actinometry (IUPAC technical report), Pure Appl. Chem. 2004, 76, 2105–2146. and references therein

    Article  CAS  Google Scholar 

  37. C. García, R. Oyola, L. E. Pinero, R. Arce, J. Silva and V. Sanchez, Substitution and solvent effects on the photophysical properties of several series of 10-alkylated phenothiazine derivatives, J. Phys. Chem. A 2005, 109, 3360–3371.

    Article  PubMed  CAS  Google Scholar 

  38. Y. Moroi, A. M. Braun and M. Graetzel, Light-initiated electron transfer in functional surfactant assemblies. 1. Micelles with transition metal counterions, J. Am. Chem. Soc. 1979, 101, 567–572.

    Article  CAS  Google Scholar 

  39. S. Nath, H. Pal, D. K. Palit, A. V. Sapre and J. P. Mittal, Steady-state and time-resolved studies on photoinduced interaction of phenothiazine and 10-methylphenothiazine with chloroalkanes, J. Phys. Chem. A 1998, 102, 5822–5830.

    Article  CAS  Google Scholar 

  40. E. Pelizzetti, Cation radicals of phenothiazines. Part 4. Electron transfer between aquamanganese(iii) and N-alkylphenothiazines, J. Chem. Soc., Dalton Trans. 1980, 3, 484–486.

    Article  Google Scholar 

  41. E. Oliveros, P. Pheulpin and A. M. Braun, Comparative study of the sensitized photooxidation of N-methyl phenothiazine in homogeneous and microheterogeneous media, Tetrahedron 1987, 43, 1713–1723.

    Article  CAS  Google Scholar 

  42. C. Schweitzer and R. Schmidt, Physical mechanisms of generation and deactivation of singlet oxygen, Chem. Rev. 2003, 103, 1685–1757 and references therein

    Article  CAS  PubMed  Google Scholar 

  43. D. Rehm and A. Weller, Kinetics of fluorescence quenching by electron and hydrogen atom transfer, Isr. J. Chem. 1970, 8, 259–271.

    Article  CAS  Google Scholar 

  44. G. J. Kavarnos and N. J. Turro, Photosensitization by reversible electron transfer: theories, experimental evidence and examples, Chem. Rev. 1986, 86, 401–449.

    Article  CAS  Google Scholar 

  45. G. J. Kavarnos, Fundamentals of Photoinduced Electron Transfer, VCH Publishers, Inc., New York, 1993.

    Google Scholar 

  46. M. E. Peover and B. S. White, Electrolytic reduction of oxygen in aprotic solvents: the superoxide anion, Electrochim. Acta 1966, 11, 1061–1067.

    Article  CAS  Google Scholar 

  47. K. Inoue, T. Matsuura and I. Saito, Importance of single electron-transfer in singlet oxygen reaction in aqueous solution. Oxidation of electron-rich thioanisoles, Tetrahedron 1985, 41, 2177–2181.

    Article  CAS  Google Scholar 

  48. G. Herzberg, Spectra of Diatomic Molecules, Van Nostrand Reinhold, New York, 1950.

    Google Scholar 

  49. M. L. Kacher and C. S. Foote, Chemistry of singlet oxygen XXVIII. Steric and electronic effects on the reactivity of sulfides with singlet oxygen, Photochem. Photobiol. 1979, 29, 765–769.

    Article  CAS  Google Scholar 

  50. R. H. Young and R. L. Martin, Mechanism of quenching of singlet oxygen by amines, J. Am. Chem. Soc. 1972, 94, 5183–5185.

    Article  CAS  Google Scholar 

  51. P. Murasecco, E. Oliveros and A. M. Braun, Quantum yield measurements of the haematoporphyrin derivative (HpD) sensitized singlet oxygen production, Photobiochem. Photobiophys. 1985, 9, 193–201.

    CAS  Google Scholar 

  52. A. M. Braun, H. Dahn, E. Gassmann, I. Gerothanassis, L. Jakob, J. Kateva, C. G. Martinez and E. Oliveros, (2 + 4)-Cycloaddition with singlet oxygen.17O-Investigation of the reactivity of endoperoxides, Photochem. Photobiol. 1999, 70, 868–874.

    CAS  Google Scholar 

  53. S. M. Bonesi, M. Fagnoni, S. Monti and A. Albini, Photosensitized oxidation of phenyl and tert-butyl sulfides, Photochem. Photobiol. Sci. 2004, 3, 489–493.

    Article  CAS  PubMed  Google Scholar 

  54. S. Sumalekshmy and K. R. Gopidas, Reactions of aromatic amines with Cu(ClO4)2 in acetonitrile as a facile route to amine radical cation generation, Chem. Phys. Lett. 2005, 413, 294–299.

    Article  CAS  Google Scholar 

  55. Advances in Heterocyclic Chemistry, ed. A. R. Katritzky, A. J. Boulton, Academic Press, New York, 1968, vol.9, p.351.

  56. D. T. Sawyer and J. S. Valentine, How super is superoxide?, Acc. Chem. Res. 1981, 14, 393–400.

    Article  CAS  Google Scholar 

  57. B. H. Bielski and D. E. Cabelli, Highlights in current research involving superoxide and perhydroxyl radicals in aqueous solutions, Int. J. Radiat. Biol. 1991, 59, 291–319.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Oliveros.

Additional information

This article is published as part of a themed issue in honour of Jean-Pierre Desvergne on the occasion of his 65th birthday.

This work was part of MTA’s PhD thesis and has been carried out at the Lehrstuhl für Umweltmesstechnik, Engler-Bunte-Institut, Universität Karlsruhe (now Karlsruher Institut für Technologie (KIT)), D-76131 Karlsruhe, Germany.

Electronic supplementary information (ESI) available. See DOI: 10.1039/c2pp25244a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manju, T., Manoj, N., Braun, A.M. et al. Self sensitized photooxidation of N-methyl phenothiazine: acidity control of the competition between electron and energy transfer mechanisms. Photochem Photobiol Sci 11, 1744–1755 (2012). https://doi.org/10.1039/c2pp25244a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp25244a

Navigation