Skip to main content
Log in

Heteroaromatic donors in donor—acceptor—donor based fluorophores facilitate zinc ion sensing and cell imaging

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The excited state intra molecular charge transfer (ICT) property of fluorophores has been extensively used for the design of fluorescent chemosensors. Herein, we report the synthesis and properties of three donor-π-acceptor-π-donor (D-π-A-π-D) based molecular probes BP, BT and BA. Two heteroaromatic rings, pyrrole (BP), and thiophene (BT) and a non-heteroaromatic ring N-alkoxy aniline (BA) were selected as donor moieties which were linked to a bipyridine binding site through a vinylic linkage. The heteroaromatic systems BP and BT perform selective and ratiometric emission signalling for zinc ions whereas the non-heteroaromatic probe BA does not. The advantages of the D-π-A-π-D design strategy in the design of ICT based probes for the selective fluorescent ratiometric signalling of zinc ions in biological media is discussed. Further, the use of BP, BT and BA for imaging Zn2+ ions from MCF-7 cell lines is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. J. Frederickson, Neurobiology of zinc and zinc-containing neurons, Int. Rev. Neurobiol. 1989, 31, 145.

    Article  CAS  Google Scholar 

  2. B. L. Vallee and K. H. Falchuk, The biochemical basis of zinc physiology, Physiol. Rev. 1993, 73, 79.

    Article  CAS  Google Scholar 

  3. J. M. Berg and Y. Shi, The galvanization of biology: a growing appreciation for the roles of zinc, Science 1996, 271, 1081.

    Article  CAS  Google Scholar 

  4. S. L. Sensi, L. M. T. Canzoniero, S. P. Yu, H. S. Ying, J. Koh, G. A. Kerchner and D. W. Choi, Measurementof intracellular free zinc in living cortical neurons: routes of entry, J. Neurosci. 1997, 17, 9554.

    Article  CAS  Google Scholar 

  5. J. E. Coleman, Zinc enzymes, Curr. Opin. Chem. Biol. 1998, 2, 222.

    Article  CAS  Google Scholar 

  6. Recent reviews for zinc sensors: P. Carol, S. Sreejith and A. Ajayaghosh, Ratiometric and near-infrared molecular probes for the detection and imaging of zinc ions, Chem.–Asian J. 2007, 2, 338.

    Article  CAS  Google Scholar 

  7. E. L. Que, D. W. Domaille and C. J. Chang, Metals in neurobiology: probing their chemistry and biology with molecular imaging, Chem. Rev. 2008, 108, 1517.

    Article  CAS  Google Scholar 

  8. E. M. Nolan and S. J. Lippard, Small-molecule fluorescent sensors for investigating zinc metalloneurochemistry, Acc. Chem. Res. 2009, 42, 193.

    Article  CAS  Google Scholar 

  9. Z. Dai and J. W. Canary, Tailoring tripodal ligands for zinc sensing, New J. Chem. 2007, 31, 1708.

    Article  CAS  Google Scholar 

  10. P. Jiang and Z. Guo, Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors, Coord. Chem. Rev. 2004, 248, 205.

    Article  CAS  Google Scholar 

  11. N. C. Lim, H. C. Freake, C. Brückner, Illuminating zinc ions in biological systems, Chem.–Eur. J. 2005, 11, 38.

    Article  Google Scholar 

  12. D. W. Domaille, E. L. Que and C. J. Chang, Synthetic fluorescent sensors for studying the cell biology of metals, Nat. Chem. Biol. 2008, 4, 168.

    Article  CAS  Google Scholar 

  13. Z. Xu, J. Yoon and D. R. Spring, Fluorescent chemosensors for Zn2+, Chem. Soc. Rev. 2010, 39, 1996.

    Article  CAS  Google Scholar 

  14. J. R. Lakowickz, Principles of Fluorescence Spectroscopy, Springer, New York, 3rd edn, 2006.

    Book  Google Scholar 

  15. K. W. Dunn, S. Mayor, J. N. Meyers and F. R. Maxfield, Application of ratio fluorescence microscopy in the study of cell physiology, FASEB J. 1994, 8, 573.

    Article  CAS  Google Scholar 

  16. Z. Wang, M. A. Palacios, G. Zyryanov and P. Anzenbacher, Harnessing a ratiometric fluorescence output from a sensor array, Chem.–Eur. J. 2008, 14, 8540.

    Article  CAS  Google Scholar 

  17. N. B. Sankaran, S. Nishizawa, M. Watanabe, T. Uchida and N. Teramae, Designing ratiometric fluorescent sensors for alkali metal ions from simple PET sensors by controlling spacer length, J. Mater. Chem. 2005, 15, 2755.

    Article  CAS  Google Scholar 

  18. E. J. Park, M. Brasuel, C. Behrend, M. A. Phibert and R. Kopelman, Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells, Anal. Chem. 2003, 75, 3784.

    Article  CAS  Google Scholar 

  19. G. Grynkiewicz, M. Poenie and R. Y. Tsien, A new generation of Ca2+ indicators with greatly improved fluorescence properties, J. Biol. Chem. 1985, 260, 3440.

    Article  CAS  Google Scholar 

  20. A. Coskun, E. Deniz and E. U. Akkaya, Cation modulation of carbonyldipyrrinone (CDP) fluorescence: emission-ratiometric sensing of calcium, J. Mater. Chem. 2005, 15, 2908.

    Article  CAS  Google Scholar 

  21. L. Xue, C. Liu and H. Jiang, A ratiometric fluorescent sensor with a large Stokes shift for imaging zinc ions in living cells, Chem. Commun. 2009 1061.

    Google Scholar 

  22. S. Maruyama, K. Kikuchi, T. Hirano, Y. Urano and T. Nagano, A novel, cell-permeable, fluorescent probe for ratiometric imaging of zinc ion, J. Am. Chem. Soc. 2002, 124, 10650.

    Article  CAS  Google Scholar 

  23. C. C. Woodroofe and S. J. Lippard, A novel two-fluorophore approach to ratiometric sensing of Zn2+, J. Am. Chem. Soc. 2003, 125, 11458.

    Article  CAS  Google Scholar 

  24. M. Taki, J. L. Wolford, T. V. O’Halloran, Emission ratiometric imaging of intracellular zinc: design of a benzoxazole fluorescent sensor and its application in two-photon microscopy, J. Am. Chem. Soc. 2004, 126, 712.

    Article  CAS  Google Scholar 

  25. A. Ajayaghosh, P. Carol and S. Sreejith, A ratiometric fluorescence probe for selective visual sensing of Zn2+, J. Am. Chem. Soc. 2005, 127, 14962.

    Article  CAS  Google Scholar 

  26. K. Kiyose, H. Kojima, Y. Urano and T. Nagano, Development of a ratiometric fluorescent zinc ion probe in near-infrared region, based on tricarbocyanine chromophore, J. Am. Chem. Soc. 2006, 128, 6548.

    Article  CAS  Google Scholar 

  27. C. J. Chang, J. Jaworski, E. M. Nolan, M. Sheng and S. J. Lippard, A tautomeric zinc sensor for ratiometric fluorescence imaging: application to nitric oxide-induced release of intracellular zinc, Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 1129.

    Article  CAS  Google Scholar 

  28. Z. Xu, X. Qian, J. Cui and R. Zhang, Exploiting the deprotonation mechanism for the design of ratiometric and colorimetric Zn2+ fluorescent chemosensor with a large red-shift in emission, Tetrahedron 2006, 62, 10117.

    Article  CAS  Google Scholar 

  29. K. Komatsu, Y. Urano, H. Kojima and T. Nagano, Development of an iminocoumarin-based zinc sensor suitable for ratiometric fluorescence imaging of neuronal zinc, J. Am. Chem. Soc. 2007, 129, 13447.

    Article  CAS  Google Scholar 

  30. M. M. Henary, Y. Wu and C. J. Fahrni, Zinc(ii)-selective ratiometric fluorescent sensors based on inhibition of excited-state intramolecular proton transfer, Chem.–Eur. J. 2004, 10, 3015.

    Article  CAS  Google Scholar 

  31. F. Galindo, J. Becerril, I. Burguete, S. V. Luis and L. Vigara, Synthesis and study of a cyclophane displaying dual fluorescence emission: a novel ratiometric sensor for carboxylic acids in organic medium, Tetrahedron Lett. 2004, 45, 1659.

    Article  CAS  Google Scholar 

  32. H. Cao, D. I. Diaz, N. DiCesare, J. R. Lakowicz and M. D. Heagy, Monoboronic acid sensor that displays anomalous fluorescence sensitivity to glucose, Org. Lett. 2002, 4, 1503.

    Article  CAS  Google Scholar 

  33. A. Ojida, H. Nonaka, Y. Miyahara, S. Tamaru, K. Sada and I. Hamachi, Bis (Dpa-ZnII) appanded xanthone: excitation ratiometric chemosensor for phosphate anions, Angew. Chem., Int. Ed. 2006, 45, 5518.

    Article  CAS  Google Scholar 

  34. Z. Xu, N. J. Singh, J. Lim, J. Pan, H. N. Kim, S. Park, K. S. Kim and J. Yoon, Unique sandwich stacking of pyrene-adenine-pyrene for selective and ratiometric fluorescent sensing of ATP at physiological pH, J. Am. Chem. Soc. 2009, 131, 15528.

    Article  CAS  Google Scholar 

  35. J. Wen, Z. Geng, Y. Yin, Z. Zhang and Z. Wang, A Zn2+-specific turn-on fluorescent probe for ratiometric sensing of pyrophosphate in both water and blood serum, Dalton Trans. 2011, 40, 1984.

    Article  CAS  Google Scholar 

  36. P. Nandhikonda and M. D. Heagy, Dual fluorescent N-aryl-2,3-naphthalimides:applications in ratiometric DNA detection and white organic light emitting devices, Org. Lett. 2010, 12, 4796.

    Article  CAS  Google Scholar 

  37. J. Ueberfeld and D. R. Walt, Reversible ratiometric probe for quantitative DNA measurements, Anal. Chem. 2004, 76, 947.

    Article  CAS  Google Scholar 

  38. K. P. Divya, S. Sreejith, B. Balakrishna, P. Jayamurthy, P. Anees and A. Ajayaghosh, A Zn2+-specific fluorescent molecular probe for the selective detection of endogenous cyanide in bio-relevant samples, Chem. Commun. 2010, 46, 6069.

    Article  CAS  Google Scholar 

  39. B. Valeur and I. Larey, Design principles of fluorescent molecular sensors for cation recognition, Coord. Chem. Rev. 2000, 205, 3.

    Article  CAS  Google Scholar 

  40. S. Sreejith, K. P. Divya, T. K. Manojkumar and A. Ajayaghosh, Multiple analyte response and molecular logic operations by excited state charge-transfer modulation in a bipyridine integrated fluorophore, Chem.–Asian J. 2011, 6, 430.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayyappanpillai Ajayaghosh.

Additional information

This article is published as part of a themed issue in honour of Jean-Pierre Desvergne on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sreejith, S., Divya, K.P., Jayamurthy, P. et al. Heteroaromatic donors in donor—acceptor—donor based fluorophores facilitate zinc ion sensing and cell imaging. Photochem Photobiol Sci 11, 1715–1723 (2012). https://doi.org/10.1039/c2pp25110h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c2pp25110h

Navigation