Issue 12, 2012

Fractal gold modified electrode for ultrasensitive thrombin detection

Abstract

We report a label-free and ultrasensitive aptasensor based on a fractal gold modified (FracAu) electrode for thrombin detection with a femtomolar detection limit. The FracAu electrode was prepared by electrodeposition of hydrogen tetrachloroaurate (HAuCl4) onto a bare indium tin oxide (ITO) electrode surface. After this process the electrode was characterized by SEM. A thiol-modified aptamer against thrombin was immobilized on the FracAu electrode through a self-assembling process. Upon thrombin binding, the interfacial electron transfer of the FracAu electrode was perturbed by the formation of an aptamer–thrombin complex. The concentration of thrombin in the sample solution was determined by measuring the change in the oxidation peak current of hydroxymethyl ferrocene (C11H12FeO) with differential pulse voltammetry (DPV). The current response (reduced peak current) had a linear relationship with the logarithm of thrombin concentrations in the range of 10−15 to 10−10 M with a detection limit of 5.7 fM. Furthermore, the as-prepared FracAu electrode exhibited high selectivity. The application of FracAu electrodes may be extended to prepare other types of biosensors, such as immunosensors, enzyme biosensors and DNA biosensors. These results show that FracAu electrodes have great promise for clinical diagnosis of disease-related biomarkers.

Graphical abstract: Fractal gold modified electrode for ultrasensitive thrombin detection

Supplementary files

Article information

Article type
Paper
Submitted
06 Apr 2012
Accepted
03 May 2012
First published
08 May 2012

Nanoscale, 2012,4, 3786-3790

Fractal gold modified electrode for ultrasensitive thrombin detection

L. Xu, S. Wang, H. Dong, G. Liu, Y. Wen, S. Wang and X. Zhang, Nanoscale, 2012, 4, 3786 DOI: 10.1039/C2NR30826F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements