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Abstract
We develop a theoretical model for a fluidic current source consisting of a via, a detour channel,
and a push-up type micro-valve. The model accurately describes the non-linear behaviour of this
type of device, which has been previously measured experimentally. We show how various
structural parameters and material properties of the device influence the saturated flow rate and the
minimum driving pressure required for the device to function as a current source. Conversely, the
model can be used to design a fluidic current source with a desired saturated flow rate and low
operational pressure. The present model can be straightforwardly applied to microfluidic circuits
composed of many functional autoregulatory devices.

Introduction
Multilayer soft lithography technique1 has enabled a dense integration of micro-valves and
pumps within a microfluidic circuit for various applications2–4. In general, these device
elements consist of shallow microfluidic channels and are characterized by laminar flows
due to the low Reynolds number (Re)5, 6. As a result, incompressible Newtonian fluid flow
in an axially uniform microfluidic channel can be described by the well-known Poiseuille’s
law, which states that flow rate (Q) is proportional to applied pressure (P) while inversely
proportional to the hydraulic resistance (R) of the flow channel.

However, a microfluidic device showing a nonlinear relationship between Q and P is in
increasing demand in applications7–9, where, for instance, maintaining a constant Q for a
wide range of P will be useful10–12. For example, in a drug delivery system, constant flow
rate is critical13, so pressure fluctuations can be negated with an in-built current source. Yet
in reality, obtaining the desired nonlinear behaviour has been a challenge and few studies
have been successful. Groisman and co-workers have demonstrated fluidic current source
operation by employing a complex winding microfluidic channel along with highly viscous
polymer solution as a working fluid10. However, practical bio-medical applications need
such nonlinear fluidic behaviour to be achieved with water-based biocompatible solutions,
which are Newtonian fluids.
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Fortunately, autoregulatory devices11, 12, 14 offer an elegant and innovative solution to this
problem. These devices automatically regulate flow with a combination of a detour channel
and a three-dimensional fluidic junction, referred as ‘via’12, 14. Furthermore, the flow
behaviour itself is very interesting from the perspective of basic physics, due to multiple
features and effects: autoregulatory nonlinear behaviour with Poiseuille flow, saturation12,
and negative resistance (the “dip”)14.

These devices are also interesting from the perspective of microfluidic engineering as they
offer unique capabilities, thereby expanding the toolbox available for microfluidic
applications. In particular, point-of-care biomedical diagnostics requires a challenging
combination of low cost, flexibility, multiplexing, and portability, while complex function
traditionally comes at the expense of complex external control15–18. Herein lies the promise
of autoregulatory devices, as they offer complex behaviour and function at minimal or no
external control, thereby leading to smaller overall size of the diagnostic system.

In this paper, we take another step towards the widespread utilization of autoregulatory
devices by providing a theoretical model for their behaviour, which has been confirmed by
previous experimental data12. This model can be used to predict the flow behaviour as a
function of the Young’s modulus of the material and of the device’s architectural parameters
such as length, height, and width of a microfluidic channel.

Specifically, we consider several aspects to reflect on the final modeling. First, we account
for the PDMS microchannel swelling with applied pressure19, 20, by incorporating Gervais’s
formula21 in our calculations. Second, we show that our experimentally confirmed
theoretical model23 for push-down valves can be used for push-up22 valves as well. Third,
we demonstrate that the nonlinear response can be successfully modeled through a
combination of Poiseuille’s law and the above two aspects. Finally, we show that the
resulting model is in good agreement with our experimental data on the current source.

Description of PDMS autoregulatory device
In Fig. 1, we show a schematic diagram of the fluidic current source, which is used for
experimental measurements on pressure-driven flow presented in the previous literature12.
We develop an analytical model based on this data. A long straight main channel and a
detour channel bypassing from the main channel to the micro-valve region are designed.
This detour channel is one of the two important integral parts in the current source device;
the other important part is a via, which choose either push-up or push-down configuration
for the valve design. The valve membrane thickness, shown in Fig. 1b, is assumed to be
5µm, which is estimated from the known spin-coating formula24. Other structural
parameters are dealt with in great detail in our earlier publication12.

The PDMS microfluidic device was made of Sylgard 184. Mixing ratio between the base
and the curing agent of the Sylgard as well as the curing time and the temperature can
control the stiffness of the resulting PDMS, hence the Young’s modulus of the PDMS25.
The rigidity of the material determines valve action and the channel deformation21 by
internal pressure; therefore our final model should include the effect of the Young’s
modulus. Further detailed experimental procedures regarding the fabrication and the
measurement can be found from our earlier literature12.

Fig. 1(d) shows an optical microscope image of the ‘via’, connecting channels on two
different levels – the control channel in the lower layer and the flow channel in the upper
layer. This via enables propagation of the static pressure at the entrance of the detour
channel to the dead-end point, where the micro-valve actuates to control the flow in the
main channel. Note that the net upward pressure held across the valve membrane (blue
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region in Fig. 1(b)) is equal to the pressure drop in the main channel between the detour
entrance and the value region (ΔP2).

Model for push-up valve
The current source device regulates flow rate passing through the main channel by means of
the push-up valve. Studer and co-workers have performed the three-dimensional finite-
element method (FEM) to understand both push-up and push-down valves22.The numerical
simulation has revealed that the required pressure needed to completely close the channel is
10 times smaller in the case of a push-up valve than a push-down valve with structural
dimensions identical to the push-up valve. On the other hand, an experimentally confirmed
model have been developed for the push-down case by combining three simpler linear
models, a thick beam, a thin spring, and a thick spring models23. Here, we extend the regime
of the validity to include the push-up case by introducing a scaling factor k, which we refer
to as a membrane geometry factor. Then, we can write the required ‘net’ closing pressure
measured across the valve membrane as23

(1)

where E is Young’s modulus of the material (ratio of stress to strain), H0 is height of the
flow channel to be completely closed and wv, lv, and h are structural parameters for the
geometry of the micro-valve – width, length, and membrane thickness. Though we will try
to extract a proper k value through fitting processes with experimental data, we would like
to note that k of 0.1 gives the best fit, which is consistent with the previous FEM simulation
result.

Theoretical model
Effective channel model

Before developing a model for the realistic autoregulatory device shown in Fig. 1d, we will
begin with a rather simple situation as depicted in Fig. 2(a). A straight flow channel with
length of L (=L1 + Δ + L2) has a small bulge or a dimple with length of Δ (assumed to be
much smaller than L1 or L2). Then, we define the deformation ratio as γ= Hv / H0, where H0
and Hv are the original and the deformed channel height, respectively. It should be noted
that the presence of dimple (bulge) depicts a situation where a fluid flows in the forward
(reverse) direction (See Fig. 3).

In this section, we will present the concept of effective channel height, which will be useful
to model a flow channel with varying height. As is well known, various useful concepts in
electrical circuit design can be adopted to the case of microfluidics. For example, in the
electrical circuit system, the concept of effective resistance (Reff) has been proved to be very
useful when interpreting a composite of resistors. One can always find a certain Reff for any
given network of resistors. Then, the overall behaviour of electrical current is simply given
by I = V/ Reff. On the other hand, in microfluidics, the hydraulic resistance R connects
between Q and P through the Poiseuille’s law. Then, we can make correspondence between
{Q and P} and {current (I) and voltage (V)}, respectively.

Borrowing the concept of effective resistance in electrical circuit analysis, we can define
effective height He such that hydraulic resistance of a uniform channel with He will result in
the same Q for a given P. To derive He, we have used the fact that 1) Q is conserved
throughout the entire channel and 2) the Poiseuille’s law holds within a uniform section of
the channel. In Fig. 2(b), we plot effective He as a function of γ, where we have fixed Δ at a
constant of 0.01×L. For example, in the case of γ > 1.0 (bulging), we find that He hardly

Chang et al. Page 3

Lab Chip. Author manuscript; available in PMC 2013 April 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



changes. However, in the case of γ <1.0 (dimple), He abruptly decreases when γ goes below
0.4. This result shows that the fluidic ‘bottleneck’ is a critical element to govern the overall
flow dynamics though it only spans over a very small portion (1%) of the channel. This
behaviour in the effective channel height captures the essential aspect of our autoregulatory
system and shows how a constant flow rate can be generated. It should be noted that channel
heights in the actual device is not such simple two stepwise but a continuously varying
function of space in the form of H(x). Even in such general situation, we can always define
an effective channel height, from which we can define an effective hydraulic resistance.

Poiseuille’s law for rectangular cross-sectional channel
A cross-sectional geometry of a microfluidic channel determines hydraulic resistance26 (R).
For instance, in the case of a cylindrical cross-section, R is inversely proportional to the
fourth power of its radius. In the case of rectangular cross-section with height H0 and width
W (W >> H0), R is inversely proportional to the third power of H0 and the first power of W.
When an actual geometry is slightly deformed from these ideal simple geometries, we can
introduce a geometrical correction factor27 α. The actual geometry of our microfluidic
channel is not either a perfect circle or a rectangle but a wedge-like shape with a half-
elliptical upper contour and a flat bottom1. However, it turns out that taking α to be 1 is
legitimate when the aspect ratio H0/W is very small. Then, we can write R as

(2)

therefore the Poiseuille’s law is given by28

(3)

Here, H0 and W are height and width of a microfluidic channel. P denotes pressure drop
across the main flow channel with length of L as shown in Fig. 1a and Fig. 3, that is, P = P
(x = 0) − P (x = L). η is a dynamic viscosity of a working fluid.

Model for non-deformable PDMS channel
In this section, we develop a model for non-deformable PDMS channel. Fig. 3 shows a two-
dimensional layout of the main flow channel, the detour channel, the via, and the valve. We
conceptually divide the main channel into four different sections with channel lengths of L1,
L2, L3, and L4. We note that flow rates in all sections must be identical (conservation of
mass). The total pressure drop across the entire system (from O to S) will be given by the
sum of partial pressures in their respective sections such that

(4)

Note that the above expression for P now includes two unknowns, Q and Hv. Therefore, we
need to construct one more equation to solve P as a function of Q.

If we apply Eq. (3) to the detour channel since Q remains constant along the channel, we
obtain
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(5)

Here, ΔP2 is pressure drop across L2, which is also equal to the net pressure held across the
valve membrane. From Eq.(1), we know how much net pressure is required to completely
close the flow channel with height H0. In general, however, ΔP2 is less than Δpup(H0) and
the channel height Hv lies between 0 and H0. Let us find out an expression for ΔP2 in terms
of Δpup(H). One plausible candidate is

(6)

The above equation indeed satisfies boundary conditions at the two extreme conditions: If
the net pressure is vanishingly small (ΔP2=0), then we obtain a trivial solution of Hv =H0. If
the channel is near completely closed (Hv ~0), then the required net pressure to maintain this
configuration must equal to Δpup(H0). With this assumption, we can eliminate ΔP2 in Eq.
(5) such that

(7)

Now we have two unknowns, Q and Hv, and two equations, Eq.(4) and Eq. (7). Therefore,
we can obtain P(Q) curve or Q(P) curve by numerically solving them; first, one obtains Q as
a function of Hv using Eq. (7). Then, the right hand side of Eq.(4) can be rewritten as a
function of Hv, which means P(Hv) is obtained. By comparing Q(Hv) and P(Hv), one can
plot either P(Q) or Q(P) and this completes our problem.

Fig. 4a shows flow rate (Q) as a function of applied pressure P, which clearly shows
nonlinear behaviour after a certain threshold value of P. At above this value, Q does not
show noticeable change for a large variation in P, which is the required property to function
as a fluidic current source. Mathematically, the saturation point is defined as the point at
which the slope of the Q(P) curve becomes zero (Fig.4 (b)). In fact, after a certain threshold
value of P, dQ/dP is already very small but approaches to true zero very slowly. This
behaviour can also be seen from the evolution of Hv as shown in Fig. 4(c); Hv seems to
saturate at a certain non-zero value but Hv will go down zero in the limit of large P (Q(P)
will go to zero at complete closing of the flow channel. However, in practice, we will see the
breakdown of microfluidic channels before reaching at this high pressure limit.).

Saturated flow rate and pressure required to reach the saturation
When designing a fluidic current source, there are two important considerations; 1) the
pressure needed to reach the saturation point should be minimized and 2) we should be able
to control a constant flow rate at the saturation. We will answer for these by directly solving
Eq. (4) and Eq. (7), where we assume a perfectly rigid channel that does not suffer from the
channel deformation. We also simplify the expression for the needed pressure for complete
closing the valve (Eq.(1)) by assuming h >> wv, lv such that

(8)

Chang et al. Page 5

Lab Chip. Author manuscript; available in PMC 2013 April 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Using the above simplification, we can write ΔPup(H0) – ΔPup(Hv) at the saturation (Hv <<
H0) as

(9)

We plug Eq.(9) into Eq.(7) to obtain the expression for the saturated flow rate in terms of
structural parameters

(10)

On the other hand, the initial slope in the Q(P) curve is given by

(11)

Note that Hv decreases with a rather steep slope from the beginning as shown in Fig. 4(c).
However, the effective channel height He (Fig. 2(b)) decreases very slowly because the
valve region occupies only a small portion of the entire flow channel. This is the reason the
initial slope of the Q(P) curve does not change too much up to the saturation point. For ideal
current source operation, it is important to maximize the initial slope so as to minimize the
operational pressure. From Eq. (11), we can see that the channel height Ho seems to be the
dominance factor, since the slope depends on the cube of Ho. The same cube dependence
can be found from Qsat (Eq.(10)). This observation raises a concern whether or not we can
control Qsat and the dQ/dP independently, which will be discussed in the Result section.

Model for deformable PDMS channel
Now we consider the effect of the PDMS deformation due to internal pressure by the
flowing fluid itself. We will use the result developed for a straight PDMS channel in the
previous literature21. The displacement from the original channel height will be described by
a perturbation factor Λ, which is defined as

(12)

and

(13)

where c is an unknown proportionality constant and P(x) denotes the internal pressure along
the axis of the main flow channel. It should be noted that we will neglect this channel
expansion in the transverse direction so that W(x) = W, which is legitimate since W/H0 >>
1. Now we can apply this perturbative approach to find corrections to the unperturbed flow
rate in the absence of the channel deformation (the dotted line in Fig. 5). We can solve the
reduced Navier-Stokes equation20, 21, 26, 29 for the above situation to obtain a new velocity
profile. The proper surface integration of the velocity profile over the cross-section of the
channel gives the corrected flow rate Q, which now includes c and E, properties of the
PDMS used20,21.
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(14)

In Fig. 5, we plot the result of Eq. (14) along with the rigid Poiseuille’s straight channel
having the identical dimensions. At our typical working pressure of around 20 psi, errors
between the two models can be as high as 20 %, which justifies the need for such correction.

Thus, Eq. (4) has to be changed to

(15)

where applied pressure P is expressed as a function of Hv. We neglect this bulging effect for
the valve region, since L3 is just about 0.7% of the total length (=L1+ L2+ L3+ L4).

Following similar steps in Eqs. (5)–(7), we obtain the expression for flow rate Q as a
function of Hv

(16)

Therefore, comparing P(Hv) [Eq.(15)] and Q(Hv) [Eq.(16)], one can plot Q as a function of
P.

Results
In Fig. 6, we plot various Q(P) curves as we vary various parameters. First let us look at
results in Fig. 6a. We vary H0 while fixing other parameters. As expected, as dQ/dP
increases Qsat increases accordingly. To get a rather independent control of Qsat over dQ/dP,
we note that the expression for Qsat [Eq.(10)] contains additional parameters, E and L2,
which are not included in dQ/dP [Eq.(11)]. The evolution of Qsat as a function of E and L2
are presented in Fig. 6b and 6c, respectively. Within a reasonable range in E for PDMS, we
can control Qsat in the range of from 100 nL/sec to 400 nL/sec. However, E is a quantity
fixed during the fabrication step. Therefore, to allow variations in Qsat within the same
PDMS microfluidic chip, we must control L2. Fig. 6c shows this result: Qsat is inversely
proportional to L2. This result shows that the detour channel is an essential part of our
autoregulatory system. Finally, we also investigate the effect of PDMS bulging shown in
Fig. 5. We vary a constant that controls the degree of the bulging; as expected, only a small
variation in Qsat could be obtained.

Now we are in a good position to apply our findings to the experimental data. As noted in
the above, the slope is a very sensitive function of Ho. Therefore, we first try to obtain the
most reasonable value for Ho while W, L, and h are fixed to some known values. In fact,
when we apply pressure to the port S (reverse bias), the effect of the valve region can be
neglected as proven by the effective channel height argument. As we decrease L2 (or the
detour ratio L2/L), this assumption holds true more and more perfectly. Fig. 7 compares
experimental data from our previous work12 (dots) and a theoretical curve (solid line). Here,
we try to fit the curve to the measurement data with L2/L = 0.23. We find that the best fitted
curve can be obtained with E/c = 4.14 MPa.
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Then, we try to fit data obtained from the forward bias experiments (See Fig. 8). In this
fitting, E and c are fitting parameters with a constraint of E/c = 4.14 MPa. This means only
one fitting parameter is used to get good fitted results as shown in Fig. 8. The best fitted
results are obtained with E = 1.2 MPa and c=0.29, both are within reasonable ranges.

Discussion and Conclusions
We develop a theoretical model that can explain how flow rate changes as we regulate the
flow by employing the detour channel. The theoretical model predicts on how flow rate
changes as a function of applied pressure – the Q(P) curve, which shows good agreement
with the experimental data, though the model is based on a rather simple Poiseuille’s law for
incompressible, Newtonian fluids. Specifically, we verify that modeling parameters such as
1) flow channel height H0, 2) Young’s modulus of PDMS E, 3) detour channel ratio L2/L,
and 4) membrane geometry factor k have strong influence on the saturation pressure and the
saturated flow rate. We also consider the expansion of microfluidic channel height,
originated from the softness of PDMS, which would be of more significant concern at higher
pressure.

The autoregulatory effect depends on the ratio of lengths of the “main channel” and “detour
channel”, rather than the lengths themselves12, 14. Therefore, the size of such a current
source unit is not limited by the length of the constituent channels. However, the device
operation is dependent on the proper functioning of the valve, which has geometric
limitations14 and thus limits the size of the unit to ~0.25 mm2 by current technology. Still,
such size allows device densities of over 2,500 /inch2, which is very generous for most
conceivable applications. The theoretical model presented here is a building block for the
theory of such circuits, just as a single current source is a building block for their physical
structure.

Microfluidic devices based on biocompatible fluids will be likely to be useful for a broad
range of applications from basic biochemical studies on-a-chip to biomedical fields.
Furthermore, it has been argued that the further miniaturization of microfluidic chip size has
been hampered by a number of external ports (also known as Medusa) indispensible for
controlled actuation of micro-valves29. The via structure that connects the detour flow
channel to the push-up valve allows three-dimensional systematic integration of microfluidic
circuit elements, which would help to increase the number density of fluidic components
and to enable ultimate device miniaturization. Therefore, we can expect huge reduction in
the number of external ports by employing our autoregulatory systems based on these vias.
In this context, our modeling will provide useful guidelines to the design of such devices as
well as to understand physics behind their behaviour and operation.
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Fig. 1.
Microfluidic current source device. a The device consists of two PDMS microfluidic layers.
The upper one has the main flow channel and the detour channel, while the lower one has
the control channel. Both channels are connected through via. b Cross-section view of the
push-up valve. The valve has the flat membrane geometry whose thickness h is determined
by the spin speed. The boundary of the flow channel is the rounded shape, while the control
channel is the rectangular shape. c, d Photograph of the scale of fabricated current source
and via (courtesy of Proc. Natl. Acad. Sci. U. S. A., ref. 12, copyright © by the National
Academy of Sciences).
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Fig. 2.
Effective channel height. a Three different channel segments are connected in series:
channel 1 (2, 3) has length L1 (Δ, L2) and height H0 (Hv, H0). The multiple channels can be
regarded as a straight channel with length L (=L1 + Δ + L2) and effective channel height He.
The length Δ and height Hv of the middle channel are expressed as εL and γH0, where ε
and γ are the proportional constants. b When H0, L, ε are given by 20 µm, 14.2 mm, and
0.01, respectively, the deformable ratio γ has a strong effect on the effective channel height.
For γ > 1 or γ3 > ε, the effective channel height can be approximated as H0 (blue box).
While, for γ3 < ε, the effective channel is lower than H0 below γ of ~0.4 (red box).
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Fig. 3.
Top view of the current source architecture. The channel in grey (red) indicates the flow
(control) channel in the upper (lower) layer. The flow channel is connected to the control
channel by via (green box). The black arrows indicate flow directions. The forward (reverse)
bias allows positive (negative) pressure drop across the detour channel to actuate the push-
up valve.
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Fig. 4.
Characteristics of the current source. a The Q-P curve shows the nonlinear behaviour. The
flow rate remains constant beyond the saturation pressure. The slop at the initial condition is
inversely proportional to the hydraulic resistance from Poiseuille’s law. b The saturation
pressure is defined as a point where the slope of dQ/dP(P) is zero. c The partial flow channel
height Hv is deformed by pressure-actuated push-up valve. The Hv(P) curve has the
saturation pressure, resulting in the nonlinear hydraulic resistance.
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Fig. 5.
Response of Q-P curve. Flow rate increases in the linear fashion in the rigid channel and its
slope is inversely proportional to the hydraulic resistance, which is independent on the
applied pressure, (dashed line). On the other hand, the resistance in the deformable PDMS
channel is varied as increasing the applied pressure due to the channel bulging effect,
leading to the upward curvature of the Q-P curve at high pressure (solid line).
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Fig. 6.
Simulation of the Q(P) curve for various values of a initial height of the flow channel H0, b
Young’s modulus E, c detour ratio L2/L, and d degree of PDMS deformation c. Tuning
parameters assumed here are relevant to actual fabricated devices12, 14, 21, 25.
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Fig. 7.
Comparison of measurement and modeling data in reverse bias. Flow rates are measured as
a function of applied pressure when given different detour channel ratios L2/L     ).
The fit of eqn (14) clearly shows a slight upward slop (red solid line). The fit parameter E/c
of 4.14MPa is good agreement with measurement data.
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Fig. 8.
Comparison of measurement and modeling data in forward bias. From eqn (14) and (15), the
nonlinear fit curves (solid lines) are in good agreement with measurement data (   ,  )
where fit parameters c and E are 0.29 and 1.2MPa, respectively. The saturation pressure and
flow rate decrease as the detour channel ratio increases.
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