Issue 17, 2012

Surface chemistry to minimize fouling from blood-based fluids

Abstract

Upon contact with bodily fluids/tissues, exogenous materials spontaneously develop a layer of proteins on their surface. In the case of biomedical implants and equipment, biological processes with deleterious effects may ensue. For biosensing platforms, it is synonymous with an overwhelming background signal that prevents the detection/quantification of target analytes present in considerably lower concentrations. To address this ubiquitous problem, tremendous efforts have been dedicated over the years to engineer protein-resistant coatings. There is now extensive literature available on stealth organic adlayers able to minimize fouling down to a few ng cm−2, however from technologically irrelevant single-protein buffered solutions. Unfortunately, few coatings have been reported to present such level of performance when exposed to highly complex proteinaceous, real-world media such as blood serum and plasma, even diluted. Herein, we concisely review the surface chemistry developed to date to minimize fouling from these considerably more challenging blood-based fluids. Adsorption dynamics is also discussed.

Graphical abstract: Surface chemistry to minimize fouling from blood-based fluids

Article information

Article type
Tutorial Review
Submitted
02 May 2012
First published
06 Jul 2012

Chem. Soc. Rev., 2012,41, 5599-5612

Surface chemistry to minimize fouling from blood-based fluids

C. Blaszykowski, S. Sheikh and M. Thompson, Chem. Soc. Rev., 2012, 41, 5599 DOI: 10.1039/C2CS35170F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements