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Bulk quantities of graphene nanosheets and nanodots have

been selectively fabricated by mechanical grinding exfoliation

of natural graphite in a small quantity of ionic liquids. The

resulting graphene sheets and dots are solvent free with low

levels of naturally absorbed oxygen, inherited from the starting

graphite. The sheets are only two to five layers thick. The

graphene nanodots have diameters in the range of 9–29 nm

and heights in the range of 1–16 nm, which can be controlled by

changing the processing time.

Recently graphene has received extensive attention since it has

demonstrated many unique electrical, thermal and mechanical

properties that have never been found in other materials.1–5 It

has been both theoretically predicted and experimentally

proved that the size, composition and edge geometry of

graphene are important factors, which determine its overall

electronic, magnetic, optical and catalytic properties due to

strong quantum confinement and edge effects. For example, by

cutting graphene sheets into long and narrow ribbons (GNRs)

(width less than 10 nm) it is possible to induce a direct band

gap in graphene, which renders GNRs semiconducting.6

Further confinement in the basal plane (overall dimensions

smaller than 100 nm) leads to quantum dots (GQDs) with zero

dimensions. The suppressed hyperfine interaction and weak

spin–orbit coupling make GQDs interesting candidates for

spin qubits with long coherence times for future quantum

information technology.7 Therefore graphene sheets with

reduced lateral dimensions in the form of nano-ribbons or

quantum dots can effectively tune the band gap of graphene

and facilitate the lateral scaling of graphene in nanoelectronic

devices. In this context it has become urgent to develop

effective routes for tailoring the graphene structures.8,9

To date, three main methods such as chemical vapour

deposition (CVD),10 micromechanical cleavage and chemical

exfoliation11 have been used to fabricate graphene sheets.

Compared to other techniques, chemical exfoliation, which

involves the direct exfoliation of various solid starting materials,

such as graphite oxide, expanded graphite and natural

graphite,12–15 is advantageous in terms of simplicity, low cost

and high volume production. However, currently explored

chemical solution exfoliation methods have three main

drawbacks that need to be addressed. Firstly the produced

graphene is quite poor in quality compared to that fabricated

by CVD and micromechanical cleavage. This is mainly because

the various chemicals used, such as solvents, oxidants and

reductants, may attack the graphene lattice in the process or

are difficult to be removed, leading inevitably to residual surface

species. Overall these chemical processes introduce various

forms of surface defects, which disrupt the graphene band

structure and hamper the conductivity of the resulting graphene

sheets. Secondly, many of the chemicals used are either expen-

sive or toxic and need careful handling,16 leading to environ-

mentally unfriendly and unsustainable practices. Thirdly, the

majority of chemical solution exfoliation methods involve

extremely time-consuming multiple steps that sometimes last

for several days or weeks. Therefore, in order to overcome the

above-mentioned limitations and obtain high-quality graphene,

it is necessary to develop simple, rapid chemical exfoliation

methods which utilise cheaper and more ‘‘environmentally

friendly’’ chemicals. To date, some progress has been achieved.

For example, Wang et al. have reported that few layer graphene

sheets can be directly exfoliated from natural graphite by

using tip ultrasonication in ionic liquids.17 The use of natural

graphite may not only decrease the cost compared to that of the

expanded graphite or graphene oxide, but also can improve the

quality of the resulting graphene due to the absence of oxygen-

containing groups. However, the graphene sheets produced by

these simple techniques still contain a few impurities (F and S

etc.), and a large fraction of oxygen17 (>10 at%) similar to

those found in graphene reduced from graphene oxide. Oxygen

in graphene is difficult to be removed18 and may significantly
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influence its properties. Therefore, it is highly desirable to

develop new high-yield methods to make high-quality graphene

sheets.

In this study, we report the direct exfoliation of natural

graphite into high-purity few layer graphene sheets and nanodots

by using a novel environmentally friendly method, involving

simple ionic liquid (IL) assisted grinding to produce a gel,

followed by a cleaning step to remove the IL. Ionic liquids are

chosen because they are green organic solvents with a surface

tension well matching the surface energy of graphite, preventing

the detached graphene from restacking.19,20 It should be empha-

sized that our procedure is different from other reported studies,

where either prolonged or high intensity ultrasound is the driving

force for the exfoliation. Our procedure is mild and relies on pure

shear forces to detach the graphene layers from the graphite

flakes. Therefore, severe defect formation on the crystalline plane

of graphene, or chemical reactions due to cavitation effects

induced during sonolysis are avoided resulting in high quality

material. The process used is described in detail in the ESI.w
Fig. 1(a) and (b) show typical XPS survey scan spectra of

graphene products and the starting powder of graphite flakes,

respectively. They both show a strong C1s peak at 284.5 eV,

a small O1s peak at 532.6 eV and a weak OKLL Auger band

between 955–985 eV. Except for oxygen and carbon, no other

elements such as F, N or P from the chemicals used (IL and

N,N-dimethylformamide) are found in the sample. The

concentration of elements C and O in graphene is calculated

to be about 96.4 and 3.6 at%, respectively, very close to those in

the starting graphite powder (3.4 at% of O). This demonstrates

that the graphene sheets are clean and free of any impurities and

contaminations from the chemicals used, except for a small

amount of oxygen inherited from the starting graphite material.

This is in stark contrast to graphene sheets produced by tip

ultrasonication in ionic liquids,17 where impurities (F and S etc.)

inherited by the IL, and a large fraction of oxygen (more than

10 at%) are present.

Depending on the preparation parameters, two kinds of

graphene structures can be formed in the supernatant (20 wt%

of the starting material) of the sedimentation process: sub-

micron width few-layer sheets and nanometre-sized nanodots.

Submicrometre graphene sheets are dominant in the super-

natant, when a grinding time of less than 30 min and a ratio

of graphite flakes (mg) to ionic liquid (mL) of 1 : 10 up to 1 : 4

are applied. Fig. 2(a) shows a typical TEM image of a

collection of graphenes. Additional TEM images and SEM

images of graphene sheets are available in Fig. S2 and S5

(ESIw). It is found that graphene sheets have a size of

0.006–0.36 mm2 and some are stacked together. Fig. 2(c) shows

a size distribution of a total of 93 distinguishable graphene

sheets calculated from TEM images using software ImageJ.

Sheet sizes of 0.006–0.0125 mm2 are dominant representing

50% of the total distribution. Around 22% of sheets have a

size of 0.022–0.038 mm2, and only a few larger sheets with a

size up to 0.3 mm2 are present. High resolution TEM analysis

of the graphene edges reveals that the majority of the graphene

sheets are made of 2–5 layers, with a lattice spacing of

0.342 nm (see Fig. 2(d)–(f)). No other carbon phases such as

amorphous carbon or fullerene etc. are found at the edges. The

corresponding electron diffraction pattern of single sheets

(Fig. 2(b)) has a typical six-fold symmetry, confirming that

the graphene sheet is of high-quality single crystal nature.

When a longer grinding time and a smaller quantity of ionic

Fig. 1 (a) and (b) XPS survey scan spectra of graphene sheets and

starting graphite, respectively.

Fig. 2 (a) A typical low-magnification TEM image of graphene

sheets; (b) corresponding electron diffraction pattern of (a); (c) size

distribution of graphene sheets; HRTEM images of (d) bilayer,

(e) triple layer and (f) 4–5 layer graphene sheets.
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liquid are applied (1 : 2 ratio), graphene nanodots are domi-

nant in the supernatant of the centrifugation process. The

diameter of graphene nanodots can be controlled by changing

the grinding time. Fig. 3(a)–(c) show typical AFM images of

graphene nanodots, which are produced with a grinding time

of 0.5, 1 and 4 hours, respectively.

The nanodots are dispersed on Si or freshly cleaved mica

surfaces and measured by an AFM operating in the tapping

mode. The nanodots have an average diameter of 29 nm for

the grinding time of 30 min. When the grinding time is

increased to 1 and 4 h, the average diameter of the nanodots

reduces to 20 and 9 nm, respectively. Besides the diameter,

the height of the nanodots also decreases as the grinding

times increases (Fig. 3(d)). For 30 min grinding the average

height of the nanodots is approximately 16 nm. This reduces

dramatically to 5 and 1 nm, respectively, for grinding times

of 1 and 4 h (Fig. S4, ESIw). Measured lateral distributions

are provided in Fig. S3 (ESIw). Meanwhile, the nanodots

produced for different grinding times have quite different

lateral and height distributions. Longer grinding times yield

narrower distributions. For a grinding time of 4 h, the

nanodots present a monodispersion in height of only 1–3 nm

(few layer graphene). HRTEM images and optical properties

of graphene nanodots are provided in Fig. S9 and S10 (ESIw).
In addition to microscopic characterization of graphene,

macroscopic techniques such as Raman scattering and thermal

gravimetric analysis of bulk quantities have been used to

characterize our samples as well (Fig. S6 and S7, ESIw). Both
techniques show the graphene sheets and nanodots are of high

quality.

In summary, we have developed a new controllable method

to selectively produce few-layer graphene sheets and nanodots

with a high yield (B20%) from natural graphite by using a

simple grinding method with ionic liquid as the grinding agent.

The produced graphene sheets are free from chemical func-

tionalities and consist of high-quality single crystals with only

two to five layers. The graphene nanodots have a diameter

ranging from 9 to 29 nm and a height ranging from 1 to 16 nm,

which strongly depend on the grinding time. The formation

of high-quality graphene is achieved by a green procedure

different from other reported studies, where either prolonged

or harsh sonication is the driving force for the exfoliation of

graphite flakes. The present method has the potential to exfoliate

other layered materials such as MoS2 or BN in addition to

graphite.
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Bulk quantities of graphene sheets and nanodots have been selectively fabricated by mechanical 

grinding exfoliation from natural graphite in a small quantity of ionic liquid. 
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1. Fabrication process 

Graphite powders of 50 mg (99.0% purity, from Sigma-Aldrich) with a   grain size less than 

20 µm were mixed and ground with 0.1―0.5 mL ionic liquid (IL, 1-Butyl-3-

methylimidazolium hexafluorophosphate, BMIMPF6, from Sigma-Aldrich) for 0.5 ― 4 hrs. 

Then the mixtures were added into a solution of 15 mL N,N-dimethylformamide (DMF) and 

15 mL acetone and centrifugated in the speed of 3000 rpm for 30 min in order to  remove the 

ionic liquid. This washing cycle was repeated three times and the final sediment was 

dispersed in 1 L DMF. After one-day sedimentation, the large/thick graphitic flakes 

completely precipitated on the bottom of the bottle. The supernatant was dried and then the 

yield was calculated as 20 wt%, which is much larger than that of other methods reported. 

The supernatant was collected and centrifugated to get a dense suspension, with which the 

graphene samples were prepared for the study of their microstructure and electrical properties. 

The suspension was diluted and dropped on lacy carbon-coated Cu grid for TEM 

observations, on clean Si wafers or mica sheets for the XPS, Raman and AFM studies, and on 

thermally oxidised Si wafer substrates (300 nm SiO2) for the study of electrical properties. 

Note, to obtain uniform large-area graphene thin films, the Si/SiO2 substrate was 

functionalised with 5% 3-triethoxysilylpropylamine (APTES) aqueous solution for 30 min. 

All samples were completely dried under an infrared light or on a hot plate before 

measurements. 

We should note the role of ILs in this study. ILs are low-temperature molten salts, and as 

their name denotes are liquids composed entirely of ions. They have been proposed as a new 

class of “green” organic solvents because not only they are able to solvate a large variety of 

organic and inorganic compounds, (polar or non-polar) but also they possess high thermal 

and chemical stability, high ionic conductivity, wide electrochemical window, and negligible 

vapour pressure. The mixing of a small quantity of IL and graphite flakes forms a gel-like 
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composite. When graphite flakes are ground with ionic liquids, the shear force detaches the 

graphene layers from the graphite flakes. The ionic liquids can effectively surround each 

layer preventing the detached graphenes from restacking. Based on simulation and 

experimental studies on processing of carbon nanotubes with imidazolium-based ILs, the 

electronic structure of graphene layers in the bucky gel remains unchanged and there is no 

charge transfer between graphene and imidazolium cations1. 



4 

 

2. XPS  data analysis  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. XPS narrow scan spectra of graphene samples for elements C 1s (a) and O1s (b), 

respectively. 
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Figure S1 (a) and (b) present a high resolution asymmetric C1s and an O1s XPS spectrum of 

graphene sheets, respectively. After subtraction of a Shirley background followed by a fitting 

process using a mixture of Lorentzian and Gaussian lineshapes, the C1s peak was 

deconvoluted into four sub-peaks located at 284.4, 284.9, 285.5, and 288.9 eV, which have 

been assigned to C-C (sp2), “defect peak”, C-O and COOC/COOH bonds, respectively. The 

O1s peak can be fitted by two Gaussian peaks at 532.1 and 534.7 eV corresponding to C-O 

and C=O bonds.  
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3. Low magnification TEM images of graphene nanosheets and their size distributions 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. Low magnification TEM images of folded and wrinkled graphene nanosheets.  
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4. Size distribution of graphene nanodots 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S3. Histogram of graphene nanodots describing their size distribution. 
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5. AFM images and profile line scans of graphene nanodots 

 

 

Figure S4. Typical Atomic Force Microscopy images and topography line profiles for 

graphene nanodots produced using different grinding times: (a) 1 hour, (b) 4 hours . 
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6. SEM images of  graphene nanosheets 

 

 
 
 
Figure S5. Different magnification SEM images of graphene sheet films produced through 

filtration of graphene solution. 
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7. Raman spectrum of graphene sheets and nanodots 

 

 

 

 

 

 

 

Figure S6. Typical Raman spectrum of the graphene nanosheets. 

 

Raman scattering is a convenient, powerful macroscopic tool for the characterisation of 

graphene. The layer number and quality of graphene fabricated by the method of 

micromechanical cleavage can be well distinguished by the analysis of spectroscopic 

intensity, frequency and line width etc. Figure S6 shows a typical Raman spectrum of the 

graphene sample. The Raman measurement is conducted in a backscattering geometry at 

room temperature using an excitation laser of 514 nm with a spot size of 1-2 µm. There are 

three strong peaks at 1348, 1571, and 2711 cm-1, which are ascribed to the D, G, and G´ 

bands of graphitic materials, respectively. No broad peaks relevant to amorphous carbon are 

found in the sample. The presence of the D peak arises from the edges of graphene sheets, 

whoose size is smaller than the laser spot (1-2µm). The ratio of integrated intensities of D to 

G bands (ID/IG) is only 0.23, revealing that the graphenes we produced are of high quality, 

since the D band is a fingerprint of defects in graphitic materials. The G´ band, a fingerprint 

of graphene, is quite strong, larger than the D but slightly smaller than the G band in 

intensity. The ratio of integrated intensity of G´ to G bands is about 0.61, revealing the 
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presence of 2-4 graphene layers consistent with the TEM observation. Note, currently the 

Raman spectra of graphene fabricated by solution based methods do not resemble those of 

graphene produced by other methods. They do not present identical spectroscopic features 

and are strongly dependent on the fabrication method and chemicals used. Most of them 

present a strong D band, a broad G band and a weak G´ band. However, all findings 

presented here confirm that the crystalline quality of graphene we produced is better to those 

reported by solution methods in other groups, but poorer than the graphene produced by 

mechanical cleavage of highly oriented pyrolytic graphite and by high-temperature CVD 

growth on metal substrates, where no defect related D bands can be detected. The relatively 

poorer quality of graphene sheets is believed to be due to the low-quality starting material 

(natural graphite) compared to the HOPG, and not due to the grinding process.  

 



12 

 

8. TGA spectra of the starting graphite and produced graphene 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S7. TGA spectra of graphene sheets and starting graphite flakes material. 

 

Figure S7 shows TGA spectra taken from the graphene sheets and the starting graphite flakes 

material. The measurement was done in a mixture ambient of 50 % N2 and 50 % O2 with a 

ramp of 1 ºC/min. It can be seen that graphene sheets have a same thermal behaviour as that 

of the starting material. They simultaneously start to oxidize at around 500 ºC and completely 

burn off at 700 ºC, demonstrating exactly same quality and no any high/low melting materials 

being introduced in the fabrication process. 
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9. Electrical resistivity of pristine and vacuum-annealed graphene nanosheet films 

 

 

 

 

 

 

 

 

 

 

 

Figure S8. The resistivity of graphene sheet films as a function of the annealing temperature. 

 

Figure S8 shows the resistivity of graphene films as a function of the annealing temperature. 

The graphene films with a thickness of around 12.8µm were fabricated on a large SiO2 coated 

Si wafer by drop coating and then were cut into several 10×20 mm2 sized pieces for 

annealing in vacuum (less than 8×10-5 Torr) for 1 hr in the temperature range of 200 ¯ 600 ºC. 

The resistances were measured by a four-probe technique at room temperature (Resistivity 

test rig, Model B, A & M Fell LTD, England). The resistivity of pristine graphene films is 

about 1×10-2Ω•m. The resistivity decreases to 8×10-3
Ω•m with the increase of the annealing 

temperature in the range of 200 ¯ 400 ºC. When the annealing temperature is increased to 

500 ̄  600 ºC, their resistivity significantly lowers to 2×10-3
Ω•m. However, this value is still 

larger than that (0.07 ¯  0.11×10-3Ω•m) of graphene films produced by other chemical solution 
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methods.2  The main reason is that there are a lot of junctions in the film due to either the 

smaller size of single graphene sheets or the presence of voids. The standard deviations of 

pristine and annealed graphene films at low temperatures are quite large, suggesting that the 

graphene film could have different thicknesses and different numbers of internal structural 

voids. The variation of the graphene resistivity appears to take place in two steps, suggesting 

that the graphene film is subjected to two kinds of transitions during annealing. The first 

process could be due to the desorption of various absorbates such as water, C-H and COOH 

groups from the surface of graphene films and the inner surface of the structural voids. The 

second step could be ascribed to the shrinking or collapsing of the voids, leading to relocation 

of all constituent graphene sheets and the formation of a dense uniform film at high 

temperature, which is evidenced by the small value of standard deviation in the resistivity 

data at this temperature. 
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TEM images of graphene nanodots 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S9. Typical TEM images of graphene nanodots. 

 

Figure S9(a) shows a typical low-magnification TEM images of graphene nanodots which are 

produced by grinding for 4hrs. The graphene nanodots have a size of 5-12 nm, in close 

agreement with the  AFM results. The high-resolution TEM image (Fig. S9b) shows the high 

crystalline quality of nanodots with a lattice spacing of around 0.33nm.  



16 

 

10. Optical properties of graphene nanodots 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S10. (a) UV-Vis absorption and photoluminescence spectra of graphene nanodots. 

 

Figure S10 (a) shows a typical UV-Vis absorption spectrum taken from ~0.1mg/mL graphene 

nanodots in de-ionized water by using a UV-Vis spectrometer (Perkin Elmer Lambda 35). 

The graphene nanodots have a broad absorption band centered at around 280nm. Figure S10 

(b) shows a typical photoluminescence spectrum taken from ~0.03mg/mL graphene in DMF 

solution using a Cary Eclipse fluorescence meter with a 330 nm filtered excitation at room 

temperature in a wavelength range of 350-800nm. It can be seen that there is a strong broad 
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red band centered at 610 nm, which originates from the quartz cuvette rather than from the 

graphene nanodots. No photoluminescence from the graphene nanodots was observed. This 

was confirmed by a control experiment with a bare DMF solution. The main reason for the 

absence of PL in the graphene nanodots produced by IL assisted grinding in the present work 

is that they are free of both the defects and functional groups, which are usually considered to 

result in PL. 3 4  
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