Skip to main content

Advertisement

Log in

Applicability of photodynamic antimicrobial chemotherapy as an alternative to inactivate fish pathogenic bacteria in aquaculture systems

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Aquaculture activities are increasing worldwide, stimulated by the progressive reduction of natural fish stocks in the oceans. However, these activities also suffer heavy production and financial losses resulting from fish infections caused by microbial pathogens, including multidrug resistant bacteria. Therefore, strategies to control fish infections are urgently needed, in order to make aquaculture industry more sustainable. Antimicrobial photodynamic therapy (aPDT) has emerged as an alternative to treat diseases and prevent the development of antibiotic resistance by pathogenic bacteria. The aim of this work was to evaluate the applicability of aPDT to inactivate pathogenic fish bacteria. To reach this objective a cationic porphyrin Tri-Py+-Me-PF was tested against nine pathogenic bacteria isolated from a semi-intensive aquaculture system and against the cultivable bacteria of the aquaculture system. The ecological impact of aPDT in the aquatic environment was also tested on the natural bacterial community, using the overall bacterial community structure and the cultivable bacteria as indicators. Photodynamic inactivation of bacterial isolates and of cultivable bacteria was assessed counting the number of colonies. The impact of aPDT in the overall bacterial community structure of the aquaculture water was evaluated by denaturing gel gradient electrophoresis (DGGE). The results showed that, in the presence of Tri-Py+-Me-PF, the growth of bacterial isolates was inhibited, resulting in a decrease of ≈7-8 log after 60-270 min of irradiation. Cultivable bacteria were also considerably affected, showing decreases up to the detection limit (≈2 log decrease on cell survival), but the inactivation rate varied significantly with the sampling period. The DGGE fingerprint analyses revealed changes in the bacterial community structure caused by the combination of aPDT and light. The results indicate that aPDT can be regarded as a new approach to control fish infections in aquaculture systems, but it is clearly more difficult to inactivate the complex natural bacterial communities of aquaculture waters than pure cultures of bacteria isolated from aquaculture systems. Considering the use of aPDT to inactivate pathogenic microbial community of aquaculture systems the monitoring of microorganisms is needed in order to select the most effective conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. M. Sorimachi and T. Hara, Characteristics and pathogenicity of a virus isolated from yellowtail fingerlings showing ascites, Fish Pathol., 1985, 19, 231–238.

    Article  Google Scholar 

  2. H. H. Huss, Assurance of Seafood Quality, FAO Fishery Technical Paper, 1994, No. 334. FAO, Rome, Italy.

  3. Z. Shao, Aquaculture pharmaceuticals and biological: current perspectives and future, Adv. Drug Delivery Rev., 2001, 50, 229–243.

    Article  CAS  Google Scholar 

  4. A. E. Toranzo, B. Magariños and J. L. Romalde, A review of the main bacterial fish diseases in mariculture systems, Aquaculture, 2005, 246, 37–61.

    Article  Google Scholar 

  5. F. P. Meyer, Aquaculture disease and health management, J. Anim. Sci., 1991, 69, 4201–4208.

    Article  CAS  PubMed  Google Scholar 

  6. A. Almeida, A. Cunha, N. C. M. Gomes, E. Alves, L. Costa and M. A. F. Faustino, Phage Therapy and Photodynamic Therapy: Low Environmental Impact Approaches to Inactivate Microorganisms in Fish Farming Plants, Mar. Drugs, 2009, 7, 268–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. T. Defoirdt, N. Boon, P. Sorgeloos, W. Verstraete and P. Bossier, Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example, Trends Biotechnol., 2007, 25, 472–479.

    Article  CAS  PubMed  Google Scholar 

  8. M. Wainwright, Photodynamic antimicrobial chemotherapy (PACT), J. Antimicrob. Chemother., 1998, 42, 13–28.

    Article  CAS  PubMed  Google Scholar 

  9. G. Jori and S. B. Brown, Photosensitized inactivation of microorganisms, Photochem. Photobiol. Sci., 2004, 3, 403–405.

    Article  CAS  PubMed  Google Scholar 

  10. G. Jori, C. Fabris, M. Soncin, S. Ferro, O. Coppellotti, D. Dei, L. Fantetti, G. Chiti and G. Roncucci, Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications, Lasers Surg. Med., 2006, 38, 468–481.

    Article  PubMed  Google Scholar 

  11. T. Maisch, A new strategy to destroy antibiotic resistant microorganisms: antimicrobial photodynamic treatment., Mini Rev. Med. Chem., 2009, 9, 974–983.

    Article  CAS  PubMed  Google Scholar 

  12. F. M. Lauro, P. Pretto, L. Covolo, G. Jori and G. Bertoloni, Photoinac-tivation of bacterial strains involved in periodontal diseases sensitized by porphycene-polylysine conjugates, Photochem. Photobiol. Sci., 2002, 1, 468–470.

    Article  CAS  PubMed  Google Scholar 

  13. L. A. Pedigo, A. J. Gibbs, R. J. Scott and C. N. Street, Absence of bacterial resistance following repeat exposure to photodynamic therapy, Proc. SPIE, 2009, 73803H.

    Google Scholar 

  14. A. Tavares, C. M. B. Carvalho, M. A. F. Faustino, M. G. P. M. S. Neves, J. P. C. Tomé, A. C. Tomé, J. A. S. Cavaleiro, Â. Cunha, N. C. M. Gomes, E. Alves and A. Almeida, Antimicrobial Photodynamic Therapy: Study of Bacterial Recovery Viability and Potential Development of Resistance after Treatment, Mar. Drugs, 2010, 8, 91–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. K. D. Winckler, Special section: focus on anti-microbial photody-namic therapy (PDT), J. Photochem. Photobiol., B, 2007, 86, 43–44.

    Article  CAS  Google Scholar 

  16. G. Jori and O. Coppellotti, Inactivation of pathogenic microorganisms by photodynamic techniques: mechanistic aspects and perspective applications, Anti-Infect. Agents Med. Chem., 2007, 6, 119–131.

    Article  CAS  Google Scholar 

  17. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst., 1998, 90, 889–905.

    Article  CAS  PubMed  Google Scholar 

  18. M. R. Hamblin and T. Hasan, Photodynamic therapy: a new antimicrobial approach to infectious disease?, Photochem. Photobiol. Sci., 2004, 3, 436–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. R. Bonnett, Chemical aspects of photodynamic therapy, Gordon and Breach Science, Amsterdam, 2000.

    Book  Google Scholar 

  20. M. Wainwright, Methylene blue derivatives - suitable photoantimicro-bials for blood product disinfection?, Int. J. Antimicrob. Agents, 2000, 16, 381–394.

    Article  CAS  PubMed  Google Scholar 

  21. T. Maisch, Anti-microbial photodynamic therapy: useful in the future?, Lasers Med. Sci., 2006, 22, 83–91.

    Article  PubMed  Google Scholar 

  22. R. Bonnett, M. A. Krysteva, I. G. Lalov and S. V. Artarsky, Water disinfection using photosensitizers immobilized on chitosan, Water Res., 2006, 40, 1269–1275.

    Article  CAS  PubMed  Google Scholar 

  23. M. Jemli, Z. Alouini, S. Sabbahi and M. Gueddari, Destruction of fecal bacteria in wastewater by three photosensitizers, J. Environ. Monit., 2002, 4, 511–516.

    Article  CAS  PubMed  Google Scholar 

  24. C. M. B. Carvalho, A. Gomes, S. C. D. Fernandes, A. C. B. Prata, M. A. Almeida, M. A. Cunha, J. P. C. Tome, M. A. F. Faustino, M. Neves and A. C. Tome, Photoinactivation of bacteria in wastewater by porphyrins: bacterial beta-galactosidase activity and leucine-uptake as methods to monitor the process, J. Photochem. Photobiol., B, 2007, 88, 112–118.

    Article  CAS  Google Scholar 

  25. L. Costa, E. Alves, C. Carvalho, J. Tomé, M. Faustino, M. Neves, A. Tomé, J. Cavaleiro, Â. Cunha and A. Almeida, Sewage bacteriophage photoinactivation by cationic porphyrins: a study of charge effect, Photochem. Photobiol. Sci., 2008, 7, 415–422.

    Article  CAS  PubMed  Google Scholar 

  26. E. Alves, L. Costa, C. Carvalho, J. Tome, M. Faustino, M. Neves, A. Tome, J. Cavaleiro, A. Cunha and A. Almeida, Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins, BMC Microbiol., 2009, 9, 70.

    Article  PubMed  PubMed Central  Google Scholar 

  27. M. Magaraggia, F. Faccenda, A. Gandolfi and G. Jori, Treatment of mi-crobiologically polluted aquaculture waters by a novel photochemical technique of potentially low environmental impact, J. Environ. Monit., 2006, 8, 923–931.

    Article  CAS  PubMed  Google Scholar 

  28. P. N. Wong, S. K. Mak, M. W. Lo, K. Y. Lo, G. M. W. Tong, Y. Wong and A. K. M. Wong, Vibrio vulnificus peritonitis after handling of seafood in a patient receiving CAPD, Am. J. Kidney Dis., 2005, 46, e87–e90.

    Article  PubMed  Google Scholar 

  29. D. Faust, K. H. Funken, G. Horneck, B. Milow, J. Ortner, M. Sattlegger, M. Schafer and C. Schmitz, Immobilized photosensitizers for solar photochemical applications, Sol. Energy, 1999, 65, 71–74.

    Article  CAS  Google Scholar 

  30. M. E. Jiménez-Hernández, F. Manjón, D. Garcia-Fresnadillo and G. Orellana, Solar water disinfection by singlet oxygen photogenerated with polymer-supported Ru(II) sensitizers, Sol. Energy, 2006, 80, 1382–1387.

    Article  CAS  Google Scholar 

  31. M. Krouit, J. Bras and M. N. Belgacem, Cellulose surface grafting with polycaprolactone by heterogeneous click-chemistry, Eur. Polym. J., 2008, 44, 4074–4081.

    Article  CAS  Google Scholar 

  32. B. C. Cho and F. Azam, Biogeochemical significance of bacterial biomass in the ocean’s euphotic zone, Mar. Ecol.: Prog. Ser., 1990, 63, 253–259.

    Article  CAS  Google Scholar 

  33. L. R. Pomeroy, Status and future needs in protozoan ecology, in: Protozoan and their role in marine processes, ed. P. C. Reid, C. M. Turley and P. H. Burkhill, Springer-Verlag, Heidelberg, 1991, vol. 25, pp. 475–492.

    Article  Google Scholar 

  34. J. J. Cole, S. Findlay and M. L. Pace, Bacterial production in fresh and saltwater ecosystems: a cross-system overview, Mar. Ecol.: Prog. Ser., 1988, 43, 1–10.

    Article  Google Scholar 

  35. H. W. Ducklow and C. A. Carlson, Oceanic bacterial production, Adv. Microb. Ecol., 1992, 12, 113–181.

    Article  Google Scholar 

  36. B. C. Cho and F. Azam, Major role of bacteria in biogeochemical fluxes in the ocean’s interior, Nature, 1988, 332, 441–443.

    Article  CAS  Google Scholar 

  37. D. J. W. Moriarty, The role of microorganisms in aquaculture ponds, Aquaculture, 1997, 151, 333–349.

    Article  Google Scholar 

  38. M. A. Almeida, M. A. Cunha and F. Alcântara, Loss of estuarine bacteria by viral infection and predation in microcosm conditions, Microb. Ecol., 2001, 42, 562–571.

    Article  CAS  PubMed  Google Scholar 

  39. R. K. Saiki, D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Higuchi, G. T. Horn, K. B. Mullis and H. A. Erlich, Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase, Science, 1988, 239, 487–491.

    Article  CAS  PubMed  Google Scholar 

  40. M. Sela, F. H. Jr. White and C. B. Anfinsen, Reductive cleavage of disulfide bridges in ribonuclease, Science, 1957, 125, 691–692.

    Article  CAS  PubMed  Google Scholar 

  41. G. E. Sheridan, C. I. Masters, J. A. Shallcross and B. M. MacKey, Detection of mRNA by reverse transcription-PCR as an indicator of viability in Escherichia coli cells, Appl. Environ. Microbiol., 1998, 64, 1313–1318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. T. Demidova and M. Hamblin, Effect of cell-photosensitizer binding and cell density on microbial photoinactivation, Antimicrob. Agents Chemother., 2005, 49, 2329–2335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. S. Banfi, E. Caruso, L. Buccafurni, V. Battini, S. Zazzaron, P. Barbieri and V. Orlandi, Antibacterial activity of tetraaryl-porphyrin photosensitizers: An in vitro study on Gram negative and Gram positive bacteria, J. Photochem. Photobiol., B, 2006, 85, 28–38.

    Article  CAS  Google Scholar 

  44. D. Caminos and E. Durantini, Photodynamic inactivation of Es-cherichia coli immobilized on agar surfaces by a tricationic porphyrin, Bioorg. Med. Chem., 2006, 14, 4253–4259.

    Article  CAS  PubMed  Google Scholar 

  45. H. Li, O. S. Fedorova, A. N. Grachev, W. R. Trumble, G. A. Bohach and L. Czuchajowski, A series of meso-tris(N-methyl-pyridiniumyl)-(4-alkylamidophenyl) porphyrins: Synthesis, interaction with DNA and antibacterial activity, Biochim. Biophys. Acta, Gene Struct. Expression, 1997, 1354, 252–260.

    Article  CAS  Google Scholar 

  46. S. Mettath, B. R. Munson and R. K. Pandey, DNA interaction and pho-tocleavage properties of porphyrins containing cationic substituents at the peripheral position, Bioconjugate Chem., 1999, 10, 94–102.

    Article  CAS  Google Scholar 

  47. F. P. Imray and D. G. MacPhee, The role of DNA polymerase I and the rec system in survival of bacteria and bacteriophages damaged by the photodynamic action of acridine-orange, MGG, Mol. Gen. Genet., 1973, 123, 289–298.

    Article  CAS  PubMed  Google Scholar 

  48. T. A. Dahl, W. R. Midden and P. E. Hartman, Pure singlet oxygen cytotoxicity for bacteria, Photochem. Photobiol., 1987, 46, 345–352.

    Article  CAS  PubMed  Google Scholar 

  49. T. A. Dahl, W. R. Midden and P. E. Hartman, Comparison of killing of gram-negative and gram-positive bacteria by pure singlet oxygen, J. Bacteriol., 1989, 4, 2188–2194.

    Article  Google Scholar 

  50. K. E. Sanderson, T. MacAlister, J. W. Costerton and K. J. Cheng, Permeability of lipopolysaccharide-deficient (rough) mutants of Salmonella typhimurium to antibiotics, lysozyme, and other agents, Can. J. Microbiol., 1974, 20, 1135–1145.

    Article  CAS  PubMed  Google Scholar 

  51. M. Szpakowska, K. Lasocki and J. Grzybowski, Photodynamic activity of the haematoporphyrin derivative with rutin and arginine substituents (HpD-Rut (2)-Arg(2)) against Staphylococcus aureus and Pseudomonas aeruginosa, Pharmacol. Res., 2001, 44, 243–246.

    Article  CAS  PubMed  Google Scholar 

  52. M. Grinholc, B. Szramka, J. Kurlenda, A. Graczyk and K. P. Bielawski, Bactericidal effect of photodynamic inactivation against methicillin-resistant and methicillin-susceptible Staphylococcus aureus is strain-dependent, J. Photochem. Photobiol., B, 2008, 90, 57–63.

    Article  CAS  Google Scholar 

  53. D. Evenberg, R. van Boxtel, B. Lugtenberg, F. Schurer, J. Blommaert and R. Bootsma, Cell surface of the fish pathogenic bacterium Aeromonas salmonicida. I. Relationship between autoagglutination and the presence of a major cell envelope protein, Biochim. Biophys. Acta, Biomembr., 1982, 684, 241–248.

    Article  CAS  Google Scholar 

  54. W. W. Kay, J. T. Buckley, E. E. Ishiguro, B. M. Phipps, J. P. L. Monette and T. J. Trust, Purification and disposition of a surface protein associated with virulence of Aeromonas salmonicida, J. Bacteriol., 1981, 147, 1077–1084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. W. W. Kay, B. M. Phipps, E. E. Ishiguro and T. J. Trust, Porphyrin binding by the surface array virulence protein of Aerononas salmonicida, J. Bacteriol., 1985, 164, 1332–1336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. C. Pereira, Use of bacteriophages on the inactivation of pathogenic bacteria in aquaculture system, MSc Thesis, University of Aveiro, 2009.

    Google Scholar 

  57. I. S. Henriques, A. Almeida, A. Cunha and A. Correia, Molecular sequence analysis of prokaryotic diversity in the middle and outer sections of the Portuguese estuary Ria de Aveiro, FEMS Microbiol. Ecol., 2004, 49, 269–279.

    Article  CAS  PubMed  Google Scholar 

  58. P. Amato, M. Ménager, M. Sancelme, P. Laj, G. Mailhot and A. Delort, Microbial population in cloud water at the Puy de Dôme: Implications for the chemistry of clouds, Atmos. Environ., 2005, 39, 4143–4153.

    Article  CAS  Google Scholar 

  59. A. P. J. Maestrin, A. O. Ribeiro, A. C. Tedesco, C. R. Neri, F. S. Vinhado, O. A. Serra, P. R. Martins, Y. Iamamoto, A. M. G. Silva, A. C. Tomé, M. Neves and J. A. S. Cavaleiro, A novel chlorin derivative of meso-tris(pentafluorophenyl)-4-pyridylporphyrin: Synthesis, photo-physics and photochemical properties, J. Braz. Chem. Soc., 2004, 15, 923–930.

    Article  CAS  Google Scholar 

  60. J. P. C. Tome, M. G. P. M. S. Neves, A. C. Tome, J. A. S. Cavaleiro, M. Soncin, M. Magaraggia, S. Ferro and G. Jori, Synthesis and antibacterial activity of new poly-S-lysine-porphyrin conjugates, J. Med. Chem., 2004, 47, 6649–6652.

    Article  CAS  PubMed  Google Scholar 

  61. J. Romalde, Photobacterium damselae subsp. piscicida: an integrated view of a bacterial fish pathogen, Int. Microbiol., 2002, 5, 3–9.

    Article  PubMed  Google Scholar 

  62. M. M. Moeseneder, W. Christian and J. H. Gerhard, Horizontal and vertical complexity of attached and free-living bacteria of the eastern Mediterranean Sea, determined by 16S rDNA and 16S rRNA fingerprints, Limnol. Oceanogr., 2001, 46, 95–107.

    Article  CAS  Google Scholar 

  63. W. G. Weisburg, S. M. Barns, D. A. Pelletier and D. J. Lane, 16S ribosomal DNA amplification for phylogenetic study, J. Bacteriol., 1991, 173, 697–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. H. Heuer, M. Krsek, P. Baker, K. Smalla and E. M. H. Wellington, Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients, Appl. Environ. Microbiol., 1997, 63, 3233–3241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. J. Sambrook, E. F. Fritsch and T. Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989.

    Google Scholar 

  66. K. Smalla, G. Wieland, A. Buchner, A. Zock, J. Parzy, S. Kaiser, N. Roskot, H. Heuer and G. Berg, Bulk and Rhizosphere Soil Bacterial Communities Studied by Denaturing Gradient Gradient Gel Electrophoresis: Plant-Dependent Enrichment and Seasonal Shifts Revealed, Appl. Environ. Microbiol., 2001, 67, 4742–4751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. A. Ramette, Multivariate analyses in microbial ecology, FEMS Microbiol. Ecol., 2007, 62, 142–160.

    Article  CAS  PubMed  Google Scholar 

  68. K. R. Clarke and R. N. Gorley, Primer v5: User manual/tutorial. PRIMER-E, Plymouth, UK, 2001, p. 9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A. F. Faustino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arrojado, C., Pereira, C., Tomé, J.P.C. et al. Applicability of photodynamic antimicrobial chemotherapy as an alternative to inactivate fish pathogenic bacteria in aquaculture systems. Photochem Photobiol Sci 10, 1691–1700 (2011). https://doi.org/10.1039/c1pp05129f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05129f

Navigation