Issue 29, 2011

Molecular controlled nano-devices

Abstract

In this perspective we present several examples of the ability to control electronic and magnetic properties of nano-devices by adsorbing on their surfaces organized self-assembled monolayers (SAM) of organic molecules. The work presented focuses on research in which we were involved and is aimed at demonstrating the ability to control physical properties of metal and semiconductor films by complementing them with the properties of a SAM. The organization of molecules on a surface produces a pseudo two-dimensional dipole layer, owing to the dipolar property of each of the molecules. The field confined in the layer could be enormous, however the molecules are either depolarized or charge is transferred between the substrate and the layer so as to reduce the energy of the dipole layer. This charge transfer process can be exploited for the use of hybrid-organic–inorganic devices as sensors, as wavelength specific light detectors, or for varying the critical temperature in semiconductor ferromagnets. The concept presented here, for combining electronic properties of organic molecules with those of the inorganic substrate, is another venue toward “molecular controlled electronics”.

Graphical abstract: Molecular controlled nano-devices

Article information

Article type
Perspective
Submitted
08 Apr 2011
Accepted
31 May 2011
First published
24 Jun 2011

Phys. Chem. Chem. Phys., 2011,13, 13153-13161

Molecular controlled nano-devices

R. Naaman, Phys. Chem. Chem. Phys., 2011, 13, 13153 DOI: 10.1039/C1CP21106D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements