Issue 1, 2010

Progress of nanocrystalline growth kinetics based on oriented attachment

Abstract

The crystal growth mechanism, kinetics, and microstructure development play a fundamental role in tailoring the materials with controllable sizes and morphologies. The classical crystal growth kinetics—Ostwald ripening (OR) theory is usually used to explain the diffusion-controlled crystal growth process, in which larger particles grow at the expense of smaller particles. In nanoscale systems, another significant mechanism named “oriented attachment (OA)” was found, where nanoparticles with common crystallographic orientations directly combine together to form larger ones. Comparing with the classical atom/molecular-mediated crystallization pathway, the OA mechanism shows its specific characteristics and roles in the process of nanocrystal growth. In recent years, the OA mechanism has been widely reported in preparing low-dimension nanostructural materials and reveals remarkable effects on directing and mediating the self-assembly of nanocrystals. Currently, the interests are more focused on the investigation of its role rather than the comprehensive insight of the mechanism and kinetics. The inner complicacy of crystal growth and the occurrence of coexisting mechanisms lead to the difficulty and lack of understanding this growth process by the OA mechanism.

In this context, we review the progress of the OA mechanism and its impact on materials science, and especially highlight the OA-based growth kinetics aiming to achieve a further understanding of this crystal growth route. To explore the OA-limited growth, the influence of the OR mechanism needs to be eliminated. The introduction of strong surface adsorption was reported as the effective solution to hinder OR from occurring and facilitate the exclusive OA growth stage. A detailed survey of the nanocrystal growth kinetics under the effect of surface adsorption was presented and summarized. Moreover, the development of OA kinetic models was systematically generalized, in which the “molecular-like” kinetic models were built to take the OA nanocrystal growth behavior as the collision and reaction between molecules. The development of OA growth kinetics can provide a sufficient understanding of crystal growth, and the awareness of underlying factors in the growth will offer promising guidance on how to control the size distribution and shape development of nanostructural materials.

Graphical abstract: Progress of nanocrystalline growth kinetics based on oriented attachment

Additions and corrections

Article information

Article type
Review Article
Submitted
30 Apr 2009
Accepted
24 Aug 2009
First published
05 Oct 2009

Nanoscale, 2010,2, 18-34

Progress of nanocrystalline growth kinetics based on oriented attachment

J. Zhang, F. Huang and Z. Lin, Nanoscale, 2010, 2, 18 DOI: 10.1039/B9NR00047J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements