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Abstract

Density functional theory incorporating hybrid exchange–correlation functionals has been 

extraordinarily successful in providing accurate, computationally tractable treatments of molecular 

properties. However, conventional hybrid functionals can be problematic for solids. Their 

nonlocal, Hartree–Fock-like exchange term decays slowly and incorporates unphysical features in 

metals and narrow-bandgap semiconductors. This article provides an overview of our group’s 

work on designing hybrid functionals for solids. We focus on the Heyd–Scuseria–Ernzerhof 

screened hybrid functional [J. Chem. Phys. 2003, 118, 8207], its applications to the chemistry and 

physics of solids and surfaces, and our efforts to build upon its successes.

I. Introduction

The chemistry and physics of solids and surfaces has a long history of theoretical and 

practical importance. A topical but by no means exhaustive list of examples includes 

semiconductor doping, heterogeneous catalysis, and the chemistry of actinide solids. 

Creation and manipulation of semiconductor defects is essential to modern electronics. 

Heterogeneous catalysis by metal and metal oxide surfaces is essential in fields such as 

industrial chemical production, pollution control,1 and solar energy conversion.2 The 

physical properties and surface chemistry of novel refractory actinide compounds are 

important for safer and more efficient utilization of nuclear power.3,4

The electronic structure of extended systems has been modeled since the birth of quantum 

mechanics.5–8 Such investigations provide essential complements to experiments, 

particularly for experimentally challenging systems such as actinides. The density functional 

theory (DFT),9,10 which originated in studies of solids,11 has become the most widely used 

method for predicting the electronic structure and properties of solids and large 

molecules.12,13 DFT provides a rigorous framework for simple models of the many-body 

effects that dominate the computational cost of wavefunction-based electronic structure 

calculations.14 Simple semilocal density functionals can accurately model many ground state 

properties including lattice parameters and bulk moduli.15 They also provide a starting point 

for higher-level treatments of many-body effects, surfaces, defects, and time-dependent 

properties.8,16

Unfortunately, semilocal density functionals have some inherent drawbacks. They tend to 

over-delocalize electrons due to their intrinsic self-interaction error (see below). This makes 

them problematic for localized subsystems such as defects, surface states, and d and f block 
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elements. They also systematically underestimate band gaps, often mistakenly assigning 

metallic behavior to semiconductors.17,18 Molecular quantum chemists often correct similar 

problems by using “hybrid” density functionals that incorporate a fraction of nonlocal exact 

exchange (see below). Hybrid functionals such as the widely used B3LYP19,20 are 

enormously successful in quantum chemistry. However, computational and formal problems 

have prevented their widespread application to solids and surfaces.

Our research group is engaged in designing novel hybrid density functionals for extended 

systems. This feature article summarizes our efforts to date. After briefly reviewing density 

functional theory in section II and approximate exchange–correlation functionals in section 

III, we discuss the Heyd–Scuseria–Ernzerhof (HSE) screened hybrid21 in section IV. Section 

V reviews some applications of HSE to outstanding problems in the physics and chemistry 

of solids and surfaces. The results illustrate the power of the screened exchange 

approximation, and indicate areas where successors to HSE can make a contribution. We 

discuss our recent work on successors to HSE in section VI, and our broader conclusions in 

section VII. This article is necessarily focused on our own work, and will not discuss all of 

the recent progress made by other groups investigating range-separated hybrid functionals 

and applications of DFT to extended systems.

II. Density functional theory

Density functional theory is based on the Hohenberg–Kohn theorems.11 These show that the 

ground-state energy of an N-electron system is a unique and variational functional of the 

electron density ρ(r).22,23 An N-electron system in an external potential vext(r) arising from 

nucleii and applied electric fields has a ground state total electronic energy

(1)

where ρ(r) is the ground state density at point r and the universal density functional F[ρ] 

accounts for the electrons’ kinetic and interaction energies.11 (We use atomic units 

throughout, &hstrok; = |e| = me = 1.)

The functional dependence of F[ρ] is not known analytically, and must be approximated in 

practical calculations. Kohn and Sham approximated the bulk of F[ρ] by obtaining ρ(r) from 

a reference system of N noninteracting electrons moving in an effective potential veff(r). 

This potential may in principle be selected to return the exact ground-state energy and 

density. The energy is

(2)

Here the term in ∇2 gives the kinetic energy of the noninteracting electrons, u(r) is the 

classical Coulomb potential of the N-electron density, and the exchange–correlation (XC) 

functional EXC[ρ] is an “everything else” term containing the remainder of F[ρ]. {ϕi(r)} are 

the one-electron orbitals occupied by the non-interacting electrons. They satisfy
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(3)

where the effective potential is given by

(4)

The exchange–correlation potential vXC(r) is obtained from the functional derivative

(5)

Modern Kohn–Sham calculations typically use a spin-dependent formalism, with different 

electron densities, orbitals, and exchange–correlation potentials for ↑-spin and ↓-spin 

electrons. Janak’s theorem shows that, if the KS orbitals are evaluated with the exact 

exchange–correlation functional, the noninteracting system’s highest occupied orbital 

energy is the negative of the real system’s ionization potential (work function).24

The Hohenberg–Kohn theorems ensure that eqn (2) yields the exact ground-state energy, 

provided that we use the exact, universal exchange–correlation functional EXC[ρ]. 

Systematic approximations to the exchange–correlation energy and potential of a given 

system have a computational effort that is at least comparable to the corresponding 

wavefunction-based approximations.25–30 However, one of DFT’s main attractions is that 

simple approximate exchange–correlation functionals can in practice provide accurate 

(albeit unsystematic) results with a computational cost comparable to mean-field 

calculations.

III. Approximate exchange–correlation functionals

The broad applicability of modern density functional theory results from the development of 

a range of increasingly complicated and (ideally) increasingly accurate approximate 

exchange–correlation functionals. We briefly review these approximations here. The 

extensive review by Staroverov and Scuseria provides more details.13

The simplest approximate functional is the local spin-density approximation (LSDA). The 

LSDA approximates the exchange–correlation energy density at point r as a functional of 

the electron spin densities ρσ(r). (Here σ = ↑,↓ and ρ= ρ↑ + ρ↓.) Generalized gradient 

approximations (GGAs) extend LSDA by incorporating a dependence on the density 

gradient ∇ρσ(r). The first-order gradient correction to the exchange–correlation potential 

diverges in finite systems,31 and various GGAs correct this divergence in various ways.32–35 

Meta-GGAs incorporate the noninteracting kinetic energy densities

(6)
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or ∇2ρσ(r). LSDA, GGAs, and meta-GGAs are “semilocal” functionals, whose exchange–

correlation energy density at r depends only on the density and KS orbitals in an infinite-

simal region around r.36

An important characteristic of semilocal exchange–correlation functionals is their intrinsic 

self-interaction error (SIE).37 Briefly, SIE refers to the fact that semilocal exchange–

correlation functionals allow electrons to interact with themselves. One convenient definition 

of this effect is the one-electron self-interaction error. In any one-electron system, the 

electron-electron Coulomb repulsion in eqn (2) must be exactly cancelled by the exchange–

correlation interaction EXC[ρ]. Semilocal approximations to the exchange–correlation 

functional are generally insufficiently flexible to provide this cancellation. This is defined as 

one-electron SIE.37 This effect can cause significant errors even in many-electron 

systems.38–40

Another definition of SIE is the many-electron self-interaction error recently emphasized in 

the literature.41–45 The exact energy of an N-electron system is piecewise linear with respect 

to fractional occupancy N, with derivative discontinuities as N passes through integers.46,47 

Semilocal functionals and Hartree–Fock theory both predict nonlinearities in the energy as a 

function of N, as well as incorrect energies at integer N. These two errors define the many-

electron SIE.41–45

Self-interaction error tends to over-delocalize electrons.44 This over-delocalization produces 

systematic errors for localized states such as defects and surfaces. However, Kohn–Sham 

DFT calculations that combine semilocal functionals with spatial and spin symmetry 

breaking can have the benefit of mimicking nondynamical, left-right electron correlation in 

chemical bonds.48–50 This enables simple, mean-field Kohn–Sham calculations to accurately 

treat systems that would otherwise require expensive multideterminant wave-function 

calculations. Modern exchange–correlation functionals generally seek to balance the 

undesirable effects of self-interaction error with semilocal functionals’ desirable simulation 

of static, nondynamical correlation.

One of the most useful classes of density functionals are “hybrids” incorporating a fraction 

of exact nonlocal (Hartree–Fock-type, HF) exchange. HF exchange is defined by

(7)

(8)

Here r12 = |r1 − r2| and {ϕiσ(r)} are the σ-spin orbitals of the noninteracting Kohn–Sham 

reference system (eqn (3)). Hybrid functionals are formally justified by an adiabatic 

connection between the real system and the noninteracting reference system.19,51 A more 

empirical justification is that admixture of one-electron-SIE-free HF exchange tunes the 

amount of nondynamical correlation included by a semilocal functional, and the resulting 
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balance between the desirable and undesirable effects of self-interaction error. A related 

empirical justification is that semilocal functionals tend to overestimate the strength of 

covalent bonds, while Hartree–Fock theory tends to underbind. Mixing these approximations 

yields a useful cancellation of errors for molecular thermochemistry. Several other properties 

(including band gaps, section IV A) can also benefit from cancellation of error in hybrid 

functionals.

Hybrid exchange–correlation functionals dramatically improve many molecular properties 

relative to semilocal functionals, and are essential tools in modern computational 

chemistry.19,48,51 But they are problematic in solids. One problem is computational. In 

metals, the Kohn–Sham one-particle density matrix of eqn (8) decays very slowly in r12. 

This makes it computationally expensive to evaluate eqn (7) numerically.52 A more 

fundamental problem is that the exchange interactions at large r12 are exactly cancelled by 

correlation in the uniform electron gas,53 and approximately cancelled by correlation in 

metals and narrow-bandgap semiconductors. 54–56 Calculations combining exact exchange 

with approximate correlation functionals can yield qualitatively incorrect results in such 

systems. For example, Hartree–Fock calculations (exact exchange and no correlation) on the 

uniform electron gas incorrectly predict a vanishing density of states at the Fermi level.8

IV. The Heyd–Scuseria–Ernzerhof functional

The screened hybrid functional of Heyd, Scuseria, and Ernzerhof21 was proposed to extend 

the successes of hybrid functionals into the solid state, by avoiding the problematic effects of 

long-range HF exchange. This functional partitions the Coulomb operator in eqn (7) into two 

ranges

(9)

and incorporates only short-range (SR) HF exchange. The parameter ω in eqn (9) controls 

the definition of the two ranges. The error function in eqn (9) is chosen for computational 

convenience, as the range-separated HF exchange can be evaluated analytically when the KS 

orbitals are expanded in Gaussian or plane wave basis sets.

HSE is based on the PBEh global hybrid57,58 of the Perdew–Burke–Ernzerhof (PBE)33 

GGA. PBEh incorporates 25% full-range HF exchange, 75% full-range PBE exchange, and 

100% PBE correlation. The fraction of HF exchange is based on perturbation theory 

arguments.59 HSE includes 25% short-range HF exchange and no long-range HF exchange. 

The range-separation parameter ω is selected empirically, and is set to 0.11 Bohr−1 in the 

latest version of the functional (HSE06).60

HSE is related to the screened hybrid functionals of Bylander and Kleinman17 and Seidl and 

coworkers,61 and to screened Coulomb operator methods previously developed in quantum 

chemistry.62–64 HSE is also closely connected with a large body of work on long-range-

corrected hybrids. These functionals combine wavefunction theory in the long range with a 
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DFT approximation for short-range exchange–correlation.65–74 They can provide efficient 

wavefunction expansions due to the semilocal treatment of the correlation cusp. However, 

they are in a sense completely opposite to HSE, and are not generally intended for solids. 

Their inclusion of long-range HF exchange is problematic for metals and small-bandgap 

semiconductors for the reasons discussed above.54–56 (Additionally, these long-range-

corrected functionals are often treated with multiconfigurational self-consistent field 

methods, a non-size-consistent approximation that is not appropriate for extended systems.) 

The observation that both screened and long-range-corrected functionals can provide 

accurate molecular thermochemistry75 led us to investigate the “middle-range” hybrid 

functionals discussed in section VI.

Our numerical tests of HSE use the Gaussian suite of programs.76 These perform periodic 

boundary condition calculations using atom-centered Gaussian orbitals, fast multipole 

method treatments of Coulomb interactions,77 and sophisticated numerical screening 

procedures for efficient evaluation of screened exchange78 and its second derivatives.80,79 

We have also extended these programs for correlated wavefunction calculations (Laplace-

transformed Møller–Plesset perturbation theory) on infinite systems,81,82 and applied them 

to outstanding problems in nanotechnology83 and biophysics.84 Hybrid density functional 

calculations in solids are also regularly performed with the CRYSTAL85,86 and VASP87–89 

programs.

The remainder of this section discusses two of HSE’s important properties: its accurate 

treatment of band gaps, and its model for range-separated semilocal exchange.

A HSE band gaps

One of HSE’s most important aspects is its ability to accurately predict semiconductor band 

gaps. To rationalize this, we must briefly discuss the calculation of band gaps within density 

functional theory. Further details are presented in the recent reviews of Rinke and 

coworkers90 and Kümmel and Kronik.91 Numerical results for HSE band gaps are discussed 

in section V.

The fundamental band gap of an N-electron system is defined as the difference between its 

ionization energy and electron affinity

(10)

(11)

Here E(N) is the ground state energy of the N electron system, and f denotes some fraction 

of an electron. (The fundamental gap is thus a property of ground state systems, and in 

principle accessible within ground state DFT.) A related quantity is the optical gap, defined 

as the system’s first electronic excitation energy. Relaxation effects tend to make optical 
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gaps smaller than fundamental gaps. However, the two are often rather similar in 

semiconductors.

Janak’s theorem24 allows the partial derivatives in eqn (11) to be expressed in terms of the 

exact highest-occupied Kohn–Sham eigenvalues as

(12)

where  is the ith KS orbital energy for an N electron system. The exact Kohn–Sham 

energy is piecewise linear with respect to the number of electrons,46,47 such that 

is constant for 0 < f < 1. This lets us rewrite eqn (12) as

(13)

Rewriting eqn (13) in terms of quantities obtained from the N-electron system gives

(14)

(15)

(16)

The derivative discontinuity ΔXC(N) results from a discontinuous shift in vXC(r) as the 

electron number passes through integer values.92–94 This discontinuity is intrinsic to Kohn–

Sham theory, and is generally nonzero for the exact exchange–correlation functional. 

Additionally, the many-electron self-interaction error of approximate exchange–correlation 

functionals makes their total energy E(N + f) generally nonlinear (and  non-

constant) for 0 < f < 1.41–43 Yang and coworkers have recently pointed out that this 

invalidates the approximation of eqn (13).44 This effect can produce significant errors in the 

Kohn–Sham band gaps predicted for continuous systems, even though the large system size 

gives an apparent linearity in E(N).45

It is common practice to approximate band gaps using the band energy differences 

of eqn (15). As we have seen, the band energy differences obtained from a semilocal 

exchange–correlation functional introduce several sources of error: errors in the orbital 

energies at integer occupancy, nonlinearities in orbital energies at fractional occupancy due 

to many-electron SIE, and neglect of the derivative discontinuity. In the remainder of this 

section, we show that HSE band energy differences can approximately correct for these 

sources of error.
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Unlike LSDA and GGAs, hybrids like HSE include an approximate derivative 

discontinuity.44 This can be incorporated into the band energy differences of eqn (15) using 

the generalized Kohn–Sham (GKS) approach. GKS treatments of hybrid functionals replace 

the noninteracting Kohn–Sham reference system with a system containing some part of the 

electron-electron interaction.61,95,96 (For example, the HSE reference system contains 25% 

of the short-range interaction.) This interaction provides a nonlocal contribution to the 

exchange–correlation potential, similar to the nonlocal exchange present in Hartree–Fock 

theory. The resulting GKS band energy differences incorporate the functional’s approximate 

derivative discontinuity. For completeness, we note that hybrid functionals may also be 

treated within the Kohn–Sham framework. This requires using the optimized effective 

potential (OEP) method25–27,97–100 or approximations thereto99,101–106 to determine the 

local potential. However, OEP band energy differences lack the derivative discontinuity, 

which must be evaluated separately.44,90,92 Moreover, OEP has been shown to have 

computational and formal issues in finite Gaussian basis sets.103,104

In addition to incorporating a derivative discontinuity, HSE (like other hybrid functionals) 

can approximately correct for the other errors intrinsic to predicting band gaps from 

semilocal band energy differences. HSE’s inclusion of a fraction of one-electron-SIE-free 

HF exchange tends to correct for the effects of one-electron SIE on the orbital energies. 

Hartree–Fock and semilocal DFT functionals generally have opposite many-electron self-

interaction errors,41–45 such that hybrids like HSE tend to reduce the many-electron SIE107 

that makes eqn (13) a poor approximation for eqn (12). (The range-separated hybrid 

functional of ref. 73 was explicitly constructed to have minimal many-electron SIE.) It is 

interesting to note that inclusion of screened exchange makes HSE’s generalized Kohn–

Sham reference system qualitatively similar to the quasiparticles used to evaluate the self-

energy in many-body GW theory.17,61,108–111 HSE appears to provide a very good starting 

point for perturbative GW corrections, suggesting that the corrections are generally 

small.16,112

Brothers and coworkers recently provided a different rationalization of HSE’s success for 

semiconductor band gaps.113 The authors show that HSE’s GKS band energy differences 

reproduce the accurate optical gaps predicted by time-dependent density functional theory 

(TDDFT) calculations with the PBEh global hybrid.114 More generally, they show that band 

energy differences evaluated with screened HF exchange can always reproduce optical band 

gaps from TDDFT calculations with full-range HF exchange. The “excitonic” effects 

incorporated by nonlocal exchange were assessed more thoroughly in ref. 115. Importantly, 

for typical systems, the accurate TDDFT PBEh optical gaps were reproduced with a range-

separation parameter ω that is fairly close to the fixed ω = 0.11 Bohr−1 of HSE06. Fig. 1 

illustrates this for a model system, an infinite dimerized hydrogen chain with a nonzero band 

gap. This result helps rationalize HSE’s success. It also provides a motivation for the more 

sophisticated local-range-separated approximations discussed in section VI. The observation 

that HSE predicts optical rather than fundamental band gaps suggests that HSE will 

underestimate the fundamental band gaps of wide-bandgap systems. Numerical results in 

section V suggest that this is indeed the case.
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B Approximate exchange holes

Another important aspect of HSE’s success appears to be the approximation used for the 

range-separated semilocal exchange. As discussed above, the HSE exchange–correlation 

functional incorporates 25% short-range HF exchange, 75% short-range PBE exchange, and 

100%long-range PBE exchange. The short-range exchange energy predicted by a semilocal 

density functional is evaluated following eqn (7) as

(17)

Here  is a semilocal model for the angle-averaged exchange hole about a σ-spin 

electron at point r1. (Physically, a reference electron at r1 digs an exchange–correlation 

“hole” hXC(r1,r2) in the density ρ(r2) about r1. This exchange–correlation hole gives the 

difference between the reference electron’s true interaction with the other N − 1 electrons, 

and its mean-field Coulomb interaction with the N-electron density ρ(r2).) The short-range 

HF exchange energy is obtained by substituting the exact exchange hole

(18)

(see eqn (7)) into eqn (17). The exchange hole obeys a number of exact constraints: for 

example, it is negative definite, normalized to −1, and equals −ρσ(r1) at interelectronic 

separation r12 = 0.

Several investigators have proposed model exchange holes that reproduce the energies of a 

“parent” semilocal exchange functional. Such models are nonunique. Even the LSDA 

exchange energy, which can be directly obtained from the exchange hole of the 

homogeneous electron gas, can also be constructed from non-oscillating models.116,117 HSE 

uses the PBE exchange hole model by Ernzerhof and Perdew,118 which obeys several exact 

constraints by construction. We showed in ref. 119 that the Ernzerhof and Perdew model 

appears to provide better range-separated hybrids than the simple and widely-used LSDA-

based model of Iikura and coworkers.120 A long-range-corrected PBE functional (0% short-

range, 100% long-range HF exchange, see ref. 72) using the Ernzerhof and Perdew hole 

model provided molecular thermochemistry and kinetics that were significantly more 

accurate than the same functional constructed using the hole model of Iikura and coworkers. 

The latter model has the wrong normalization and on-top curvature in inhomogeneous 

systems, and appears to yield results rather similar to range-separated LSDA. Thus, HSE’s 

success results at least in part from its accurate range-separated GGA exchange. One 

drawback of Ernzerhof and Perdew’s model is that the integral over r12 in eqn (17) cannot be 

performed fully analytically.121 More recent GGA hole models attempt to remedy this while 

still satisfying as many exact constraints as possible.68,70,71,119,122–124
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V. Applications of HSE

This section provides an overview of recent applications of the Heyd–Scuseria–Ernzerhof 

screened hybrid functional. The discussion is organized according to the systems studied: 

beginning with molecular properties, and proceeding through semiconductors, d and f block 

materials, and surfaces and nanostructures. The results illustrate the power of the screened 

exchange approximation and provide a rationale for the more sophisticated successors to 

HSE discussed in section VI.

A Molecules

While it was designed for solids, the HSE functional provides a reasonably accurate 

treatment of small and medium-sized molecules. Table 1 reproduces results from ref. 125 on 

HSE’s performance for molecular thermochemistry, classical reaction barrier heights, and 

atomic total energies. HSE gives results comparable to its “parent” global hybrid PBEh, and 

is competitive with other global hybrid approximations. Results from the long-range-

corrected hybrid LC-ωPBE (ref. 72) are discussed in section VI. We note that the 

computational benefits of screened exchange in extended systems are likely to carry over to 

large molecules. In such systems, HSE should provide results comparable to PBEh with a 

significantly reduced computational effort.

B Semiconductors: band gaps, lattice parameters, and defects

Perhaps the most important success of HSE is its accurate treatment of semiconductors. An 

extensive study of 40 systems (35 semiconductors plus the insulators C (diamond), BN, 

AlN, MgO, MgS) compared experimental band gaps vs. band energy differences calculated 

with HSE and semilocal functionals. 129 Error statistics from this study are reproduced in 

Table 2. HSE dramatically improves the band gaps relative to the LSDA, the PBE33 GGA, 

and the TPSS130 meta-GGA. This study also showed that HSE provides the best overall 

predictions of lattice constants. A later study explicitly incorporating relativistic effects 

found comparable results.131 While several methods exist for predicting band gaps, HSE is 

rather unique in its ability to accurately treat both band gaps and other ground state 

properties, without incorporating material-dependent empirical parameters.

The accurate semiconductor band gaps shown in Table 2 were reproduced by Paier and 

coworkers in HSE calculations using plane-wave basis sets.132 This study showed that HSE 

improves upon the PBEGGA for the lattice constants and bulk moduli of a variety of solids, 

and is comparable to PBEh and somewhat degraded from PBE for atomization energies. The 

study also indicated some interesting deficiencies of HSE, possibly resulting from its use of 

a universal range-separation parameter ω and a universal fraction of short-range HF 

exchange. HSE apparently includes too much HF exchange in metals, where it tends to 

overestimate bandwidths. Conversely, it may include too little HF exchange in large-

bandgap solids such as NaCl and Ar, where it underestimates the fundamental gap.132 

However, we recall that the the arguments of ref. 113 suggest that HSE is more appropriate 

for optical gaps. Large optical gaps are difficult to characterize experimentally, but are 

generally smaller than the fundamental gap. Regardless, the position-dependent mixing 

functions and range separations discussed in section VI could provide a route to further 
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exploring these effects. It is worth noting in this context that HSE appears to significantly 

improve upon the B3LYP global hybrid for lattice constants, bulk moduli, and atomization 

energies of several representative solids.133

In addition to these bulk properties, HSE can also accurately treat semiconductor defects. A 

recent study by Batista and coworkers showed that HSE accurately predicts the formation 

energy of silicon point defects, with results approaching computationally expensive 

diffusionMonte Carlo calculations.134 Such localized defect states are problematic for 

semilocal density functionals due to the delocalizing effects of self-interaction error.45 

Accurate semilocal DFT treatments of defects tend to require additional approximations 

such as ad hoc surface energy corrections or functionals explicitly designed to treat 

surfaces.135 Ref. 134 also showed that HSE was the only tested density functional to 

accurately predict the energy difference between the semiconducting diamond and metallic 

β-tin phases of Si.

C Transition metals, lanthanides, and actinides

Another particularly successful application of HSE is to systems with a mixture of itinerant 

and localized electrons. Transition metal d electrons, and lanthanide and actinide f electrons, 

can either participate in metallic bonding or localize to atoms where they contribute to 

magnetic properties. 8 The delicate balance between itinerancy and localization can produce 

multiple competing ground states and phases. A proper theoretical description requires 

adequate treatment of the strong electron correlations that lead to electron localization. 

Semilocal density functionals appear to lack this, and often yield qualitatively incorrect 

predictions for the band gaps and magnetic properties of such systems. Explicit 

localization,136 “scissor operator” methods,137 or LDA+U138,139 can provide useful insights 

into these problems. However, the rather ad hoc nature of such approaches makes them 

problematic for treating new materials. In contrast, HSE has been shown to provide accurate 

treatments of many such systems, without the need for system-dependent adjustable 

parameters or decisions of which electrons to localize.

Hay and coworkers showed that HSE correctly predicts lattice constants and band gaps of 

the lanthanide oxides CeO2 and Ce2O3.140 Similar results were obtained in plane-wave 

calculations by Da Silva and coworkers, who also indicated some deficiencies in the 

thermochemical predictions.141 (The role of HF exchange in lanthanide oxides was 

previously illustrated in the Hartree–Fock calculations of Gennard and coworkers.142) 

Prodan and coworkers showed that HSE provides an accurate treatment of some uranium 

and plutonium oxides, including a correction to the metallic behavior predicted by semilocal 

functionals. 143 A later systematic study of actinide dioxides showed an interesting transition 

between localized vs. itinerant behavior, resulting from coupling between the actinide f and 

oxygen 2p bands.144 Uddin and coworkers showed that HSE, unlike semilocal functionals, 

predicts a nonzero band gap for platinum oxide.145 Applications to platinum nitride were 

also reported.146 Marsman and coworkers used plane-wave calculations to demonstrate that 

HSE is significantly more accurate than LSDA for the band gaps, lattice constants, and local 

spin magnetic moments of a small set of transition metal monoxides.147 However, ref. 132 

showed that HSE overestimates the magnetic moment of Fe. Kasinathan and coworkers 
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studied the pressuredependent Mott transition of MnO using a variety of localization 

corrections: LDA+U, explicit Perdew–Zunger37 one-electron self-interaction corrections, 

approximate pseudopotential SIC, and HSE.148 The role of HF exchange in the balance 

between localization and itinerancy was also explored by Doll and coworkers in B3LYP 

investigations of gadolinium nitride.149

D Molecules at surfaces

In a recent application to surface chemistry, HSE has provided a partial solution to the “CO/

Pt(111) puzzle”.150 The (111) surfaces of cubic-close-packed metals are composed of 

triangles of metal atoms. Adsorbates such as CO (carbon monoxide) may bind on top of a 

single surface atom, to a bridge site between two surface atoms, or in a threefold site 

equidistant from three surface atoms. A simplified picture of the metal–CO bond is a σ bond 

from the lone pair on C, plus π backbonding from the metal into unoccupied CO π 

orbitals.151 While the σ bond is strongest at the top site, the π backbonding is increased at 

threefold sites. CO is known experimentally to preferentially bind top sites at low coverage. 

However, an extensive survey showed that semilocal density functionals predict binding at 

threefold sites at low coverage.150 This has been rationalized as a consequence of the 

underestimated HOMO–LUMO gap predicted by semilocal functionals, leading to excessive 

π backbonding and an incorrect site ordering.151 (Semilocal functionals systematically 

under-estimate HOMO–LUMO gaps due to the derivative discontinuity and self interaction 

errors discussed in section IV A).

Stroppa and coworkers showed that hybrid functionals, including HSE and PBEh, reduce the 

π backbonding and predict binding preferences that are closer to experiment.152 Similar 

results were obtained by Doll for the B3LYP global hybrid.153 However, the authors of ref. 

152 also argued that HSE’s overestimate of metal bandwidths increases the π backbonding, 

such that the threefold site is still weakly favored for Pt(111).152 This result provides an 

interesting rationalization for more sophisticated functionals incorporating a position-

dependent admixture of HF exchange (section VI). Functionals incorporating less HF 

exchange than HSE in metallic regions, and the same amount of HF exchange as HSE in 

molecules, should provide smaller metal bandwidths and improved site predictions.

E Carbon nanostructures

HSE has been extensively applied to carbon nanostructures such as nanotubes and 

nanoribbons. The screened exchange approximation is invaluable for such systems due to 

their large unit cells. Barone and coworkers showed that HSE provides accurate first optical 

excitation energies and optical spectra for metallic nanotubes,154 with accuracy comparable 

to previous global hybrid calculations on semiconducting nanotubes.155 Fig. 2 illustrates the 

HSE excitation energy predictions. HSE was also used to investigate the work functions of 

pristine and doped semiconducting nanotubes.156

An important recent application has been to semiconducting graphene nanoribbons, one-

dimensionally periodic strips of a single layer of graphite. Density functional calculations 

predict zigzag nanoribbons these systems to be spin-polarized, with ↑ spin polarization on 

one side of the ribbon and ↓ on the other. These have been proposed as “half-metallic” 
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systems that could preferentially conduct one spin flavor under the influence of transverse 

electric fields157 or asymmetric edge substitution.158 Recent HSE calculations on armchair 

nanoribbons predict width-dependent band gap oscillations similar to those found in tight-

binding calculations. 159,160 The HSE predictions were later confirmed 

experimentally. 161,162 A detailed study of edge substitution suggested that edge oxidation 

could enhance the half-metallic behavior of zigzag graphene nanoribbons, lowering the 

applied field needed to induce half-metallicity.163 A particularly interesting set of recent 

studies suggests that the spin polarization predicted for nanoribbons may also occur in finite 

graphene nanoparticles.164,165

F Other systems

The HSE screened hybrid has begun to be applied in a number of other fields. A recent 

benchmark study showed that HSE provides rather accurate results for molecular vibrational 

frequencies, infrared intensities, and Raman activities.166 This suggests that HSE may be 

applicable to modeling properties such as surface-enhanced vibrational spectroscopy of 

molecules at metal surfaces.167 A density functional study of the large organometallic dye 

copper phthalocyanine showed that the HSE orbital energies provide a reasonable 

approximation to the experimental photoelectron spectrum.168 A study of polymeric 

nitrogen has relevance to energy storage via high energy density materials.169 A recent HSE 

simulation of a large water cluster provided a significant milestone in applying hybrid 

functionals to ab initio molecular dynamics simulations.170 HSE has also been applied to 

magnetic coupling in molecular systems.171 Such applications will be enriched by the 

successors to HSE discussed below.

VI. Successors to HSE

The survey presented in section V suggests that, while the HSE exchange–correlation 

functional is quite accurate for a variety of systems, it is limited by its use of a constant 

fraction of short-range exchange and a constant range-separation parameter ω in all 

materials. That these are limitations is unsurprising, as PBE (ω → ∞) and PBE hybrid (ω → 

0) are respectively good for metals33 and optimal for molecules.59 In fact, it is rather 

surprising how well HSE works with fixed parameters (see e.g. ref. 113). Regardless, our 

recent work has involved constructing successors to HSE by developing more flexible 

admixtures of range-separated exchange. We discuss three approaches: multiple range 

separation, local admixture of screened exchange, and local range separation.

A Multiple range separation

Our first attempt at extending HSE is the multiple-range-separated hybrid of Henderson, 

Izmaylov, Scuseria, and Savin (HISS).125,172 This functional was inspired by the work of 

Vydrov and coworkers, who showed that admixture of either short-range or long-range HF 

exchange improves molecular thermochemistry and reaction barriers relative to semilocal 

functionals.75 It was also inspired by the observation that HSE gives rather poor predictions 

for chemical reaction barriers in molecules: comparable to PBE hybrid, but significantly 

worse than the long-range-corrected LC-ωPBE functional (see Table 1).72,121 But while LC-

ωPBE performs very well for molecular systems, it is neither computationally efficient nor 
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particularly accurate in solids, for which its inclusion of 100% long-range HF exchange is 

problematic.

The HISS functional is a three-range hybrid that attempts to combine the strengths of HSE 

and LC-ωPBE (i.e. to yield accurate thermochemistry and reaction barriers, while giving an 

efficient and accurate treatment of the electronic structure of extended systems). To this end, 

it writes the exchange–correlation energy as

(19)

where the middle range “MR” of the Coulomb operator 1/r12 is defined by

(20)

and cMR, ωSR and ωLR are empirical parameters. The current HISS functional (“HISS-B” in 

ref. 172) uses cMR = 0.6. Fig. 3 shows the fraction of HF exchange included by HSE, HISS, 

and LC-ωPBE as a function of interelectronic separation r12.

Preliminary investigations show that the HISS functional provides accuracy generally 

comparable to that of LC-ωPBE for diverse molecular properties such as thermochemistry, 

reaction barriers, geometries and vibrational frequencies, and so on.125 At the same time, it 

provides an accurate treatment of semiconductor band gaps (noting, however, that while 

HSE somewhat underestimates band gaps (Table 2), HISS tends to slightly overestimate 

them). These results are encouraging and suggest that HISS may be able to properly describe 

reactions at surfaces or barriers in solids (e.g. barriers to defect formation or mobility). 

However, further investigations are necessary.

B Local admixture of screened exchange

A second approach to extending HSE is to introduce a position-dependent admixture of 

short-range exact exchange, while keeping the range-separation parameter ω constant. This 

is a straightforward generalization of existing local hybrid functionals.173–182 Local hybrid 

functionals contain a position-dependent fraction of HF exchange, giving an exchange–

correlation energy

(21)

Here  is the energy obtained from a semilocal exchange–correlation functional and 

 is the σ-spin exchange energy density predicted by the corresponding exchange 

functional. (The rest of this section suppresses spin dependence for conciseness.) The HF 

exchange energy density (in the conventional gauge183,182) is constructed from eqn (7) and 

(8) as
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(22)

A local hybrid’s performance is governed by the choice of mixing function f(r) and the 

choice of semilocal exchange functional. The general local hybrid form was suggested by 

Burke and coworkers183 as early as 1998, but specific forms of f(r) were not proposed or 

implemented until later.36,173 Jaramillo, Scuseria, and Ernzerhof173 were the first to propose 

and implement a local hybrid with

(23)

(24)

(The kinetic energy τ(r) is defined in eqn (6).) This mixing function correctly incorporates 

no HF exchange in the uniform electron gas, where combinations of full-range HF exchange 

and semilocal correlation are problematic as discussed above. It incorporates 100% HF 

exchange in one-electron regions where HF exchange is the exact exchange–correlation 

functional. Unfortunately, its thermochemical performance is rather poor.173 Later, Kaupp 

and coworkers175,177,179 showed that empirically parameterized mixing functions can 

provide accurate molecular thermochemistry and reaction barriers in local hybrids of LSDA 

exchange. These authors also developed a self-consistent treatment of local hybrids using the 

LHF/CEDA approximation to the optimized effective potential. 174,178 We recently 

presented nonlocal density matrix similarity metrics that show promise for constructing local 

hybrids of LSDA and GGA exchange.176,180

We have begun exploring local hybridization of short-range HF exchange. This approach 

should enable straightforward extension of local hybrids to metals and narrow-bandgap 

semiconductors. Our preliminary results involve a local admixture of short-range HF 

exchange into LSDA, using the empirical mixing function f(r) = ατW/τ proposed in ref. 175. 

Numerical tests with the HSE06 range separation parameter ω = 0.11 Bohr−1 and α ~ 1/2 

give molecular thermochemistry comparable to HSE, and reaction barriers that improve 

somewhat upon HSE.184

C Local range separation

Our most sophisticated approach to extending HSE is to let the range-separation parameter 

ω of eqn (9) be an explicit function of position: ω = ω(r). This approach was previously 

suggested by Toulouse and coworkers for semilocal DFT correlation.70 There are two 

difficulties inherent to this approach: the choice of the functional form of ω(r), and the 

evaluation of the corresponding local-range-separated HF exchange. We will discuss these 

issues in brief here; for a more through discussion, see ref. 185.
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The first question facing this approach is how to define ω(r). One route is to exploit the 

connections between this term and the microscopic dielectric constant of many-body GW 

calculations. 61,110 Another is to select ω(r) such that the total exchange hole, obtained as 

the sum of range-separated HF and DFT model exchange holes, is properly normalized to −1 

at each point. Assuming that ω(r) can be written as a semilocal functional of the density and 

the density gradient, simple dimensional arguments imply that ω(r) = kF(r)F(s(r)), where kF 

= (3π2ρ)1/3, s = |∇ρ|/(2kFρ), and F(s) is arbitrary. Preliminary empirical tests of F(s) = α + βs 
+ γs2 suggests that F(s) ≈ βs suffices.

The second and more daunting question is how to evaluate the HF exchange energy density 

given a position dependent ω. This can be written in a straightforward generalization of eqn 

(22) as

(25)

(Spin dependence is again suppressed for conciseness.) However, like eqn (22), this 

expression is unsuitable for practical computation as it requires the integration with respect 

to r′ to be carried out anew at each point r. Assuming that the integration with respect to r is 

done numerically, the total computational cost of evaluating the local-range-separated HF 

exchange energy becomes , where Ngrid is the size of the numerical integration 

grid and NAO is the size of the atomic orbital (AO) basis set. Conventional local hybrids 

generally use the resolution of the identity approximation introduced by Della Sala and 

Görling.99 This yields an expression for the HF-type exchange energy density

(26)

Here {χμ(r)} is the AO basis and the matrix Q is given by

(27)

If the AO basis set is used for the resolution of the identity, P is the one-particle density 

matrix in the AO basis, S is the overlap matrix, and

(28)

(29)

is the matrix representation of the HF exchange operator. This may be extended to range-

separation interactions by screening the two-electron integrals in eqn (29). However, in the 

case that ω is also position dependent, we would have a different matrix Q(r) at every point 
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in space r, and the computational savings of the resolution of the identity approximation 

would be negligible.

To date there is no ideal solution to this problem. Recently, Krukau, Scuseria, Perdew, and 

Savin185 proposed to approximate the HF exchange hole using a semilocal model. This 

model exchange hole123 takes the unscreened (full-range) HF exchange energy density as a 

parameter, and is constructed to yield this input exchange energy density in the full-range 

limit. The authors used this model exchange hole to evaluate eqn (25). Early results have 

been encouraging, but further work is needed. Other approaches, which attempt to directly 

approximate the integral of eqn (25), are also being pursued.

VII. Concluding remarks

The screened exchange approximation appears to be a very powerful tool for density 

functional treatments of condensed systems. The HSE screened hybrid provides a reasonably 

accurate and computationally tractable treatment of ground-state properties and band 

energies, while incorporating only a single, universal empirical parameter. Its successors 

also show a great deal of promise. However, we can identify several unresolved formal and 

computational issues, as well as applications that require more detailed investigations.

While the formal details of range-separated DFT exchange have been extensively 

investigated over the past two decades, several interesting issues remain. One is to further 

elucidate the connections between the screened exchange of HSE and the screened exchange 

present in many-body GW theory. Such investigations may provide new insight into 

appropriate choices for the local range separation parameters and local exchange admixtures 

in HSE’s successors. We are particularly interested in nonempirical treatments of these 

quantities.

The computational issues inherent to range-separated hybrids also remain important. Despite 

extensive efforts towards computationally efficient implementations, HSE is still rather more 

expensive than semilocal functionals. Another significant problem is the need for a 

computationally tractable treatment of the locally-range-separated HF exchange energy 

density of eqn (25). We are also interested in extending local hybrids of range-separated 

exchange to solids. Finally, we hope at some point to resolve the “paradox” of screened 

hybrids at metal surfaces: long-range exact exchange is intractable in the bulk metal, but 

likely to be essential above the metal surface.

We are actively pursuing applications of HSE and its successors to new systems. We are 

particularly interested in applying HISS and local-range-separated functionals to metal 

bandwidths and CO adsorbtion, properties that were identified as problematic for HSE. We 

plan to apply HISS to defect migration in solids, in the hope that its accurate treatment of 

molecular reaction barriers will carry over to condensed systems. We are interested in 

further applications of HSE and its successors to reactions and spectroscopy at metal 

surfaces. Such systems, which bridge the divide between molecules and solids, seem ideally 

suited for screened hybrid functionals. We hope that these theoretical and computational 
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investigations will yield new insight into fundamental and practical improvements to the 

density functional theory for extended systems.
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Fig. 1. 
Generalized Kohn–Sham band energy difference (“HOCO–LUCO”) and TDDFT first 

optical excitation energy for an infinite dimerized hydrogen chain. Results are evaluated for 

screened hybrids of the PBE GGA with 25% short-range HF exchange, and plotted as a 

function of the range-separation parameter ω. The GKS band gap, evaluated with the HSE06 

ω=0.11 Bohr, is quite close to the accurate TDDFT optical excitation energy obtained with 

the full-range PBEh global hybrid (ω = 0).
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Fig. 2. 
Calculated versus experimental first optical excitation energies (eV) for metallic and 

semiconducting single-wall carbon nanotubes (ref. 154). The LSDA and PBE results are 

nearly indistinguishable on this scale.

Janesko et al. Page 26

Phys Chem Chem Phys. Author manuscript; available in PMC 2016 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Fraction of HF exchange included as a function of interelectronic separation r12. Screened 

hybrid HSE, long-range-corrected hybrid LC-ωPBE, and middle-range hybrid HISS.
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Table 1

HSE’s performance for molecular properties. Mean absolute errors (MAE) in the G3 set of molecular heats of 

formation126 (kcal mol−1), the HTBH38 and NHTBH38 sets of hydrogen-transfer and non-hydrogen-transfer 

reaction barrier heights127,128 (kcal mol−1), and the total energies of atoms H–Ar (mH/electron). Results from 

ref. 125

Functional G3/99 HTBH38 NHTBH38 Atoms

PBE 22.2 9.7 8.6 8.6

PBEh 6.7 4.6 3.6 7.1

LC-ωPBE 4.3 1.3 2.4 5.1

HSE06 4.9 4.6 3.9 6.2
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Table 2

Band gap error statistics for 40 solids, from ref. 129. Mean errors (ME) and mean absolute errors (MAE) in eV

LSDA PBE TPSS HSE

ME −1.14 −1.13 −0.98 −0.17

MAE 1.14 1.13 0.98 0.26
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