Skip to main content
Log in

Sewage bacteriophage photoinactivation by cationic porphyrins: a study of charge effect

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photodynamic therapy has been used to inactivate microorganisms through the use of targeted photosensitizers. Recently the inactivation of bacteria in residual waters has been reported, but nothing is known about photoinactivation of environmental bacteriophages, which are often used as indicators of human enteric viruses. In this study we tested the effect of six cationic porphyrin derivatives with two to four charges on the photoinactivation of a sewage bacteriophage. A phage suspension of 5 × 107 PFU mL−1 was exposed to white light (40 W m−2), during 270 min, at three photosensitizer concentrations (0.5, 1.0 and 5.0 µM). Tetra- and tricationic porphyrins inactivated the T4-like sewage phage to the limits of detection, but dicationic porphyrins did not lead to a significant decrease in phage viability. At the highest photosensitizer concentration (5.0 µM), the phage was completely inactivated (>99.9999% of inactivation, reduction of 7.2 log) after 270 min by the tetracationic porphyrin. Two of the tricationic derivatives also led to phage inactivation to the limit of detection. The rate of bacteriophage photoinactivation and the efficiency of the photosensitizer appeared to vary with the charge and with the substituents in the meso-positions of the porphyrin macrocycle. Tetra- and tricationic porphyrins can, therefore, be used as a new method for inactivating sewage bacteriophages that are frequently used as human enteric virus indicators. The complete inactivation of viruses with low light intensity means that this methodology can be used even on cloudy days and during winter, opening the possibility to develop new technologies for wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Rook, Formation of haloforms during chlorination of natural waters, Water Treat. Exam., 1974, 23, 234–243.

    Google Scholar 

  2. J. Williamson, Epidemiological studies on cancer and organic compounds in United States drinking waters, Sci. Total Environ., 1981, 18, 187–203.

    Article  CAS  PubMed  Google Scholar 

  3. L. M. Carpenter, S. A. A. Beresford, Cancer mortality and type of water source - findings from a study in the UK, Int. J. Epidemiol., 1986, 15, 312–320.

    Article  CAS  PubMed  Google Scholar 

  4. M. Jemli, Z. Alouini, S. Sabbahi, M. Gueddari, Destruction of fecal bacteria in wastewater by three photosensitizers, J. Environ. Monit., 2002, 4, 511–516.

    Article  CAS  PubMed  Google Scholar 

  5. R. Bonnett, M. A. Krysteva, I. G. Lalov, S. V. Artarsky, Water disinfection using photosensitizers immobilized on chitosan, Water Res., 2006, 40, 1269–1275.

    Article  CAS  PubMed  Google Scholar 

  6. M. Magaraggia, F. Faccenda, A. Gandolfi, G. Jori, Treatment of microbiologically polluted aquaculture waters by a novel photochemical technique of potentially low environmental impact, J. Environ. Monit., 2006, 8, 923–931.

    Article  CAS  PubMed  Google Scholar 

  7. M. Wainwright, Photodynamic antimicrobial chemotherapy (PACT), J. Antimicrob. Chemother., 1998, 42, 13–28.

    Article  CAS  PubMed  Google Scholar 

  8. A. Makowski, W. Wardas, Photocatalytic degradation of toxins secreted to water by cyanobacteria and unicellular algae and photocatalytic degradation of the cells of selected microorganisms, Curr. Top. Biophys., 2001, 25, 19–25.

    CAS  Google Scholar 

  9. J. P. C. Tomé, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, M. Soncin, M. Magaraggia, S. Ferro, G. Jori, Synthesis and antibacterial activity of new poly- S-lysine-porphyrin conjugates, J. Med. Chem., 2004, 47, 6649–6652.

    Article  PubMed  CAS  Google Scholar 

  10. G. Jori, S. B. Brown, Photosensitized inactivation of microorganisms, Photochem. Photobiol. Sci., 2004, 3, 403–405.

    Article  CAS  PubMed  Google Scholar 

  11. T. A. Dahl, W. R. Midden, P. E. Hartman, Comparison of killing of Gram-negative and Gram-positive bacteria by pure singlet oxygen, J. Bacteriol., 1989, 171, 2188–2194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. R. Bonnett, D. G. Buckley, T. Burrow, A. B. B. Galia, B. Saville, S. P. Songca, Photobactericidal materials based on porphyrins and phthalocyanines, J. Mater. Chem., 1993, 3, 323–324.

    Article  CAS  Google Scholar 

  13. G. Jori and C. Perria, Photodiagnosis and phototherapeutic techniques in medicine, Documento Editoriale srl, Milano, 1995.

    Google Scholar 

  14. M. R. Hamblin, D. A. O’Donnell, N. Murthy, K. Rajagopalan, N. Michaud, M. E. Sherwood, T. Hasan, Polycationic photosensitizer conjugates: effects of chain length and Gram classification on the photodynamic inactivation of bacteria, J. Antimicrob. Chemother., 2002, 49, 941–951.

    Article  CAS  PubMed  Google Scholar 

  15. L. Polo, A. Segalla, G. Bertoloni, G. Jori, K. Schaffner, E. Reddi, Polylysine-porphycene conjugates as efficient photosensitizers for the inactivation of microbial pathogens, J. Photochem. Photobiol., B, 2000, 59, 152–158.

    Article  CAS  Google Scholar 

  16. M. Merchat, G. Bertolini, P. Giacomini, A. Villanueva, G. Jori, Meso-substituted cationic porphyrins as efficient photosensitizers of gram-positive and gram-negative bacteria, J. Photochem. Photobiol.. B, 1996, 32, 153–157.

    Article  CAS  PubMed  Google Scholar 

  17. A. Minnock, D. I. Vernon, J. Schofield, J. Griffiths, J. H. Parish, S. B. Brown, Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both gram-negative and gram-positive bacteria, J. Photochem. Photobiol., B, 1996, 32, 159–164.

    Article  CAS  Google Scholar 

  18. M. R. Hamblin, T. Hasan, Photodynamic therapy: a new antimicrobial approach to infectious disease?, Photochem. Photobiol. Sci., 2004, 3, 436–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. F. Gabor, J. Szolnoki, K. Toth, A. Fekete, P. Maillard, G. Csik, Photoinduced inactivation of T7 phage sensitized by symmetrically and asymmetrically substituted tetraphenyl porphyrin: Comparison of efficiency and mechanism of action, Photochem. Photobiol., 2001, 73, 304–311.

    Article  CAS  PubMed  Google Scholar 

  20. M. Egyeki, G. Turoczy, Z. Majer, K. Toth, A. Fekete, P. Maillard, G. Csik, Photosensitized inactivation of T7 phage as surrogate of non-enveloped DNA viruses: efficiency and mechanism of action, Biochim. Biophys. Acta Gen. Subj., 2003, 1624, 115–124.

    Article  CAS  Google Scholar 

  21. C. M. Allen, J. M. Weber, J. E. Vanlier, Sulfophthalocyanines for photodynamic inactivation of viruses in blood products - Effect of structural modifications, Photochem. Photobiol., 1995, 62, 184–189.

    Article  CAS  PubMed  Google Scholar 

  22. F. Kasermann, C. Kempf, Photodynamic inactivation of enveloped viruses by buckminsterfullerene, Antiviral Res., 1997, 34, 65–70.

    Article  CAS  PubMed  Google Scholar 

  23. M. Wainwright, Photoinactivation of viruses, Photochem. Photobiol. Sci., 2004, 3, 406–411.

    Article  CAS  PubMed  Google Scholar 

  24. M. J. Casteel, K. Jayaraj, A. Gold, L. M. Ball, M. D. Sobsey, Photoinactivation of hepatitis A virus by synthetic porphyrins, Photochem. Photobiol., 2004, 80, 294–300.

    Article  CAS  PubMed  Google Scholar 

  25. R. Bonnett, Chemical aspects of photodynamic therapy, Gordon and Breach Science, Amsterdam, 2000.

    Book  Google Scholar 

  26. M. Wainwright, Methylene blue derivatives - suitable photoantimicrobials for blood product disinfection?, Int. J. Antimicrob. Agents, 2000, 16, 381–394.

    Article  CAS  PubMed  Google Scholar 

  27. E. Reddi, M. Ceccon, G. Valduga, G. Jori, J. C. Bommer, F. Elisei, L. Latterini, U. Mazzucato, Photophysical properties and antibacterial activity of meso-substituted cationic porphyrins, Photochem. Photobiol., 2002, 75, 462–470.

    Article  CAS  PubMed  Google Scholar 

  28. H. Ashkenazi, Y. Nitzan, D. Gal, Photodynamic effects of antioxidant substituted porphyrin photosensitizers on gram-positive and -negative bacteria, Photochem. Photobiol., 2003, 77, 186–191.

    Article  CAS  PubMed  Google Scholar 

  29. M. Salmon-Divon, Y. Nitzan, Z. Malik, Mechanistic aspects of Escherichia coli photodynamic inactivation by cationic tetra- meso( N-methylpyridyl)porphine, Photochem. Photobiol. Sci., 2004, 3, 423–429.

    Article  CAS  PubMed  Google Scholar 

  30. S. Banfi, E. Caruso, L. Buccafurni, V. Battini, S. Zazzaron, P. Barbieri, V. Orlandi, Antibacterial activity of tetraaryl-porphyrin photosensitizers: An in vitro study on Gram negative and Gram positive bacteria, J. Photochem. Photobiol., B, 2006, 85, 28–38.

    Article  CAS  Google Scholar 

  31. E. M. P. Silva, F. Giuntini, M. A. F. Faustino, J. P. C. Tomé, M. G. P. M. S. Neves, A. C. Tomé, A. M. S. Silva, M. G. Santana-Marques, A. J. Ferrer-Correia, J. A. S. Cavaleiro, M. F. Caeiro, R. R. Duarte, S. A. P. Tavares, I. N. Pegado, B. d’Almeida, A. P. A. de Matos, M. L. Valdeira, Synthesis of cationic beta-vinyl substituted meso-tetraphenylporphyrins and their in vitro activity against herpes simplex virus type 1, Bioorg. Med. Chem. Lett., 2005, 15, 3333–3337.

    Article  CAS  PubMed  Google Scholar 

  32. J. P. C. Tomé, E. M. P. Silva, A. Pereira, C. M. A. Alonso, M. A. F. Faustino, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, S. A. P. Tavares, R. R. Duarte, M. F. Caeiro, M. L. Valdeira, Synthesis of neutral and cationic tripyridylporphyrin-d-galactose conjugates and the photoinactivation of HSV-1, Bioorg. Med. Chem., 2007, 15, 4705–4713.

    Article  PubMed  CAS  Google Scholar 

  33. M. Perlin, J. C. H. Mao, E. R. Otis, N. L. Shipkowitz, R. G. Duff, Photodynamic inactivation of influenza and herpes viruses by hematoporphyrin, Antiviral Res., 1987, 7, 43–51.

    Article  CAS  PubMed  Google Scholar 

  34. C. M. B. Carvalho, A. T. P. C. Gomes, S. C. D. Fernandes, A. C. B. Prata, M. A. Almeida, M. A. Cunha, J. P. C. Tomé, M. A. F. Faustino, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, Z. Lin, J. P. Rainho, J. Rocha, Photoinactivation of bacteria in wastewater by porphyrins: Bacterial [beta]-galactosidase activity and leucine-uptake as methods to monitor the process, J. Photochem. Photobiol., B, 2007, 88, 112–118.

    Article  CAS  Google Scholar 

  35. C. P. Gerba, J. L. Melnick, C. Wallis, Fate of wastewater bacteria and viruses in soil, J. Irrig. Drainage Div., 1975, 101, 157–174.

    Article  Google Scholar 

  36. J. V. Lee, S. R. Dawson, S. Ward, S. B. Surman, K. R. Neal, Bacteriophages are a better indicator of illness rates than bacteria amongst users of a white water course fed by a lowland river, Water Sci. Technol., 1997, 35, 165–170.

    Article  CAS  Google Scholar 

  37. C. Kasturi, M. S. Platz, Inactivation of lambda-phage with 658 nm light using a DNA-binding porphyrin sensitizer, Photochem. Photobiol., 1992, 56, 427–429.

    Article  CAS  PubMed  Google Scholar 

  38. S. J. Wagner, A. Skripchenko, D. Robinette, J. W. Foley, L. Cincotta, Factors affecting virus photoinactivation by a series of phenothiazine dyes, Photochem. Photobiol., 1998, 67, 343–349.

    Article  CAS  PubMed  Google Scholar 

  39. H. Abe, K. Ikebuchi, S. J. Wagner, M. Kuwabara, N. Kamo, S. Sekiguchi, Potential involvement of both type I and type II mechanisms in M13 virus inactivation by methylene blue photosensitization, Photochem. Photobiol., 1997, 66, 204–208.

    Article  CAS  PubMed  Google Scholar 

  40. M. Sirish, V. A. Chertkov, H. J. Schneider, Porphyrin-based peptide receptors: Syntheses and NMR analysis, Chem.–Eur. J., 2002, 8, 1181–1188.

    Article  CAS  PubMed  Google Scholar 

  41. M. H. Adams, Bacteriophages, Interscience, New York, 1959.

    Google Scholar 

  42. J. Sambrook, E. F. Fritsch and T. Maniatis, Bacteriophage λ vectors, Cold Spring Harbor Laboratory Press, 2nd edn, 1989.

    Google Scholar 

  43. S. A. G. Lambrechts, M. C. G. Aalders, D. H. Langeveld-Klerks, Y. Khayali, J. W. M. Lagerberg, Effect of monovalent and divalent cations on the photoinactivation of bacteria with meso-substituted cationic porphyrins, Photochem. Photobiol., 2004, 79, 297–302.

    Article  CAS  PubMed  Google Scholar 

  44. D. A. Caminos, M. B. Spesia, E. N. Durantini, Photodynamic inactivation of Escherichia coli by novel meso-substituted porphyrins by 4-(3- N,N,N-trimethylammoniumpropoxy)phenyl and 4-(trifluoromethyl)phenyl groups, Photochem. Photobiol. Sci., 2006, 5, 56–65.

    Article  CAS  PubMed  Google Scholar 

  45. S. E. Dowd, S. D. Pillai, S. Y. Wang, M. Y. Corapcioglu, Delineating the specific influence of virus isoelectric point and size on virus adsorption and transport through sandy soils, Appl. Environ. Microb., 1998, 64, 405–410.

    Article  CAS  Google Scholar 

  46. K. Zupan, L. Herenyi, K. Toth, Z. Majer, G. Csik, Binding of cationic porphyrin to isolated and encapsidated viral DNA analyzed by comprehensive spectroscopic methods, Biochemistry, 2004, 43, 9151–9159.

    Article  CAS  PubMed  Google Scholar 

  47. D. Kessel, R. Luguya, M. G. H. Vicente, Localization and photodynamic efficacy of two cationic porphyrins varying in charge distribution, Photochem. Photobiol., 2003, 78, 431–435.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adelaide Almeida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, L., Alves, E., Carvalho, C.M.B. et al. Sewage bacteriophage photoinactivation by cationic porphyrins: a study of charge effect. Photochem Photobiol Sci 7, 415–422 (2008). https://doi.org/10.1039/b712749a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b712749a

Navigation