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Stimuli-responsive hydrogels are attractive materials with many applications towards biomedicine,
biology, construction, and manufacturing. Materials that can be cured or annealed rapidly at room
temperature are of particular interest. In this work we develop a class of supramolecular coumarin-
functionalised hydrogels formed via host-guest mediated self-assembly with cucurbit[8]uril that
can photo-switch to covalent gels and reversibly toggle between the two states. A principle ad-
vantage of such materials is their ability to maintain a homogeneous chemical composition and
crosslink density while selectively modulating stiffness with light. An investigation of the photo-
reversibility of these functional materials elucidated that hydroxyethy! cellulose-coumarin based
gels were soft and could only switch from a physical state to a covalent one, while hyaluronic acid-
coumarin based gels were softer and could be photo-reversed back into a physical state after

covalent curing.

Introduction

In the last few decades, many hydrogels have been proposed in
the literature as materials for sensing 13, tissue engineering and
3D bioprinting*?, drug delivery 10-15, cosmetics 1©, and construc-
tion or industrial use17:18. Coumarin (COU) functionalised poly-
mers, whether in hydrogel form or not, have been widely devel-
oped and commercialised for fields within industrial polymer sci-
ence, energy, and biomedicine.!® COU is a light-sensitive small
molecule that undergoes a [2+2] photo-dimerisation under irra-
diation at wavelengths >310 nm. Dimerised coumarin molecules
can be decoupled with irradiation at wavelengths <310 nm, and
this property has been exploited to develop light responsive ma-
terials. 19-20

Biologically derived polymers are attractive materials on ac-
count of their availability, scalability, cytocompatibility, and bio-
compatibility. >18-21 Hydroxyethyl cellulose (HEC) is an inexpen-
sive material that has been widely used for industrial applications
such as paint formulations for the better part of a century.22
Hyaluronic acid (HA) is a major component of the extracellu-
lar matrix, and as such is an FDA approved material. It has
been heavily explored for applications in topical and parenteral
drug delivery, wound dressing, tissue engineering, cancer biol-
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ogy, and stem cell biology.21:23-27 HA and HEC are commonly
functionalised with moieties that can be physically or covalently
crosslinked because the highly entangled polysaccharides do not
gel on their own. 28

The exploitation of COU’s photo-reversible dimerisation and its
use as a guest in host-guest driven assembly of a linear polymer
was reported by Tian et al.?” In this elegant work, a bipyridine
was derivatised with two COU molecules that were complexed
in a 2:1 fashion with the macrocycle y-cyclodextrin to form lin-
ear polymer chains. To date, this host-guest complexation of
COU has not been used to drive dynamic self-assembly of purely
supramolecular hydrogels. Furthermore, gelation of COU-based
materials with cucurbiturils, which are a family of symmetric
macrocycles that have many advantages over cyclodextrins in-
cluding temperature and pressure stability, chemical sensitivity
under acidic and basic conditions, and improved binding kinet-
ics, has not been studied. 3¢

Herein, we report the 2:1 host-guest complexation of COU
with cucurbit[8]uril (CB[8]) and use this assembly to form multi-
modal, supramolecular and covalent biopolymer based hydrogels.
We report a strategy for the pendent functionalisation of HEC and
HA with COU. Upon addition of CB[8] our polymers form self-
assembled, photo-tunable hydrogels. These materials are stiff-
ened upon irradiation at wavelengths >310 nm, a useful property
for ambiently photo-annealing industrial hydrogels or for tissue
engineering and 3D bioprinting applications. HA-COU gels were
fully photo-reversible, and could selectively toggle between a soft
physical state and a stiffer covalent state.
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Fig. 1 Concept for coumarin-functionalised biopolymers and self-assembly using cucurbit[8]uril (CB[8]) host-guest chemistry. (A) Polysaccharides
(hyaluronic acid (HA) or hydroxyethyl cellulose (HEC)) functionalised with pendant coumarin mixed in solution with cucurbit[8]uril self-assembles into a
purely supramolecular gel with dynamic, physical interactions. Upon exposure to light (A > 310 nm), coumarin undergoes a [2+2] cycloaddition to form
covalent cross-links between the polymer chains, which can occur within or outside the CB[8] cavity. (B) Chemical structure of COU-functionalised
HA; host-guest driven self assembly between the coumarin and cucurbit[8]uril results in supramolecular interactions; the coumarin may be reversibly
photo-dimerised and decoupled. (C) Hyaluronic acid or hydroxyethyl cellulose dissolved in solution forms a viscous, entangled solution; addition of
cucurbit[8]uril results in self-assembly to a supramolecular hydrogel. Dimerisation of coumarin encapsulated within cucurbit[8]uril results in a covalent

network.

Results and Discussion

In this work we develop and characterise photo-sensitive
supramolecular and covalent hydrogels derived from COU func-
tionalised polysaccharides. Accardo and Kalow recently reported
on dynamically tuning the stiffness of covalent hydrogels.3! COU
has been identified as a good guest for macrocycles such as cy-
clodextrins and cucurbiturils. %32 However, COU’s binding affin-
ity to macrocycles when attached to a polymer backbone and its
propensity to form supramolecular, photo-reversible, and shear-
reversible gels has not been thoroughly explored. Here we
demonstrate that COU attached pendently to a polymer backbone
continues to serve as a good guest for CB[8], forming a 2:1 ho-
moternary complex. As depicted in Figure 1, this interaction can
be exploited to make COU-based hydrogels.

7-Hydroxycoumarin (COU-OH) was used as a simplified model
of backbone-bound COU to study its homoternary complexa-
tion with CB[8] in water (Fig. S1) through isothermal titration
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calorimetry (ITC).33 1t is challenging to obtain reliable bind-
ing information via a single ITC measurement for a poorly sol-
uble compound like COU-OH (solubility in water: 0.5 mM).
In order to overcome this typical limitation for hydrophobic
molecules, data from three titration curves obtained using dif-
ferent CB[8] concentrations were simultaneously fitted accord-
ing to a sequential binding model. The binding affinities for
the encapsulation of the first and second COU-OH molecules are
3.9%x10% M1 (AG; = -20.5 + 0.2 kJ/mol) and 1.5x10% M
(AGy = -23.9 £ 0.4 kJ/mol), respectively, exhibiting a positive co-
operativity effect. Both binding processes are enthalpically driven
(AH; = -28.2 + 0.9 kJ/mol and AH,; = -28.3 £+ 1.7 kJ/mol)
but entropically unfavorable, consistent with previous reports on
CB[8] mediated binding. 34-36

It is well known that functionalising a polymer backbone
with guest moieties is a robust and facile way to form
hydrogels through, for example, host-guest mediated inter-
actions of backbone-functionalised polymers and macrocyclic

This journal is © The Royal Society of Chemistry [year]
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Fig. 2 Rheological data on 720 KDa HEC-based materials
demonstrating the gelling effect from 2:1 homoternary biding of COU to
CB[8]. Oscillatory frequency measurements in the linear viscoelastic
region were taken. Complex moduli at 1 rad/s are plotted.
Measurements were done with triplicate samples; *p<0.05; **p<0.01.

hosts. 8343739 Herein we functionalise HEC and HA (5-6%;
Fig. S2) to create materials that self-assemble into supramolecular
gels via COU/CB[8] 2:1 homoternary complexation and can be
crosslinked into covalent gels via COU-COU photo-dimerisation
within or outside the CB[8] cavity. We explore whether these ma-
terials may toggle between physical and covalent states (Fig. 1C).
HEC is an inexpensive and easily-functionalised cellulose
derivative commercially available at various molecular weights;
our group has previously reported on HEC-functionalised gels
formed via host-guest interactions between backbone tethered
guests and CB[8].21:37:40 HEC-COU was first used in this work
to explore gelation in COU/CB[8] systems. A 720 kDa molecu-
lar weight HEC polymer functionalised with 5% COU gelled after
the addition of CB[8] (Fig. 2). There is a slight difference in
stiffness between unfunctionalised HEC and HEC-COU (Fig. 2),
potentially due to m-stacking within the matrix. The addition of
cucurbit[7]uril (CB[7]) also resulted in a small stiffening effect. A
3-fold increase in complex modulus occurred after introduction of
CB[8] with 720 kDa HEC-COU (Fig. 2). While less pronounced,
a 5-6% functionalised 1.3 MDa HEC-COU polymer solution also
stiffened upon addition of CB[8] (Fig. S3A). The higher molecu-
lar weight functional HEC gelled on its own when functionalised
with a similar 5% COU, unlike in the lower molecular weight 720
kDa case, suggesting the presence of a critical percolation tran-
sition point in our high molecular weight polysaccharides. The
HA-COU system, with a 1.5 - 1.8 MDa molecular weight, was also
observed to gel on its own with 5% COU functionalizstion (Fig.
S3B), with a stiffening effect occurring after addition of CB[8].
The stiffness of the higher molecular weight HEC-COU was
probed with an oscillatory time sweep while irradiating the ma-
trix with light >310 nm (320-390 nm). This transient oscil-
latory rheological measurement allowed for the quantification
of the effect of COU dimerisation on the matrix. The HEC-
COU/CBI[8] system underwent major stiffening as the CB[8]-
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bound COU molecules were dimerised to form covalent crosslinks
(Fig. 3A,B), exhibiting a storage modulus (G’) increase from
0.074 kPa to 4.1 kPa at 1 rad/s. Negligible changes in the loss
modulus (G”) suggest that a similar crosslink density existed be-
tween the physical and covalent states; the change from dynamic
to static crosslinks is the driving force causing a major increase
in the storage modulus. Interestingly, HEC-COU/CB[8] could
not be completely decoupled after COU dimerisation occurred
(Fig. 3A,C). After irradiation at 254 nm, the HEC-COU/CB[8]
system was reloaded onto the rheometer plate and irradiated
in situ at 320-390 nm again to test whether the system under-
went a covalent-to-physical state transition with 254 nm light,
and whether the system could be redimerised to a covalent state.
The inability of the material to stiffen more than once (Fig. 3C)
suggests the reduction in stiffness (Fig. S4) is not caused by de-
coupling of COU-COU dimers but is consistent with polysaccha-
ride matrix photo-degradation.*! These observations were also
present in the lower molecular weight 720 kDa HEC-COU/CB[8]
system and in the high molecular weight HEC-COU/CB[8] system
with a reduced backbone concentration of COU of 1% (data not
shown).

Hyaluronic acid (HA) is a major component of the human ex-
tracellular matrix?4 and is a useful biomaterial for applications
within biomedicine or biology. We leveraged the same approach
as with HEC and functionalised HA with COU at 5%; we then in-
troduced CB[8] to form a supramolecular gel (Fig. 1A,B; S3B).
Similarly to HEC-COU, HA-COU gelled on its own without CB[8],
but stiffened when CB[8] was introduced. The ability of HA-
COU/CBI8] to photo-crosslink was then explored. Upon expo-
sure to light >310 nm (320-390 nm), HA-COU hydrogels com-
parably stiffened, with an increase in G’ and negligible changes
in G” (Fig. 4A; S5). The storage modulus increased from 78
to 360 Pa upon irradiation and COU dimerisation at 1 rad/s,
markedly lower than HEC-COU/CB[8] despite similar backbone
functionalisation of 5%. Notably, this range of stiffness is ideal
for 3D neural cell culture and tissue engineering applications. 42
While certainly the photo-reversibility of HA-COU/CB[8] occurs
at wavelengths not compatible with cells and tissue, embedding
cells in the physical state and curing with visible light is a poten-
tially feasible strategy for biological applications in the future.

The ability to reversibly toggle between the physical and cova-
lent states in HA-COU/CB[8] was explored. After irradiation at
a fixed energy density to the covalent crosslinking (1.5 h), HA-
COU/CBI8] could be fully reverted to its physical state, and then
crosslinked again to fully recover its covalent stiffness for at least
two cycles (Fig. 4A,B). When this material, however, was exposed
to UV light (<310 nm) for 4 times as long (6 h), the stiffness de-
creased beyond the point of the original supramolecular material,
and the stiffness was not able to fully recover (Fig. S6). This sug-
gests that when there are moieties embedded within the matrix
that can absorb photons (COU-COU dimers), then the integrity of
the polymer backbone is not compromised. However, when the
system is fully saturated and further energy is applied, dissipation
occurs in the form of material breakdown.

The differences in energy dissipation, shear-thinning, and re-
covery were examined in the HA-COU/CB[8] system in the phys-
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Fig. 4 Rheological characterization of hyaluronic acid conjugated with
coumarin loaded with 0.5 molar equivalents of cucurbit[8]uril
(HA-COU/CB). (A) Oscillatory UV time sweep of HA-COU/CB[8]
demonstrating dimerisation of COU [w = 1 rad/s, v = 1%;

A = 320-390 nm; / = 140 mW/cm?]. (B) Oscillatory frequency sweeps of
HA-COU/CB[8] with purely non-covalent, supramolecular interactions or
post-UV(>310 nm) treated until full dimerisation.

ical and covalent states (Fig. S7). The physically crosslinked ma-
terial underwent shear-thinning and fully recovered its stiffness
after high shear (50%, 50 rad/s) in 1 h. After the same shearing

4| Journal Name, [year], [vol.],1-6

HEC-COU/CB[8] system after covalent dimerisation and after exposure to
W/cm?].

conditions, the covalently-crosslinked polymer plateaued at 55%
recovery suggesting that the supramolecular material was able
to dissipate energy via the dissociation of the thermodynamically
favourable host-guest interactions between COU and CB[8]. In
the case of the 100% covalent material, this dynamic energy dissi-
pation is not available to the system, and so energy is propagated
through the system by cleavage of chemical bonds. The shear-
reversibility and photo-reversibility of HA-COU/CB[8] hydrogels
suggest that when there are non-covalent or covalent groups in
the matrix more susceptible to dissipation or absorption of en-
ergy, the polymer backbone remains intact. 43

Our group previously reported a photo-curable HEC-based sys-
tem with an anthracene (ANC) guest4?, and it was observed that
the dimerisation of HEC-ANC was not fully reversible. The re-
versible dimerisation of anthracene is sensitive to oxygen radicals.
Therefore, it was hypothesized that this inability to reverse an-
thracene dimerisation was due to residual oxygen in the system.
However, COU dimerisation is not oxygen sensitive, and the dif-
ferences that exist between HEC-COU and HA-COU suggest that
another factor, such as backbone charge, may be playing a critical
role.

In summary, we explored the photo-curability, photo-
reversibilityy, and energy dissipation of self-assembled
CB[8]/COU-functionalised polysaccharides. While HEC-
COU/CB[8] materials could be photo-cured, they were not
reversible. On the other hand, supramolecular HA-COU/CBI[8]
materials were photo-reversible and shear-reversible, and chain
degradation occured only after systemic energy saturation
(photons or shear). Such photo-properties may limit the use of
these materials in applications with extended irradiation below
310 nm, but the embedding of COU in HEC and HA systems

This journal is © The Royal Society of Chemistry [year]



results in the formation of photo-active biomaterials with distinct
and expanded potential applications in industry or biomedicine.

Conclusions

In this work, HA and HEC backbones were functionalised with a
coumarin derivative and self-assembled into supramolecular gels
with CB[8]-mediated homoternary complexes. HEC-COU/CB[8]
could be dimerised from a supramolecular gel into a covalent
state, but could not be reversed. HA-COU/CB[8] was fully re-
versible for at least two cycles, and could toggle between phys-
ical and covalent states. The HA-COU/CB[8] system is an in-
teresting material with potential applications in additive manu-
facturing. The use of functional HA resins for 3D printing has
been previously reported in elegant dual printed or reinforced
network approaches. 4+4> The HA-COU/CB[8] system is a poten-
tially promising resin for 4D bioprinting*® or as a cast gel with
well-defined geometry4” owing to the in situ and reversible tun-
ability of its stiffness. Most importantly, our material maintains
a homogeneous chemical composition but can be selectively stiff-
ened with spatial and temporal resolution in biologically-relevant
stiffness regimes, suggesting it may be an attractive material for
studying the role of stiffness in neurobiology. 48
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