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����������A high+activity of two+dimensional (2D) copper oxide (CuO) electrocatalyst for 

the oxygen evolution reaction (OER) is presented. The CuO electrode self+assembles on a 

stainless steel substrate via a chemical bath deposition at 80 0C in a mixed solution of CuSO4 and 

NH4OH, followed by air annealing treatment, and shows a 2D nanosheet bundle+type 

morphology. The OER performance is studied in a 1M KOH solution. The OER starts to occur at 

about 1.48 V versus RHE (η = 250 mV) with a Tafel slope of 59 mV/dec in a 1M KOH solution. 

The overpotential (η) of 350 mV at 10 mA/cm2 is among the lowest compared with other 

copper+based materials. The catalyst can deliver a stable current density of > 10 mA/cm2 for 

more than 10 hours. This superior OER activity is due to its adequately exposed OER+favorable 

2D morphology and the optimized electronic properties resulting from the thermal treatment.  
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The electrochemical water splitting into hydrogen and oxygen provides the most promising and 

sustainable approach to produce clean hydrogen fuel using electricity generated from the 

renewable energy sources, such as solar energy, wind power and hydropower.1,2 Electrochemical 

water splitting processes generally involve two half+reactions: the hydrogen evolution reaction 

(HER) at the cathode, and the oxygen evolution reaction (OER) at the anode.3 Both the HER and 

OER reactions are crucial for the overall water splitting efficiency.  However, the H2 production 

from electrocatalytic water splitting is seriously restricted by the sluggish kinetics of the OER on 

the anode and it also requires a greater overpotential than the theoretical potential of 1.23 V.4 So 

far, iridium and ruthenium oxides (IrO2 and RuO2) are the most active OER electrocatalysts 

because of their excellent OER performance in acidic as well as alkaline media.5,6 However, the 

high cost and low abundance of these materials limit their large+scale applications. Hence, 

development of efficient, inexpensive and earth abundant OER electrocatalysts with a low 

overpotential are highly desired to make the whole water splitting reaction more energy+efficient. 

In recent years, considerable attention has been focused on the first row transition metals+

based oxide materials for electrochemical water splitting applications.7+9 Especially, there has 

been increasing interest in Cu+based water oxidation catalysts due to their high abundance, low 

cost and rich redox properties.10 Various Cu+based nanostructured oxides have been 

demonstrated as water splitting electrocatalysts. However, their onset overpotential values are 

still high ranging between 320 + 450 mV, and Tafel slope is between 95 + 44 mV/dec.10+17 Among 

various nanostructures, two+dimensional (2D) nanostructures can provide the most ideal 

morphological foundation for highly+active electrocatalyst because of their significantly 

shortened ion and electron diffusion pathways, large electrochemical active sites and electrode+
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electrolyte interface, and improved structural stability, etc.18+20 In this work, a self+assembled 2D 

CuO nanosheet bundle+type film has been synthesized for water splitting applications using a 

chemical bath deposition technique, which is facile and economically feasible for the synthesis 

of high+quality CuO films on a large surface area at low temperatures.21 The 2D CuO nanosheet 

electrode exhibits superior overall performance such as a remarkably low onset overpotential (η 

= 250 mV) and good Tafel slope of 59 mV/dev, compared to previously+studied Cu+based 

electrocatalysts and many inorganic materials. 

The 2D CuO nanosheet bundle+type electrode film was fabricated via the chemical bath 

deposition on stainless substrate using a mixed solution of 0.1M CuSO4 and 1M NH4OH. 

Because stainless steel is cost+effective, highly conductive, and very stable in most acids and 

alkaline solutions, it may serve as an ideal substrate for large+scale OER applications. During the 

deposition, the pH of the solution was maintained at ~ 13. A cleaned stainless steel substrate was 

immersed in the bath containing the solution, and the temperature was maintained at 80 ˚C for 6 

hours. A heterogeneous reaction occurred, and the 2D nanostructured CuO was deposited on the 

substrate.  

For the synthesis of the 2D CuO nanosheet bundles, two distinct steps are involved; i.e., 

nucleation and subsequent particle growth. 3 mL of the NH4OH solution is added into the CuSO4 

solution to form a Cu(OH)2 precipitate. When the amount of the NH4OH solution is increased 

from 3 mL to 5 mL, the Cu(OH)2 precipitate is dissolved at a pH value ~12 producing complex 

Cu(NH3)4
2+ ions and a clear solution is obtained. Well aligned 2D CuO nanosheets are obtained 

by reducing the rate of the crystal growth as well as the spontaneous precipitation that are 

controlled by increasing the pH from 12 to 13. 
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                           CuSO4 + 2NH4OH    →   Cu(OH)2 + (NH4)2SO4                                         (1) 

                              Cu(OH)2 + 4NH3   →  Cu(NH3)4
2+  + 2OH ¯                                            (2) 

When this solution bath is heated to 80 0C, the ionic product starts to exceed the solubility 

product by releasing H2O and NH3, and highly anisotropic positively charged CuO nuclei are 

formed on the substrate surface as well as in the solution: 

                            Cu(NH3)4
2+ + 2OH ¯ →  CuO + 4NH3 + H2O                                            (3) 

These CuO nuclei assemble together to form thermodynamically unstable nanostrand structures 

with a high aspect ratio.22,23 They serve as ideal building blocks and tend to self+assemble into 

2D nanosheets. The individual nanosheet has a higher surface energy and therefore it tends to 

aggregate perpendicularly to the surface plane.24 As the reaction proceeds further, the thin 2D 

nanosheets self+aggregate to form bundles of nanosheets on the substrate for the minimizing of 

the overall surface energy.  

 

 

���������  (a) X+ray diffraction patterns and (b) full+scale XPS spectra of the as+deposited and 

optimized 2D CuO nanosheet bundle films.   
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Figure 1(a) shows the XRD patterns of the as+deposited and optimized (annealed at 200 

°C) 2D CuO nanosheets. The films show major diffraction peaks at 32.500, 35.540, 38.600, 

53.520, 66.190 and 68.150 which correspond to the (110), (+111), (111), (020), (022) and (220) 

planes, respectively, of a polycrystalline monoclinic CuO structure (JCPDS No. # 01+089+5897). 

The diffraction peaks with the asterisk (*) are linked to the stainless steel substrate. The Cu(OH)2 

and Cu2O phases are not detected in the XRD spectra. Using the Scherer’s formula,25  the 

average crystallite size for the as+deposited 2D CuO nanosheet films is found to be ~ 13 nm, 

whereas after annealing, it decreases to ~ 10 nm (Figure S1).  

Figure 1(b) shows the full+scale XPS spectra of the 2D CuO nanosheet films. Typical 

carbon (C1s), oxygen (O1s) and copper (Cu2p1/2, 3/2) signals are detected at around 285 eV, 530 

eV and 935~955 eV respectively (see Figure S2 in the supplementary information for the 

enlarged peaks for each signal). The small non+oxygenated carbon (C1s) peak is a referenced 

peak. Two Cu2p peaks, Cu2p3/2 and Cu2p1/2, are observed at 933.96 eV and 953.92 eV 

respectively. Additional shake+up peaks are also detected with a binding energy of ~10 eV higher 

than that of the main Cu2p3/2 and Cu2p1/2 peaks, due to the existence of an unfilled Cu3d9 

shell.26 A shoulder+like feature at 531 eV is detected near the O1s peak at 529.7 eV, and this is 

attributed to surface+bound hydroxide species that originate from the adsorbed H2O molecules on 

the surface.16,27 

 Figure 2 (a and d) shows the SEM images of the 2D CuO nanosheet electrode films. The 

annealing of the as+prepared CuO nanosheet film does not affect its morphology. The 

morphology has well+defined uniform 2D nanosheet bundles, and each bundle contains 20 to 30 

compact 2D CuO nanosheets that are grown vertically on the substrate surface. The thickness (�) 
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and length (() of each nanosheet are 10+15 nm and 1+2 µm respectively (Figure S3). These 

nanosheet bundles self+aggregate randomly covering the whole surface of the substrate. EDS 

analysis (Table S1) reveals that whilst the as+prepared sample is slightly oxygen+rich presumably 

due to the hydroxide content in the film and the optimized sample annealed at 200 °C becomes 

copper+rich.  

        

������� �� (a,d) FE+SEM images of the as+deposited and optimized (annealed at 200 °C) 

nanosheet films, respectively. (b,c) TEM and HRTEM images of the as+deposited 2D CuO 

nanosheet film, respectively. (e,f) TEM and HRTEM images of the optimized 2D CuO nanosheet 

film, respectively.   The insets in (b) and (e) show the SAED patterns. The insets in (c) and (f) 

show the magnified images of the selected area of the HRTEM images with a scale bar of 1 nm. 
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Figure 2 (b and e) shows the TEM images of the as+deposited and optimized 2D CuO nanosheets 

scratched off from the substrate. The insets show the selected area electron  diffraction (SAED) 

patterns. The observed diffraction spots with diffused rings suggest that the sample is 

polycrystalline. The high resolution TEM (HRTEM) images (see Figure 2(c and f)) show clear 

lattice fringes with an interplanar spacing of 1.43Å and 2.33Å that correspond to the (022) and 

(111) plane of the monoclinic crystal structure of CuO. As the annealing temperature is increased 

to 300 °C, the crystallinity of the CuO nanosheets becomes degenerated (see Figure S4 in the 

Supplementary Information), which can be revealed by the broaden peaks in the XRD results and 

diffused rings in SAED.28 

The OER activities of the as+deposited and optimized 2D CuO nanosheet electrodes are 

investigated using liner sweep voltammetry (LSV) at a scan rate of 10 mV/s in 1M KOH and   

0.2M borate buffer solutions and are shown in Figure 3(a) and Fig. S5. Both the electrodes 

exhibit a remarkably low onset overpotential of 270 mV for the as+deposited sample and 250 mV 

for the optimized sample in a 1M KOH solution. A low overpotential of 380 mV and 350 mV is 

required to drive a current density of 10 mA/cm2 respectively. However, for the samples 

annealed at 100 °C and 300 °C, their overpotential values are slightly larger (Figure S6). On the 

other hand, it requires an overpotential of 543 mV to drive a current density of 1 mA/cm2 in a 

0.2M borate buffer solution. Relatively higher catalytic activity of the 2D nanosheet electrode is 

observed in a KOH solution rather than borate buffer solution. These values are considerably 

lower than those obtained from other Cu+based oxide electrocatalysts (see Table S2). The 

superior catalytic activity of the optimized CuO nanosheet electrode could be attributed to its 
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unique OER+favorable 2D morphology and the improved electronic properties resulting from the 

thermal treatment. 

 

������� ��� Electrochemical OER performance in 1 M KOH: (a) OER LSV curves (iR+

compensated) of the 2D CuO nanosheet electrocatalysts (scan rate: 10 mVs+1), (b) Tafel curves, 

(c) chronoampetrometry stability test measured at 1.58 V vs. RHE, and (d) LSV curves of the 

optimized 2D CuO nanosheet electrode before and after the stability test.  
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Figure 3(b) shows the Tafel plot of the 2D CuO nanosheet electrodes. The linear portion 

of the Tafel curve is fitted using the Tafel equation η = � + � log �, where η is the overpotential, ��

is the fitting parameter, and � is the current density and � is the Tafel slope. The Tafel slope of 

the as+deposited and optimized 2D CuO nanosheet electrode is 69 mV/dec. and 59 mV/dec. 

respectively, and this suggests that the optimized CuO electrode has improved reaction kinetics 

for OER. The long+term electrochemical stability of the CuO nanosheet electrode for the OER is 

also tested at a static potential of 1.58 V vs. RHE (see Figure 3(c)). The current density increases 

initially due to the activation process, producing high oxidation intermediates,11 and then it 

remains stable over 10 hours. A vigorous and continuous gas evolution is observed on the 

surface during the stability measurement, and the gas bubbles dissipate rapidly into the 

electrolyte. The almost identical LSV curves (without an iR correction) of the optimized 

electrode before and after the stability test (Figure 3(d)) reveal its excellent durability for the 

OER in an extremely alkaline solution. XRD, XPS and SEM measurements are also performed 

after the stability measurements (See Fig. S7, Fig. S8 and Fig. S9 in the supporting information). 

There are no noticeable changes in the structural, morphological and compositional properties of 

the CuO electrocatalyst, suggesting that the CuO nanosheet bundle electrode is stable in alkaline 

KOH and 0.2M borate buffer solutions.  

Figure 4 shows the EIS spectra of the 2D CuO nanosheet electrodes. The EIS spectra show 

a semi+circular feature in the high+frequency region and a straight line in the low+frequency 

region. This high+frequency semicircle is attributed to the charge+transfer resistance (/"�) that is 

caused by the redox reaction that occurs on the surface of the electrocatalyst electrode, and the 

straight line is ascribed to the diffusion of the electrolyte within the electrode.29  
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������� �� EIS spectra for the as+deposited and optimized 2D CuO electrocatalyst before and 

after the stability test. The inset shows the equivalent circuit for the simulation.  

 

The equivalent series resistance (ESR) for the CuO nanosheet electrode is the combination 

of the ionic resistance of the electrolyte (/�) and the /"� in the electron transfer process of the 

electrode. The ESR values of the as+deposited and annealed CuO nanosheet electrodes are 2 T 

and 1.70 T, implying that the optimized 2D CuO nanosheets electrode has an enhanced charge+

transfer rate and an improved catalytic activity. However, after the stability measurement, the 

ESR value increases by 10 % to 1.80 T.  

In conclusion, a self+assembled 2D CuO nanosheet electrode film is synthesized using a 

chemical bath deposition method in a highly alkaline solution, and its OER performance is 

optimized by a heat treatment. The optimized 2D CuO nanosheet electrode shows the lowest 

onset overpotential of 250 mV with a Tafel slope ~ 59 mV/dec in a 1M KOH electrolyte solution. 
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The OER activity of the optimized 2D CuO nanosheets electrocatalyst shows a very low 

overpotential of 350 mV for the achievement of 10 mA/cm2 and an excellent electrochemical 

stability. The superior catalytic activity and stability, along with the facile, easy and scalable 

fabrication process of the self+assembled 2D CuO nanosheet film offer a promising approach to 

the potential use of the electrode as an inexpensive catalyst material for electrochemical water 

splitting applications. 
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