Issue 34, 2017

Green-low-cost rechargeable aqueous zinc-ion batteries using hollow porous spinel ZnMn2O4 as the cathode material

Abstract

Rechargeable aqueous zinc-ion batteries (ZIBs) have been receiving much attention recently due to their potential large-scale applications for energy storage, although only a few cathode materials have been reported as the intercalation hosts for divalent Zn2+ ions. Here, we report competitive ZIBs based on hollow porous ZnMn2O4 as the cathode and zinc as the anode. ZnMn2O4 is firstly prepared through a solvothermal carbon template dispersed by polyvinyl pyrrolidone, followed by an annealing process. The galvanostatic charge–discharge measurement demonstrates that a reversible discharge capacity of 106.5 mA h g−1 at 100 mA g−1 after 300 cycles can be achieved with no capacity decay after the addition of 0.05 mol L−1 of MnSO4 into the electrolyte. Meanwhile, it exhibits a high capacity of 70.2 mA h g−1 at a large current density of 3200 mA g−1. The excellent cycle and rate performances are attributed to the synergistic effect of the deficient spinel structure of hollow porous ZnMn2O4 with residual carbon distribution and the inhibition of Mn dissolution during the charge/discharge process.

Graphical abstract: Green-low-cost rechargeable aqueous zinc-ion batteries using hollow porous spinel ZnMn2O4 as the cathode material

Supplementary files

Article information

Article type
Paper
Submitted
04 Jan 2017
Accepted
25 Jul 2017
First published
28 Jul 2017

J. Mater. Chem. A, 2017,5, 17990-17997

Green-low-cost rechargeable aqueous zinc-ion batteries using hollow porous spinel ZnMn2O4 as the cathode material

X. Wu, Y. Xiang, Q. Peng, X. Wu, Y. Li, F. Tang, R. Song, Z. Liu, Z. He and X. Wu, J. Mater. Chem. A, 2017, 5, 17990 DOI: 10.1039/C7TA00100B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements