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Abstract 

Partial substitution of isovalent rare-earths for bismuth is one of the most effective ways to 

develop room temperature BiFeO3-based multiferroic materials with high resistivity and strong 

magnetoelectric coupling. However, their structures and properties are composition and 

processing sensitive, with underlying mechanisms still far from complete understanding. Here 

we report on the structural, thermal and magnetic properties of polycrystalline Bi1-xTbxFeO3 (0 

 x  0.30) dense ceramics prepared by spark plasma sintering (SPS). X-ray diffraction study 

reveals that increasing terbium content induces a structural transformation from the parental 

rhombohedral (R3c) polar phase to an orthorhombic (Pnma) non-polar phase at x  0.20 - 0.25. 

Complementary Raman and energy-loss near-edge structure (ELNES) spectroscopy studies 

indicate that the transition proceeds by the progressive loss of the Bi-O hybridization. A 

suppression of the long-range ferroelectric ordering upon Tb substitution and loss 

ferroelectricity at x  0.25 was also confirmed by differential scanning calorimetry. High-

sensitive magnetic measurements show that the introduction of a small amount of Tb3+ ions at 

the A- sites of the perovskite structure gives rise to the occurrence of the spontaneous 

magnetization at room temperature. The reduced degree of the Fe 3d-4p orbital mixing and the 

weaker Fe 3d - O 2p hybridization, revealed by the ELNES and X-ray near-edge absorption 

fine structure (NEXAFS) analyses, suggest that the substitution-induced changes in the 

electronic structure are responsible for the enhanced magnetization in Tb-doped BiFeO3. 

Among biphasic (R3c+Pnma) compositions with the ferroelectric order, the Bi0.8Tb0.2FeO3 
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compound shows the highest values of the remanent magnetization (Mr  0.26 emu/g), which 

makes this material a potential candidate for magnetoelectric applications.  

 

Introduction 

Bismuth ferrite, BiFeO3, belongs to a family of multiferroic materials that show at least two 

ferroic states (ferromagnetism or anti-ferromagnetism, ferroelectricity or anti-ferroelectricity, 

ferroelasticity or antiferroelasticity) within the same phase at the same temperature and 

pressure.[1] Since the revival of interest in magnetoelectric effects in 2005 [2], BiFeO3 has 

become the most widely investigated single-phase ferroelectric magnet owing to the 

simultaneous presence of ferroelectric and magnetic order at and above room temperature [3]. 

The ability to tune the electric properties by an applied magnetic field or the possibility to 

manipulate the magnetic state by an electric field provides an extra functionality that can be 

exploited for the construction of novel multifunctional devices based on mutual control of 

magnetic and electric states.[4,5]  

Although the first principle calculations [6] and some experimental works [7,8,9] suggested that 

the multiferroic properties of BiFeO3 would be promising for such applications, there are 

several problems that limit the commercial viability of BiFeO3-based devices, including the low 

electrical resistivity [10,11] and the weak magnetoelectric coupling [1,12]. To overcome the 

aforementioned problems in BiFeO3, a variety of advanced processing strategies and innovative 

chemical approaches has been proposed in the literature. Among them, a partial substitution of 

rare-earth (RE) ions for bismuth is reported as one of the most effective ways to reduce leakage 

currents and suppress the cycloid-type spatial spin modulation at the same time.[13,14,15,16] In 

our earlier work [17], we showed that the A-site substitution by dysprosium is able to eliminate 

the formation of secondary phases, improve the dielectric properties and induce a weak 

ferromagnetism at room temperature. Troyanchuk et al. [18] have reported that the appearance 

of the weak ferromagnetic moment in rare-earth doped BiFeO3 ceramics is closely related to 

the presence of structural phases with other symmetry types than that in pure BiFeO3. These 

phases are suggested to restore the collinear antiferromagnetic order, in which a weak 

ferromagnetism may occur due to a conventional interaction of the Dzyaloshinskii-Moryia 

(DM) type responsible for the weak ferromagnetism of orthoferrites.[19] The magnetic transition 

towards commensurate order driven by a structural transformation was found to be dependent 

on the ionic radius and concentration of the substituting RE element.[20] The size of RE ions 

controls the stability of the structural phase; the phenomenon is known in literature as “the 

internal chemical pressure”.[4,21] The smaller the rare-earth ion or the larger the difference 
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between the ionic radii of RE3+ and Bi3+ the stronger the chemical pressure and the lower the 

concentration range of the phase stability for the rhombohedral phase in rare-earth substituted 

BiFeO3. In this context, Tb substitution appears to be an interesting case as (i) the large 

difference in ionic radii of Bi3+ (r = 1.36 Å in 12-fold coordination, CN = 12 [22]) and Tb3+ (r = 

1.25 Å, CN = 12 [23]) may introduce a significant structural distortion via the internal chemical 

pressure effect, and (ii) a large own magnetic moment carried by Tb3+ ions can give rise to 

strong magnetic interactions, as previously observed in TbFeO3 [
24].  

Surprisingly, despite the considerable interest devoted to the other rare earth metals in recent 

years, only a limited number of studies exist in the literature for Tb-substituted BiFeO3. 

Troyanchuk et al. [18] have prepared a series of Bi1-xTbxFeO3 ceramics; they found that upon 

doping, the parental R3c phase first transformed partly into an antipolar Pnam phase at x > 0.08; 

the maximum amount of the orthorhombic Pnam phase is present in the x = 0.115 sample; and 

then, at x = 0.18, the biphasic (R3c+Pnam) structure evolved into the non-polar orthorhombic 

Pnma symmetry. The same limiting concentration of x = 0.08 was reported by Jiang et al. [25] 

for the stability of the polar R3c phase in the hot-pressed Bi0.95-xLa0.05TbxFeO3 ceramics. 

However, in their work, a new phase was found to coexist with the rhombohedral R3c phase in 

a narrow concentration range 0.08  x  0.10 and it was suggested to be of a tetragonal 

symmetry. Additional contradictory and scattered data on structural state and physical 

properties of terbium-substituted BiFeO3 were noticed in other previous studies 

[26,27,28,29,30,31,32], most likely because of different processing conditions. This situation has 

motivated us to prepare the Tb-substituted BiFeO3 ceramics by the advanced processing 

technique of spark plasma sintering (SPS), which has been recently proven to be an efficient 

technology to fabricate high-density pure BiFeO3 and BiFeO3-related ceramics, with improved 

phase purity and enhanced dielectric and multiferroic properties [33].  

In this work, we systematically investigate the effect of terbium A-site substitution on evolution 

of the crystal and electronic structures, and on the characteristics of the electrical and magnetic 

behavior in the SPS processed Bi1-xTbxFeO3 (0  x  0.30) ceramic series. The results of the 

XRD, Raman spectroscopy, ELNES and NEXAFS spectroscopy, differential scanning 

calorimetry, and magnetic measurements suggest that the appearance and enhancement of the 

magnetization can be correlated with the composition-driven phase transition of the polar 

rhombohedral phase to the non-polar orthorhombic phase, which takes place over the 

concentration range 0.10  x  0.20 via the formation of an intermediate state. 
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Experimental methods 

Material synthesis 

The polycrystalline samples of the Bi1-xTbxFeO3 (0  x  0.30) series were synthesized by the 

mixed-oxide route using high-purity oxides of Bi2O3, Fe2O3 and Tb2O3 (Sigma-Aldrich,  

99.99%). The dried (420 K for 3 h) oxides were weighed in stoichiometric proportions and 

thoroughly mixed for 2 h, using a planetary ball mill (Fritsch, model Pulverisette 7, Germany), 

in polyamide mortar filled with the ZrO2 milling balls and isopropyl alcohol as a liquid medium. 

After drying the slurry, the powder mixture was calcined in an alumina crucible at 923 K for 2 

h in air. An additional homogenization and refining of the precursors was carried out by 

repeating the process of ball-milling and calcination. The finely ground calcined powders were 

sintered in air in closed alumina crucible at different temperatures (1080 – 1155 K) for 2 - 6 h. 

To produce dense ceramics the sintered samples were ground into a very fine powder and then 

placed in a cylindrical graphite die with a 20 mm inner diameter. The powder and the die wall 

were separated by a carbon foil. The consolidation was carried out in vacuum for 3 min at a 

maximum temperature of 1023 – 1085 K and uniaxial stress of 50 MPa using an SPS furnace 

(FCT Systeme, model HPD 25/1, Germany). The heating rate was set to 200 K / min. After the 

SPS consolidation, the power and pressure were switched off and the samples were allowed to 

cool in the SPS chamber to room temperature naturally. The SPS processed (denoted SPS’ed 

hereafter) pellets were subjected to an additional heat treatment in air at 900 K / 10 h in order 

to remove carbon that could infiltrate into the samples during SPS processing at high 

temperatures.  

 

X-ray diffraction 

Phase analyses and characterization of the crystal structure of the SPS’ed ceramics were 

performed at room temperature by X-ray diffraction (XRD, PANalytical, model Philips X’Pert 

Pro, Netherlands) with Cu Kα radiation. Scans were collected over an angular range 200 ≤ 2 ≤ 

1200 in continuous scan mode with a step of 0.01670 and 20 s collection time per step. The 

obtained diffraction data were further analyzed by the Rietveld refinement method using a 

FullProf software package [34].  

 

Raman spectroscopy 
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The room-temperature Raman scattering spectra were collected from an unpolished surface of 

the SPS’ed pellets using a LabRam micro-probe system (ISA/Jobin-Yvon/Horiba, France) with 

an excitation source of Ar ion laser line (wave-length 488 nm) in back-scattering geometry. 

Focusing of the laser beam and collection of the scattered light was done by a 100x microscope 

objective lens. The power of laser spot (a diameter of about 1 m) on the pellet surface was 

kept below 3 mW to prevent a local overheating. The data were collected by a Peltier-cooled 

charged coupled device camera within a spectral range of 50-700 cm-1 with a step of 0.5 cm-1 

and an integration time of 10 s.  

 

Scanning electron microscopy  

For microstructure observations, the SPS’ed samples were mirror-polished and thermally 

etched at 1040 K for 20 min. A scanning electron microscope (SEM, a cold field-emission 

microscope JEOL, model JSM 7000F, Japan) upgraded with an energy dispersive X-ray 

spectrometer (Oxford Instruments, UK) was used to examine morphology, grain size and a local 

element occupancy. An apparent density of the sintered ceramics, as measured by Archimedes’s 

method, was about 96% of the theoretical density. Such a value is higher than that (~ 92-94%) 

reported for BiFeO3-based ceramics obtained by conventional sintering [17,35].  

 

High-resolution transmission electron microscopy and ELNES spectroscopy 

Cross-sectional samples for transmission electron microscopy (TEM) were prepared using 

a conventional polishing method. After dimple grinding and polishing, the final thinning to the 

electron transparency was achieved by low energy low angle ion beam milling. Atomic 

resolution high angle annular dark field (HAADF) images and ELNES data were taken from 

the same areas of the sample using the aberration corrected FEI Titan Themis 300. The 

microscope was operated in scanning TEM (STEM) mode at an accelerating voltage of 200 kV 

and a probe current of 0.12 nA. The Gatan Enfinium 977ER spectrometer was used for 

acquisition of the EEL spectra. The beam convergence semi-angle was set at 22 mrad and the 

EEL spectrometer collection semi-angle at 10.3 mrad (2.5 mm aperture). Semi-angular 

collection range of the HAADF detector and annular bright field (ABF) detector was 129 – 200 

mrad and 15 - 28 mrad, respectively.[36,37] The bright field (BF) detector collected data within 

a semi-angle of 13 mrad and/or 73 mrad. 

 

XANES spectroscopy and model calculations 
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X-ray absorption fine structure (XAFS) spectroscopy measurements were carried out at the 

ID26 undulator beamline [38] at the electron storage ring ESRF (Grenoble, France) operating in 

sixteen bunch mode, with an approximated photon flux of 1011 photons/s with a bandwidth of 

0.1%. The incident beam energy was monochromatized with a Si<111> double crystal 

monochromator. For all spectra, a metallic Fe reference foil was used to provide an energy 

calibration for the monochromator. Silicon mirror was used for the rejection of the harmonics 

coming from the incident X-ray beam. The samples were positioned at 450 with respect to the 

incident beam of cross-section 0.2 x 0.7 mm. An emission spectrometer with five crystal 

analyzers (5 × Ge <440>, R = 1002 mm for Fe Kα1 detection) was used to Bragg select a small 

portion of the characteristic fluorescence line around the maximum intensity (bandwidth around 

1 eV). This detection method results in better resolved spectral features (high energy resolution 

fluorescence detected X-ray absorption spectroscopy) and optimal suppression of background. 

The scans were acquired at 25 K (sample in He cryostat) to reduce thermal motion of the sample 

(a dynamical part of the Debye–Waller factor). The NEXAFS spectroscopy scan range was 

7090–7189 eV at the Fe K-edge and for the extended XAFS (EXAFS) experiments 6960–7934 

eV. The measured X-ray absorption cross-sections were analyzed using the FEFF8.1 (a program 

for ab-initio real-time multiple scattering (RSMS) calculations of the X-ray absorption fine 

structure) [39] and Viper (a program for XAFS data processing and refinement) codes [40]. 

 

Thermal analysis and magnetic measurements 

The field- and temperature-dependence of magnetization was traced using a Magnetic 

Properties Measurement System (Quantum Design, model MPMS-XL-5, USA) equipped with 

a superconducting quantum interference device (SQUID) magnetometer and superconducting 

magnet (± 5 T). The magnetization vs. applied magnetic field curves were measured at three 

different temperatures 300, 150 and 5 K. The dependence of magnetization on temperature was 

measured over a wide temperature range (5-300 K) under field cooling (FC) / field heating (FH) 

and zero-field cooling (ZFC) / FC conditions. The applied magnetic field was 0.01, 0.2 and 1 

T. Differential scanning calorimetry (DSC) was employed to determine the antiferromagnetic 

Néel (TN) and ferroelectric Curie (Tc) temperatures of the SPS’ed ceramics. The changes in heat 

flow were analyzed using a high-temperature calorimeter (NETZSCH, model Jupiter STA 449-

F1, Germany) in the temperature range of 300 – 1120 K in air at a controlled heating/cooling 

rate of 10 K / min.    
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Results and discussion 

X-ray diffraction analysis 

Fig. 1 shows the room-temperature XRD data obtained for the SPS’ed ceramic samples of the 

Bi1-xTbxFeO3 solid solution system for Tb concentrations within the range 0 ≤ x ≤ 0.30. The 

peak intensity ratios in the presented diffractograms are indicative of ceramics with a good 

crystallinity. At first sight, by comparing the stacked XRD patterns in Fig. 1a, one can spot an 

apparent change in diffraction profiles for different Tb contents, involving a shift of peak 

positions, an increase in the peaks’ width and the disappearance of some parental peaks along 

with the appearance of new peaks on progressive Tb substitution. The shifting of peaks towards 

higher 2 angles (see the enlarged views of the XRD patterns for selected 2 ranges, Figs. 1b – 

1c) with increasing Tb doping content indicates a reduction in d-spacing which directly relates 

to the unit cell shrinkage. The broadening of peaks may possibly originate from a decrease in 

grain size, which is promoted by Tb addition. SEM micrographs in the insets of Fig. 2 clearly 

demonstrate the inhibiting effect of Tb substitution on grain growth in the microstructure of the 

ceramics. Muneeswaran et al. [41] have shown using the XRD and TEM methods that the 

crystallite size decreases alongside the particle size with increasing Tb content in BiFeO3 

nanoparticles. An agreement between the size of particles, as determined from TEM, and that 

of crystallites, as estimated from XRD peak broadening, was obtained for the Bi1-xTbxFeO3 

ceramics series.[42] Our calculations, using the Debye-Scherrer formula on the measured XRD 

data, confirm that the average crystallite size decreases upon terbium substitution. The 

estimated size of crystallites of the pure BiFeO3 ceramics was found to be 70-80 nm, while the 

broadening of the XRD peaks of the x  0.20 samples indicates that highly doped ceramics 

comprise of 40-50 nm crystallites. Similar trends in decreasing both the grain size and crystallite 

size upon the A- site rare earth substitution were reported for Dy-doped BiFeO3 ceramics.[43,44] 

Besides the observed right shift in 2 positions and peaks broadening, the reflections associated 

with pure BiFeO3 phase show a continuous decrease in intensity as the concentration level of 

Tb increases. Ultimately, for the x = 0.30 ceramic, the two most intense peaks around 2 ≈ 320 

(Fig. 1c), as well as the prominent peak at 2 ≈ 380 of pure BiFeO3 disappear completely. On 

the other hand, there is a distinct peak at 2 ≈ 250 in the XRD patterns of the samples with x ≥ 

0.15 which cannot be observed in pure BiFeO3. Such a development in diffraction 

characteristics indicates a substantial structural modification in the SPS’ed Tb-doped BiFeO3 

ceramics.  
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Phase analysis of pure BiFeO3 ceramics (Fig. 1a) showed that the major perovskite phase 

displays a pattern characteristic of a rhombohedrally distorted perovskite structure (R3c space 

group). The signature diffraction peaks match well with the standard crystallographic data 

reported for the rhombohedral BiFeO3 in the Crystallography Open Database [45] under the 

COD file No. 4336776. Along with the main R3c perovskite phase, traces of a minor impurity 

phase of the Bi2Fe4O9-like structure (COD file #9008148) are detected as extra, low-intensity 

diffraction peaks around 2 ≈ 280 and 330 in the XRD pattern. The Bi25FeO39 sillenite and 

Bi2Fe4O9 mullite phases have been reported in literature as typical processing by-products of 

the solid-state synthesis of BiFeO3 owing to a peculiar kinetics of phase formation in the Bi2O3 

– Fe2O3 system.[46,47] Upon Tb substitution, the small-intensity Bragg reflections of the 

secondary phase disappear, which implies that a partial replacement of Bi3+ ions for Tb3+ ions 

stabilizes the formation of the perovskite phase during the conventional solid state reaction, and 

so it substantially reduces the amount of impurities in final polycrystalline product. Similar 

observations on substitution-enhanced phase purity were reported for La- [48], Dy- [17] and Gd- 

[49] doped BiFeO3 ceramics. The diffraction profile of highly doped samples (x  0.20) was 

found to coincide closely with that of orthorhombic TbFeO3 (COD file #1008090). A weak 

signature of the emerging Pnma-type structure can be discerned for Bi0.9Tb0.1FeO3, in which 

double peaks (101)/(020) and (202)/(040) as well as a new (111) orthorhombic peak appear 

along with the dominant rhombohedral phase peaks in the XRD pattern. The substitution-

induced suppression of the parental R3c phase and creation of a new Pnma structure in the Bi1-

xTbxFeO3 system clearly demonstrate the ion size effect [21,50]. An introduction of small Tb3+ 

ions into BiFeO3 perovskite is expected to reduce the tolerance factor since the average A-site 

ionic radius is decreased. To relieve the substitution-induced lattice stress, an essential change 

of the lattice parameters and unit-cell proportions must occur on Tb doping, leading to the 

observed structural transformation in the Bi1-xTbxFeO3 system. 

To further analyze the composition-driven phase transition in Bi1-xTbxFeO3 ceramics, the 

measured XRD patterns were simulated by the Rietveld refinement method. The reflections of 

the perovskite phase of pure BiFeO3 ceramics were successfully indexed using the R3c 

structural model in a hexagonal setting (in Supplementary material, Fig. S1a). The refined 

lattice constants, a = b  5.5782(1) Å and c  13.8691(2) Å, are in accordance with those 

reported in literature for the rhombohedral BiFeO3 [
51,52]. Similarly, a very good agreement 

between the measured XRD data and simulated R3c diffraction profile was obtained for the x 

= 0.05 sample (not shown here). The refined lattice constants are summarized in Table S1 
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(Suppl.). The atomic coordinates, bond lengths, bond angles and reliability R- factors are listed 

separately in Table S2 (Suppl.). By comparing the lattice parameters obtained for pure BiFeO3 

and Bi0.95Tb0.05FeO3 ceramics, one can see that the incorporation of a small amount of Tb ions 

causes a slight volume shrinkage of the rhombohedral unit cell ( 0.5%), which is associated 

with a tiny shortening ( 0.1 - 0.2%) of both the a and c cell constants. The Rietveld analysis 

of diffraction data collected for the compositions with highest contents of terbium (x = 0.25 and 

0.30) revealed a single-phase structure which is isostructural to the orthorhombic Pnma phase 

with 2ap x 22ap x 4ap x superlattice (ap is a parameter of pseudocubic unit cell) characteristic 

of rare-earth magnetic orthoferrites REFeO3 [53]. The refined XRD pattern along with 

experimental data for the Bi0.7Tb0.3FeO3 ceramics is shown in Fig. S1b (Suppl.). Since the 

oxygen sublattice in the nonpolar Pnma structure can be described in terms of the a-b+a- 

octahedral tilt configuration of Glazer [54], the A-site terbium substitution is thought to give rise 

to an additional cooperative rotation of the adjacent oxygen octahedra (FeO6) around the 

pseudocubic [111]C axis, so that one anti-phase tilt in the polar R3c phase (a-a-a- tilt system in 

the Glazer’s notation) is replaced by an in-phase tilt. Considering that the orthorhombic Pnma 

phase is favored by tilt distortions of the oxygen octahedra which, at their turn, are promoted 

by small size Tb ion occupying the A-site positions, the reduced phase stability for the R3c 

phase in Tb-doped BiFeO3, if compared with other systems doped by larger rare-earth elements 

(e.g., La-doped BiFeO3), can be explained by the larger space that is available in the perovskite 

cell for tilting. The lattice parameters derived from the Rietveld refinement of the diffraction 

data for the x = 0.25 and 0.30 ceramics are given in Table S1 (Suppl.). A step-like contraction 

of the primitive cell volume ( 3%) at x = 0.10 (Fig. 2) indicates that the structural transition 

from the rhombohedral R3c phase to the orthorhombic Pnma phase is a first order one. 

Therefore, according to the Gibbs phase rule, there should exist an intermediate structural state 

along the concentration range where both the phases coexist. Indeed, a more complex character 

of diffraction pattern, suggesting the presence of more than one structural phase, was observed 

for samples within the concentration range 0.10 ≤ x ≤ 0.20. Naturally, following the results of 

refinements for pure and highly-doped BiFeO3, the XRD data obtained for the compounds with 

compositions in this intermediate interval were tested for the simultaneous presence of the 

rhombohedral R3c and orthorhombic Pnma phase using a two-phase (R3c+Pnma) structural 

model. Fig. S1c (Suppl.) shows the comparison between the measured and simulated XRD 

pattern for the representative biphasic x = 0.15 sample. As it can be seen, the model allowed all 

the observed reflections to be satisfactorily reproduced with generally small R-values (Table 
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S2) and the goodness of the fit (2) factor below 1.5, thus evidencing that the measured XRD 

profile results from a superposition of Bragg reflections from two structural components, the 

rhombohedral R3c phase and orthorhombic Pnma phase. The coexistence of the two structures 

with a dominant diffraction contribution (~ 90 wt.%) from the rhombohedral phase was 

observed for the x = 0.10 ceramics. A minor Pnma phase with orthorhombic cell parameters a 

≈ 5.623 Å, b ≈ 7.817 Å and c ≈ 5.420 Å turns into the dominating one as the Tb content is 

increased to x = 0.15. Using the mixed-phase approach, stable refinements with  49 wt.% and 

 91 wt.% of the orthorhombic Pnma phase were obtained for the x = 0.15 and x = 0.20 samples, 

respectively. Structural information obtained from the Rietveld analyses of the biphasic sample 

is summarized in Table S1 (lattice parameters) and Table S2 (atomic coordinates and other 

structural parameters).  

The results of the XRD study demonstrate that the structure of Bi1-xTbxFeO3 evolves from the 

rhombohedral R3c phase to the orthorhombic Pnma phase via an intermediate two-phase state, 

which exists over a wide concentration range 0.10 ≤ x ≤ 0.20. Taking into account that the polar 

R3c phase is mainly responsible for ferroelectricity and that the non-polar Pnma phase 

exclusively enhances magnetization [55,56], the interval of the phase coexistence or the so called  

morphotropic phase boundary (MPB) determines the limits of terbium substitution for tailoring 

the multiferroic properties of Tb-doped BiFeO3. It is worth mentioning that the MPB region of 

the SPS’ed Bi1-xTbxFeO3 ceramics is wider than that reported for the conventional sintered 

ceramics (for instance, x = 0.10-0.175 in Ref. [27]). The expansion of the MPB boundaries is 

likely due to local structural defects produced by inhomogeneous thermal gradients or non-

uniform temperature distribution which may appear during the SPS processing of complex 

oxide ceramics [57].  

 

Raman scattering analysis 

As a complementary technique to X-ray diffraction, Raman spectroscopy has been employed 

in our comprehensive study of the composition-driven phase transition behavior and local 

structure modulations in the Bi1-xTbxFeO3 ceramic system. Fig. 3 displays the room-

temperature Raman data collected for the Tb-substituted BiFeO3 ceramics in the spectral range 

50 - 700 cm-1. The measured spectra, analogous to the XRD patterns, undergo noticeable 

changes upon doping. The first obvious feature is the drop in intensity and the broadening of 

the Raman peaks below 200 cm-1 with x increasing from 0 up to 0.20. At x = 0.20, the three 

most intense peaks of pure BiFeO3, located below 200 cm-1, almost disappear and instead a 
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broad peak centered at about 300 cm-1 emerges. For the compositions with x > 0.20, the first-

order Raman spectrum is dominated by the 300 cm-1 peak. The second noticeable effect of the 

Tb substitution is that the position of the fourth most intense peak of BiFeO3 just above 200 

cm-1 shifts drastically towards higher wave numbers.  

To correlate these changes with the substitution-induced structural phase transition, the Raman 

scattering spectra were fitted based on an approach of a sum of individual classical damped (but 

not heavily) harmonic oscillators contributing to the measured spectral response. On 

decomposing the fitted Raman lines into individual Gaussian components, the peak position of 

each component, i.e. the natural frequency of each Raman active phonon mode (in cm-1) was 

obtained. Table S3 provides a list of the signature R3c Raman modes for the representative Tb-

doped samples along with modes of pure BiFeO3. The peak assignment was performed 

according to earlier reported phonon modes of vibration spectra of pure BiFeO3 [
58]. For the 

rhombohedral R3c ferroelectric phase, factor-group analysis of the lattice vibrations predicts 

Raman (R3c) = 9E + 4A1 = 13 Raman active modes in the zone center (k  0), which are split 

into longitudinal (LO) and transverse (TO) branches due to the polarity of the R3c structure. 

Hlinka et al. [59] have emphasized the relevance of crystal surface orientation in the assignment 

of individual Raman modes of polycrystalline BiFeO3 due to the angular dispersion of long-

wavelength polar phonon modes. They showed that the Raman spectrum of BiFeO3 ceramics 

with random orientation of optically anisotropic grains has only 13 phonon peaks, nine of them 

correspond to the 9E(TO) frequencies and the four remaining modes are the A1(LO) singlets, 

when the angle  between the incident laser beam and the orientation of the spontaneous 

ferroelectric polarization is zero. With increasing  up to 900 the E(TO) modes split at a variable 

intensity into one frequency independent TO branch and one dispersive “oblique mode” LO 

branch. In addition, the A1 modes transform completely into transversal optical modes making 

in total the 22 polar mode branches, 9E(TO) + 9E(LO) + 4A1(TO), observable in the Raman 

scattering spectrum for perpendicular configuration of the BiFeO3 crystallite face and incoming 

laser light direction. Our results for pure BiFeO3 are in qualitative agreement with the peak 

structure reported in Ref. [29] for ferroelectric phase spectra of a polycrystalline BiFeO3 

measured at   550 (i.e., the surface of the sample is randomly oriented along one of the [100], 

[010], or [001] pseudocubic directions). A slight shift in some of the peak positions can be 

attributed to different preparation methods. SPS processing has been shown to affect oxygen 

stoichiometry of BiFeO3 ceramics.[33] Therefore, the SPS-induced changes in oxygen bonding 
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and local disorder are thought to be responsible for the observed shifting of the vibrational 

frequencies of the Raman mode involving oxygen.  

The first three most intense peaks at 70, 135 and 167 cm-1 of the Raman spectrum of BiFeO3 

ceramics are manifestation of activation of the E(TO1), E(TO2) and A1(LO1) optical phonons, 

respectively. These low-frequency Raman modes are closely associated with the A-site 

vibrations [58] produced in rhombohedral BiFeO3 by the relative motion of Bi3+ ions against the 

slightly distorted oxygen FeO6 octahedra, i.e. they are caused by oscillations of the Bi-O 

covalent bonds. Ab-initio electronic structure calculations have shown that ferroelectricity in 

BiFeO3 results from the cooperative displacements of Bi3+, Fe3+ and O2- ions from their 

centrosymmetric positions.[6] The largest displacements, attributed mostly to the Bi-O 

hybridization, are those of the Bi3+ relative to O2-, where a lone pair of 6s electrons in a trivalent 

Bi ions forms a space-filling localized lobe and pushes Bi ion away from its neighboring oxygen 

atom. Hence, the observation of the sharp E+A1(LO1) Raman modes suggests the existence of 

ferroelectric long-range ordering in pure BiFeO3 ceramics.   

Upon terbium substitution, the general shape of the Raman spectra with 11 (4A1 and 7E) Raman 

active modes is preserved in the range of 50-700 cm-1 for all the compositions with x up to 0.20 

(Fig. 3). On close inspection, one can find that with increasing Tb content the scattering 

intensity of the low-frequency characteristic modes gradually decreases along with significant 

broadening of the Raman peaks, indicating continuous weakening (damping) of antiphase 

vibrations between the A-site and FeO6 sublattices due to dilution of Bi 6s2 lone pairs by the A-

site terbium substitution. As a consequence, the correlation length of the polar order is here 

lower than that in pure BiFeO3. Table S3 shows that the low frequency E+A1(LO1) Raman 

modes of the x  0.20 samples slightly, but continuously shift towards higher frequency values 

with the increasing Tb concentration. This tiny blue-shift can be explained by lower atomic 

mass of Tb, if compared to that of Bi3+ ions.[60] A much stronger composition dependence can 

be observed in Fig. 3 for the A1(LO2) mode at around 220 cm-1. This longitudinal long-

frequency phonon mode is clearly detectable in all our samples with R3c phase (pure and 

biphasic compositions) and can be associated with the octahedral tilt distortion caused by 

oxygen vibrations [58]. With increasing the amount of Tb, the A1[111] tilt mode shifts from ~ 

215 cm-1 in pure BiFeO3 to ~ 233 cm-1 in the x = 0.20 sample. Furthermore, a ratio of the 

spectral intensities of the A1(LO1) and A1(LO2) modes was found to decrease (not shown here), 

which indicates an enhancement in tilting distortion of FeO6 octahedra on Tb doping. The 

observed evolution in the Raman mode correlates nicely with structural changes identified by 

X-ray diffraction, where the addition of Tb ions was found to enhance the antiphase rotation of 
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the oxygen octahedra in the rhombohedral R3c phase. From Table S2, one can see that the Fe-

O-Fe bond angle, which is directly related to the rotation angle of the oxygen octahedra, 

increases as the concentration of Tb increases up to 20 at.%. 

Another feature recognized in the Raman spectra of the doped samples is the appearance of new 

phonon modes at about 620 cm-1 (see inset of Fig. 3) and 320 cm-1 (for x  0.20), which evolve 

on doping. Bielecki et al. [29] have pointed out that the occurrence of the -point 620 cm-1 

phonon is the most sensitive indication of the presence of an orthorhombic phase when isovalent 

substitutions are carried out on the A- or B-sites of BiFeO3 perovskites. The observation of this 

vibration mode in our Bi1-xTbxFeO3 system suggests that the orthorhombic Pnma structure 

begins to emerge along with the rhombohedral phase when x is close to 0.10. A coexistence of 

the two phases on a micron scale in samples within the concentration range 0.10  x  0.20 is 

evidenced in Fig. 3 by the mixed structure of the R3c and Pnma phonon modes in the measured 

Raman spectra. The structural transformation is completed at x  0.25, as the Raman spectrum 

of the sample is dominated by the broad 320 cm-1 band without any spectral trace of the R3c 

phase. In accordance with studies on structurally related compounds, the 320 cm-1 Raman band 

originates from the Pnma A-site vibrations that overlap with the oxygen tilt modes.[61] As the 

content of Tb is further increased to 0.30, the 320 cm-1 band slightly shifts to lower wave 

numbers. Such a relatively small red-shift is likely caused by the small orthorhombic unit cell 

distortion (from XRD refinements, Table S1), reflecting the decrease in Bi/Tb–O bond strength 

as Bi3+ ions are replaced by smaller Tb3+ ions. It should be mentioned that even the spectrum 

of the Bi0.8Tb0.2FeO3 sample resembles that of the nonpolar orthorhombic x = 0.25 and 0.30 

samples, there are small spectral peaks in the low frequency range corresponding to the E+A1 

Raman modes which, consistently with the results of the XRD analysis, confirm the persistence 

of weak ferroelectric long range order in this biphasic structure. It also proves that the 

substitution-induced polar-to-nonpolar transition in the spark plasma processed Bi1-xTbxFeO3 

ceramics takes place over a wide concentration range 0.10 ≤ x ≤ 0.20. 

 

Thermal DSC analysis – long-range ordering temperatures 

Following the results of structural analyses and taking into account the critical behavior of the 

order parameters (spontaneous polarization and magnetization), SPS’ed samples of Bi1-

xTbxFeO3 were investigated by differential scanning calorimetry for possible changes in 

magnetic and ferroelectric phase transitions temperatures that might occur due to a partial 

replacement of Bi3+ ions for smaller, less-polarizable and magnetic Tb3+ ions.  
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The DSC data collected for the pure and Tb-doped BiFeO3 samples in the temperature interval 

573 – 1120 K in heating and cooling regimes are shown in Fig. 4. As it can be seen in Fig. 4a, 

BiFeO3 exhibits two distinct thermal effects over the investigated range. On heating, the first 

endothermic peak occurs at 644 K, which corresponds to the reported antiferromagnetic Néel 

temperature of rhombohedral BiFeO3, TN  645 K [62]. The TN peak (see inset of Fig. 4a) shows 

an apparent -type curve, indicating a second order transition from an antiferromagnetic phase 

to a paramagnetic one. Although a small energy change is associated with the magnetic 

transition, the change of magnetic structure can be identified in the heat flow vs. temperature 

plot.* The second, much stronger, endothermic effect with onset at around 1100 K can be related 

to a transition from the non-centrosymmetric ferroelectric phase to the centrosymmetric 

paraelectric phase. The sharp peak, centred at 1104 K, compares well with the literature value 

of the Curie transition temperature of pure BiFeO3, Tc  1103 K [62]. In cooling regime, the high 

temperature peak shifts by ~ 10 K towards lower temperatures, while the temperature of the 

onset of the ferroelectric phase transition and the Néel temperature remain unchanged. The 

distinct thermal hysteresis in Tc points to a first order phase transition that arises from an abrupt 

change of the order parameter due to a structural transformation accompanying the ferroelectric 

to paraelectric phase transition. 

Comparing the DSC curves of the x = 0 and 0.05 samples (Suppl., Fig. S2), one can notice a 

significant drop and broadening in DSC output voltage signal at the Curie temperature when 

the small amount of the Bi3+ ions is replaced by Tb3+ ions. This effect is observed in both heating 

(Fig. S2a) and cooling (Fig. S2b) regimes and reflects a suppression of ferroelectric long-range 

order upon substitution. Another feature observable in thermal behavior of the x = 0.05 sample 

is that the onset temperature of the long-range ferroelectric ordering is lowered to 1088 K and 

the thermal hysteresis of Tc is increased by ~15 K to ~ 25 K, if compared with pure BiFeO3. 

Unlike the ferroelectric Curie temperature, the antiferromagnetic Néel transition temperature of 

Bi0.95Tb0.05FeO3 ceramics corresponds to that of BiFeO3 ceramics and does not show any 

significant change in heating/cooling process.  

A notable development in DSC curves is observed for samples with Tb concentrations x ≥ 0.10. 

For the 0.10 sample, one can clearly see (Fig. 4b) that another endothermic peak (TN’) occurs 

at around 637 K on heating. Upon further doping, the TN’ peak becomes more obvious, while 

the TN peak at 644 K disappears. Similar trends were observed for exothermic DSC peaks when 

                                                 
* Note: It is difficult to absolutely define the actual point of the phase transition in the DSC curve. Different 

protocols have been adopted in the literature using maximum peak or the onset of the peak at either low scan 

rates or extrapolated rates. In this work we take the temperature of peak maximum as the transition temperature. 
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samples are cooled from 1120 K down to room temperature (Fig. 4c). In addition, the new TN’ 

peak, as contrasted to the TN peak, shows a small thermal hysteresis of about 5 K in 

heating/cooling run for all the x ≥ 0.10 ceramic samples. The occurrence of the TN’ peak in 

thermal response of Bi0.9Tb0.1FeO3 can be linked with a transition of the canted 

antiferromagnetic spin structure of the Pnma phase into a paramagnetic spin state, and vice 

versa (will be discussed in the following section). Very recently, Walker et al. [63] have reported 

on the antiferromagnetic-to-paramagnetic transition in Dy-, Sm, and Gd-doped BiFeO3 

ceramics, which occurs at the temperature almost identical to that observed in our Bi1-xTbxFeO3 

ceramic series (TN’).  

Different thermal features are displayed by the doped samples at the ferroelectric phase 

transition (Figs. 4b and 4c). With increasing x up to 0.20 the Tc peak shifts to lower temperatures 

along with the reducing DSC signal intensity for both the heating and cooling regimes. At x = 

0.20, a sign of the ferroelectric phase transition near 1100 K (on heating) and 1040 K (on 

cooling) can be yet identified in thermal response of the sample. A further addition of Tb results 

in the disappearance of the high temperature peak (within the detection limit of the DSC 

analyzer). The shift towards low temperatures, reduction and broadening of the Tc peak can be 

attributed to the suppression of ferroelectric long-range order and to the disorder at the A-sites 

of BiFeO3 due to the replacement of large Bi3+ ions with smaller and less polarizable Tb3+ ions. 

It is worth mentioning here that for ceramics with x ≥ 0.10 the thermal hysteresis of the Tc peak 

is much larger than that of magnetic transition. For instance, in the x = 0.15 sample the 

difference between the endothermic and exothermic Tc peaks (Tc,) is about 57 K, while the 

difference TN’ (heating run) - TN’ (cooling run) is only 7 K. The origin of such a large 

temperature hysteresis of the ferroelectric phase transition can be attributed to the substitution-

induced disorder at A-site and the pinning effect of oxygen vacancies on ferroelectric domain 

walls movement [64]. 

 

Room-temperature magnetic properties 

Isothermal magnetization vs. magnetic field (M-H) dependences recorded for the Bi1-xTbxFeO3 

ceramics (x = 0, 0.05, 0.15 and 0.25) at room temperature and 5 K are shown in Fig. 5a and Fig. 

5b, respectively. Although, due to paramagnetic contribution from Tb3+ ions no saturation of 

the magnetization is observed at room temperature even under the maximum applied field of ± 

5 T, it is obvious from Fig. 5a that Tb doping gives rise to the appearance and evolution of the 

spontaneous magnetization. While the pure BiFeO3 sample displays, as expected for an 

antiferromagnet with a collinear incommensurate antiferromagnetic structure, a linear field-
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dependence of magnetization, the M-H curves of the doped samples are nonlinear and 

hysteretic, with progressive enhancement of the remanent magnetization (Mr) on doping. The 

plot of the remanent magnetization as a function of Tb content is shown in the inset of Fig. 5a. 

The room-temperature value of Mr continuously increases as the amount of Tb ions increases, 

reaching a plateau with a maximum value of about 0.34 emu/g at x = 0.25 and 0.30. The 

coercivity was found to exhibit a slightly different compositional behavior at room temperature 

(not shown here). With increasing the amount of Tb ions the coercive field first increased to a 

maximum strength of about 0.7 - 0.8 T for the x = 0.15 and 0.20 samples, and then dropped 

down to 0.5 T for Bi0.7Tb0.3FeO3 ceramics. Small, but non-zero magnetic moments and large 

coercive fields of the Tb-substituted BiFeO3 ceramics are characteristic of a weak ferromagnetic 

material with a canted antiferromagnetic spin order [18,19,62]. It can be inferred that the 

appearance and enhancement of the remanent magnetization in the system results from the 

substitution-induced transition of the canted G-type antiferromagnetic structure from cycloidal 

incommensurate spin ordering to commensurate structure, in which the canted ferromagnetic 

component of the antiferromagnetically ordered spins becomes measurable. Neutron diffraction 

experiments and high-resolution X-ray diffraction synchrotron studies revealed a change in the 

periodicity of the incommensurate magnetic order in BiFeO3 when a structural phase transition 

occurs upon rare-earth doping.[65] Zaleskii et al. [66] by measuring the nuclear magnetic 

resonance spectra of La-doped BiFeO3 provided a direct evidence of the correlation between 

the suppression of the spatially modulated spin structure and the rhombohedral-to-

orthorhombic phase transition. They demonstrated that the orthorhombic Pnma phase restores 

the collinear antiferromagnetic order, in which a weak ferromagnetism occurs due to the 

Dzyaloshinskii-Moryia (DM) exchange interaction. The dominant role of the DM-type 

interaction in the enhancement of the room temperature magnetization of the rare-earth 

substituted BiFeO3 compounds has been demonstrated experimentally by the improved spin 

canting of about 0.60 [67]. The weak ferromagnetism in the Bi1-xTbxFeO3 ceramics likely 

originates from the restored G-type commensurate antiferromagnetic structure, in which the 

Fe3+ ions are antiferromagnetically ordered along the orthorhombic a axis and the canted net 

ferromagnetic moment develops upon substitution-induced structural distortion in a direction 

perpendicular to the antiferromagnetic axis (i.e., along the orthorhombic c axis). Our structural 

measurements show that upon Tb substitution the parental R3c phase of BiFeO3 gradually 

transforms to the Pnma phase via an intermediate two-phase structural state existing within the 

concentration range 0.10  x  0.20.  Thus, the measured magnetization of about 0.12 emu/g 

for the x = 0.10 sample can be attributed to the presence of ~ 10 wt.% of the orthorhombic 
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Pnma phase in the R3c+Pnma structure (Table S1). As the amount of the Pnma phase in 

biphasic compositions increases, the remanent magnetization is expected to increase due to the 

evolution of the DM-type coupling. Indeed, a magnetic moment of about twice the value of the 

x = 0.10 sample was measured for compositions with the dominant Pnma phase (Mr ~ 0.21 and 

0.26 emu/g for x = 0.15 and 0.20, respectively). The structural transition to the Pnma phase is 

completed within the concentration range 0.20  x  0.25, which correlates with the maximum 

of the remanent magnetization of 0.34 emu/g measured in Bi0.75Tb0.25FeO3 ceramics. Further 

incorporation of Tb ions into the Pnma samples does not affect substantially the weak 

ferromagnetic state at room temperature, as demonstrated by a value of Mr of 0.34 emu/g for 

the x = 0.30 sample within the measuring sensitivity of the SQUID magnetometer used. By 

combining the results of magnetic measurements with those of Raman and DSC studies, one 

can conclude that the ferroelectric-active composition with the highest Mr at room temperature 

corresponds to the Tb concentration of about 20 at.%. 

The microscopic mechanism of the composition-driven magnetic transition and the appearance 

of the weak ferromagnetism in the Tb-substituted BiFeO3 can be understood in the context of 

structural evolution in the FeO6 octahedral tilt system. According to results of the Rietveld 

analysis of the room-temperature XRD data, structural distortions induced by the replacement 

of Bi3+ ions with smaller Tb3+ ions at the A-sites are accompanied by variations in the local 

environment such as Fe-O bond lengths and Fe-O-Fe bond angles (Table S1). In addition, 

Raman spectroscopy on the doped samples revealed a significant blue-shift in the A1[111] tilt 

mode (Suppl., Table S3), so confirming the substitution-induced modulation of the FeO6 

octahedral tilt. The Fe-O-Fe bond angle, which is closely related to the indirect antisymmetric 

superexchange coupling between two antiferromagnetic layers of the Fe3+ spins [68], increases 

from 153.50 (x = 0) to 155.20 (x = 0.20) on Tb doping. This suggests a substitution-enhanced 

canting of the antiferromagnetic ordered spins and increased magnetic interactions. 

 

Weak ferromagnetism and electronic structure 

For a better quantitative understanding of the role of the introduced Tb3+ ions in the appearance 

and enhancement of the net magnetization, we performed detailed XAFS and STEM-ELNES 

spectroscopic studies. These techniques are extremely useful for probing the local crystal 

chemistry and determining the electronic structure at the atomic scale due to their high 

sensitivity to structural distortions, covalence, and with that, ferroic properties. The RGB 

composite high-resolution HAADF (blue) image interleaved with the annular bright field, ABF, 

(yellow) image is shown in Fig. 6a in order to illustrate the local arrangement of the Bi and Fe 
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cations and light oxygen atoms in BiFeO3. Figs. 6b and 6c display HAADF images overlaid by 

the [010] projected crystal structures of the respective R3c and Pnma unit cells (insets: Bi - 

purple, Fe - brown, and O - red circles) for BiFeO3 and Bi0.7Tb0.3FeO3, respectively. Atomic 

resolution STEM-HAADF images, confirming the chemical nature of the SPS’ed Bi1-xTbxFeO3 

samples, are shown in Supplementary material (Figs. S3a – d).  

 

Electronic structure analysis using ELNES spectra 

Fig. 7a shows the ELNES spectra acquired at the O K core loss edge of the Bi1-xTbxFeO3 (x = 

0, 0.15 and 0.30) samples. Details on sample measurements are given in Supplementary 

material (along with the ELNES Fe L2,3 spectra). The O K spectra, to a first approximation, 

results from the electronic transitions from the O 1s core level to unoccupied O 2p states arising 

due to the hybridization of the O 2p orbital with the unoccupied Fe 3d orbital configurations 

and also because of a partial covalent bonding with the A-site (Bi, Tb) atoms.[69] Thus, the O 

K edge can also track the nearest bonding to the Bi cation that has practically inaccessible 

ELNES edge (Bi-M edge) with the instrument used in this study. From Fig. 7a, one can clearly 

see that the overall shape and the fine structure of the O K edge spectral lines change due to the 

Tb substitution. The ELNES O K spectrum of the x = 0 sample with two characteristic A and 

B bands closely matches the earlier reported data for BiFeO3.[
70,71] According to the density 

functional theory (DFT) and RSMS calculations [69,70], the A band is mainly due to the 1s2p 

transitions and the post-edge B band involves contributions from both the Fe and Bi 

environments featuring a peak broadening due to O 2p states hybridized with the Fe 4s and 4p 

states. A small shoulder (a broad hump-like feature) located at about 537 eV on the high-energy 

side of the A peak ( 2 eV above the Fermi level), has been attributed to backscattering on O2- 

ions, while also having a contribution from covalent bonding to unoccupied Bi states, Bi 5d 

[72], Bi sp [73], or Bi p states [70]. Upon Tb substitution, the degree of the Bi-O hybridization is 

progressively reduced and, ultimately, for x  0.25 the shoulder completely disappears, as 

demonstrated by the near-edge structure spectrum of the x = 0.30 sample. This is in agreement 

with the Raman scattering and DSC studies and confirms the loss of ferroelectricity due to the 

dilution of Bi lone pairs by Tb doping, as Tb3+ does not have an ns2 lone pair that according to 

DFT calculations [6,74] is responsible for 98% of the ferroelectricity in BiFeO3. Comparing the 

near-edge structures of pure and doped BiFeO3, it is clear that some extra spectral features 

develop upon adding Tb to the system. A new separate peak (denoted as A2 hereafter) appears 

at about 538 eV and increases in intensity upon doping. As in pure BiFeO3, the edge-peak (A1) 
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is due to the O 2p - Fe 3d hybridization, while the A2 peak most likely originates from bonding 

with the rare-earth d states [70]. Saetereli et al. [70] have shown that in La-doped BiFeO3 the Bi 

p states, responsible for the shoulder on the BiFeO3 A peak, are too low in energy to contribute 

to the intensity in the energy range where the A2 feature appears. These Tb d states are also 

involved in the increased intensity in the area between peaks A2 and B. Another recognizable 

feature in the O K edge of the highly doped x = 0.30 sample is the decreased intensity ratio of 

peak A1 to peak B. Again, in analogy with the near-edge absorption studies of Saeterli [70] and 

Abbate [75] for La-doped BiFeO3, this can be attributed to the lower electronegativity of Tb 

compared to Bi (1.2 vs 2.02 on the Pauling scale), giving a reduction in density of the Fe d 

states in this part of the spectrum. According to the RSMS calculations [75], unoccupied Fe s 

states, responsible for part of the B peak in BiFeO3, are in the compositions modified by rare 

earths located in a sharp band lower in energy than the relevant O p states and are not as 

involved in Fe-O bonding as in pure BiFeO3. The reduced O 2p – Fe 4s orbital mixing can be 

linked with the fact that the broad B peak centered at 544.5 eV is observed to sharpen on Tb 

doping. The energy positions and shapes of the ELNES spectra of the O K edge of the 

investigated compositions are very similar to that of -Fe2O3 [69,76], confirming the Fe3+ 

oxidation state in the SPS’ed Tb-substituted samples.  

Unlike the O K edge, no major change is observed in spectra of Bi1-xTbxFeO3 ceramics acquired 

at the Fe 2p edges (Suppl., Fig. S4). The Fe L2,3 spectral lines are characterized by two sharp 

peaks, or “white lines”, L3 at  716 eV and L2 at  729 eV, which respectively originate from 

transitions between the spin-orbit split-core levels Fe 2p3/2 and Fe 2p1/2 (2p63d5 configuration) 

to empty Fe 3d states (2p63d6) above the Fermi level.[77,78]  It has been reported that the Fe L2,3 

edge is sensitive to the valence with the onset energy shifting as the oxidation changes from +2 

to +3.[79] The overall shape and line structure of Fe 2p edges in Tb-doped BiFeO3 match well 

with those of reference hematite, as earlier reported in Refs [80,81]. Thus, the measured EEL Fe-

L2,3 edge spectra indicate that iron is in the 3+ valence state in all the investigated samples. A 

closer inspection of the spectra revealed that the white lines of the doped samples increase in 

intensity, if compared to that of pure BiFeO3, and the L3 peak of the biphasic MPB sample (x 

= 0.15) is shifted by 0.7 eV to lower energies. The red shift of Fe L edge at MPB has been 

observed by A. Y. Borisevich et al. [82] in similar Sm-substituted BiFeO3 compounds using the 

NEXAFS technique and this spectral change was ascribed to a weaker Fe 3d – O 2p 

hybridization caused by the modulation of Fe spacings at the MPB. 

 

Electronic structure analysis using NEXAFS spectra 
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In order to further corroborate the reduced degree of the Fe-O hybridization in Tb-doped 

BiFeO3, we measured the XAFS spectra at the Fe K edge. The synchrotron X-ray absorption at 

the Fe K edge corresponds to the electronic transitions from 1s to 4p states and is sensitive to 

the octahedral environment and local electrostatic interaction.[83,84] Thus, the Tb substitution-

induced distortion of the chemical bonding environment of Fe – O – Fe in BiFeO3 perovskite 

is expected to result in different NEXAFS signatures. Fig. 7b displays the Fe K edge XAFS 

spectra of the representative x = 0, 0.05, 0.15 and 0.25 samples, and the reference powders of 

-Fe2O3 and Fe3O4. From Fig. 7b, the spectral similarity of the Bi1-xTbxFeO3 samples and -

Fe2O3 in shape and position is obvious. Thus, the oxidation state of iron in BiFeO3 is indeed 3+ 

and does not change substantially on Tb doping, as demonstrated by the nearly fixed position 

of the absorption edge for samples with varying doping concentration. This observation verifies 

the results of our ELNES measurements at the O K and Fe L edges. The fine structure of the 

BiFeO3 and BiFeO3-related compounds near the Fe K edge has been resolved theoretically by 

analysis of the electronic density of states obtained from first principle DFT 

calculations.[85,86,87,88] A weak pre-edge peak A corresponds to the dipole-forbidden 1s3d 

transition, which is partially allowed because of electric quadrupole coupling and/or Fe 3d - 4p 

orbital mixing. The main absorption edge feature (B peak) can be assigned to the purely dipole-

allowed electronic 1s4p transition. The spectral C, D and E peaks result from the multiple-

scattering contribution of absorbing Fe in the FeO6 octahedron surrounded by Bi and Tb.  

Splitting of the spectral peaks, which are associated with the electronic transitions to the Fe 3d 

states, for instance the pre-edge A peak in Fig. 7b, is typically observed in transition metal 

oxides [77] and BiFeO3-type perovskites [83,89] and can be attributed to the so called “d-orbital 

splitting”. This phenomenon is referred to as the splitting of the half-filled Fe3+ d states into two 

energy levels, the three degenerate nonbonding t2g and the two degenerate anti-bonding eg 

orbitals, by the strong crystal field (or ligand field) due to its octahedral coordination. The d-

orbital splitting is triggered by the local Coulomb electrostatic interaction of the O sp with the 

Fe 3d orbitals [77]. The energy difference between the t2g and eg orbitals is called the octahedral 

crystal field splitting energy (o). It is an important spectral factor that determines the spin 

configuration of the transition metal complex, so its magnetism. The value of o determined 

from the difference of the maxima of the A doublet peak is about 1.4 eV for BiFeO3, which is 

consistent with the experimental values reported recently by other authors [77,90], while the 

electronic transition from eg to t2g orbitals in Bi0.7Tb0.3FeO3 is decreased to about 1.1 eV. The 

reduced value of o will result in a higher spin state, which is accompanied by a reduced 
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hybridization of the O 2p and Fe 3d states. This result is in agreement with our ELNES 

observations and also with the NEXAFS studies of Borisevich et al. [83] for Sm-substituted 

BiFeO3. As shown in the inset of Fig. 7b, the intensity of the A double peak reduces with 

increasing Tb concentration, and simultaneously the relative intensity ratio of the peaks 

decreases with a progressive lowering of the intensity of the high-energy side peak (the eg peak). 

It is suggested that the reduction of the degree of the O 2p – eg hybridization is predominantly 

responsible for the observed composition-driven decreasing of the Fe K edge A peak. On the 

other hand, the B peak increases with increasing Tb content. Similar trends in the evolution of 

the A and B spectral peaks have been reported for analogous compounds modified with Sm [91] 

and La [86] and the converse effects in the 1s-3d and 1s-4p transitions were explained by the 

reduced mixing of 3d and 4p levels. Lee et al. [92] reported the reversed spectral behavior of the 

A and B peaks in epitaxial BiFeO3 thin films and the enhanced hybridization of the Fe 3d and 

4p orbitals was attributed to the increased in-plane compressive stress in the films. They 

showed, using the EXAFS spectra, that due to a dissimilar substrate the interatomic distance of 

the first-shell Fe – O along the out-of-plane is larger than that along the in-plane direction, 

which causes a strong in-plane compressive distortion in the films. Also, an increase in the 

number of oxygen-vacancy-related distortions of the FeO6 octahedra has been attributed to the 

increased number of the 1s-3d dipole-forbidden transitions in Ca [93] and Ta [94] doped BiFeO3 

ceramics. Our XRD analysis showed that the difference in the Rietveld refined bond distance 

between Fe-O1 and Fe-O2 reduces significantly upon the substitution of Tb for Bi at the A site 

of perovskite lattice. Thus, the Fe ion moves in the FeO6 cage to a more symmetric position, 

making the octahedron less distorted. This structural effect of Tb substitution on local Fe 

environment was confirmed by the EXAFS results. Fig. S5 (Suppl.) shows the radial 

distribution function obtained by Fourier transformation of the EXAFS (k) function into real 

space for pure and Tb-doped BiFeO3. As can be seen, the two distinct peaks corresponding to 

the first-shell Fe-O bonds come closer to each other as the amount of Tb increases. These results 

are consistent with the concept of metal-oxygen covalent bonding in the transition metal oxides 

[69,77] and perovskites [95,96]. In these materials, a competition between Jahn-Teller distortion 

and charge disproportion gives rise to the effect of covalent bonding of the oxygen states to the 

unoccupied 3d/4f states of transition metals. With the changing hybridization between the B 

site metal atoms and oxygen atoms, the Jahn-Teller distortion of the oxygen octahedron with 

metal atom in central position changes. Thus, it is reasonable to claim that the observed 

structural changes of the FeO6 octahedron in Bi1-xTbxFeO3 reflect the changes in hybridization 

between the Fe ion and O cation caused by adding Tb. The reduced degree of the Fe 3d-4p 
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orbital mixing (from the NEXAFS Fe K edge spectra), as well as a weaker Fe 3d – O 2p 

hybridization (from the ELNES O K and Fe L edges and confirmed by the XANES Fe K pre-

edge peak evolution) in Tb-doped BiFeO3 samples, can be directly linked with the reduced Fe-

O bond anisotropy of the oxygen octahedra. 

A correlation between the 3d-4p hybridization and magnetization in La substituted BiFeO3 has 

been proposed by J. -H. Lee et al. [86]. They examined the orbital-resolved density of states 

(DOS) and found that the substitution by La ions increases the number of occupied states in the 

Fe 3d orbital. Considering that the total magnetic moment in these weak ferromagnets is 

predominantly produced by the Fe3+ ions, they predicted from the DFT calculations that the net 

magnetization will increase as long as the 3d-4p orbitals overlap is suppressed, thus, with the 

increase in the number of occupied states in the Fe 3d orbital. In addition, they found that the 

enhancement of macroscopic magnetization is triggered by the net canted moment which 

increases due to a progressive canting of antiferromagnetically ordered Fe spins. It was also 

demonstrated that the net canted moment appears in La doped BiFeO3 within a mirror 

hexagonal (110)h plane (crystal c-axis), irrespective of the doping. It can, thus, be inferred that 

the weakening of the 3d-4p hybridization is responsible for the observed increase in 

magnetization in Tb-doped BiFeO3 samples. However, the reduced degree of the Fe 3d – O 2p 

hybridization due to the Tb substitution cannot be ruled out from consideration as well because 

the Dzyaloshinskii-Moriya interaction, which is responsible for the canting of the magnetic 

moments in BiFeO3 [97], is closely related to the super-exchange Fe – O – Fe magnetic 

interaction, which in turn is known to be very sensitive to small structural changes [6]. As shown 

by the NEXAFS and EXAFS spectra analyses, local distortions of the FeO6 octahedron such as 

variations in the Fe – O distance and octahedral tilt (simultaneous increase in the relative 

intensity of the B peak and decrease in the C peak, see Ref. 85 for details) accompany the Tb 

substitution-induced suppression of the orbital overlap between the Fe 3d and O 2p states. 

To further investigate the local bonding environment of Fe atoms in Tb-doped BiFeO3 

compounds, ab initio XANES calculations of the Fe3+ ion in the R3c and Pnma structures were 

carried out using FEFF 8.1 and Viper codes. The crystallographic cluster/sphere with 5 Å radius 

around the absorber Fe atom (Suppl., Fig. S6a) was used for the self-consistent calculations and 

XANES spectra simulations. The full multiple scattering (FMS) calculations included all 

possible paths within a large cluster radius, typically higher than 8 Å. Figs. S6b and S6c (in 

Suppl. material) show the calculated XANES spectra for the x = 0 and x = 0.15 samples. It can 

be clearly seen that the simulated spectra mostly reproduce the main features of the 

experimental data, in particular, those close to the absorption edge; an indication of the 
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resonances from the local atomic arrangement of the R3c structure in pure BiFeO3 and 

prevailing orthorhombic arrangement of the nearest neighbor atoms around Fe in the 

Bi0.8Tb0.2FeO3 sample. More precise ab initio calculations with the input data from high 

resolution synchrotron XRD and neutron diffraction measurements and upon consideration of 

all the electronic transitions associated with XAFS measurements are planned to be carried out 

in order to fit the measured fine structures, including higher coordination spheres with higher 

accuracy. 

The effect of the Fe 3d - O 2p hybridization on macroscopic magnetization of the Tb-doped 

BiFeO3 ceramics can be interpreted also in terms of evolution of filled 3d levels. In BiFeO3 and 

BiFeO3-related magnetoelectric compounds, a G-type antiferromagnetic order with the Fe spins 

coupled ferromagnetically within the hexagonal (001)h planes and antiferromagneticaly along 

the hexagonal [001]h direction [98,99,100] occurs, in conformity with both Pauli exclusion 

principles and Goodenough-Kanamori-Anderson rules, because of the strong exchange 

interaction between neighboring Fe half-filled eg orbitals through oxygen 2p -bonding.[101] 

This chemical bonding generates a mixture of the electronic Fe 3d5 and Fe 3d6L states (L is a 

ligand hole state generated through a charge transfer from O 2p6 to Fe 3d5). Upon Tb 

substitution, the hybridization of unoccupied Fe 3d and O 2p states was shown to be reduced, 

as demonstrated in Fig. 7b by the progressive decreasing of the relative intensity of the A 

doublet peak accompanied by a variation in the peaks intensities ratio. The t2g peak increases, 

while that corresponding to the number of unoccupied eg states decreases with increasing Tb 

concentration. P. Trivedi et al [102] observed similar converse effects of the doublets for the Fe 

L2,3 edge spectra of Er, La and Pr modified BiFeO3 and attributed it to the rare earth substitution 

induced increase in the number of occupied the Fe 3d5 states at the expense of the Fe 3d6L 

states. Again, analogous to the 3d-4p orbital mixing effect, the weaker Fe 3d - O 2p 

hybridization accompanied by the increased number of occupied states in the Fe 3d orbital may 

partly also contribute to the enhanced magnetization of Tb-doped BiFeO3.  

Recent DFT studies [103] indicate that the presence of rare earths can slightly change the local 

magnetic moment on the Fe sites due to the hybridization of the Fe 3d- and O 2p-states with 

rare earth localized 4f states. It was shown that the magnetization of rare earth doped BiFeO3 

increases with increasing number of 4f electrons. Therefore, in our Tb-doped samples the f-d 

exchange interaction can partly contribute to the observed increase in magnetization, at 

cryogenic temperatures at the least. 

 

Low-temperature magnetic properties 
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Comparison of the field dependences of magnetization measured at 300 and 5 K (Fig. 5a and 

Fig. 5b, respectively) for the pure and Tb-doped BiFeO3 samples subjected to a maximal 

magnetic field of  5 T shows that the substitution-driven enhancement of the net magnetic 

moment is more prominent at lower temperatures, where terbium atoms with their own large 

magnetic moments make an important contribution to magnetization. The M-H hysteresis loops 

recorded at T = 5 K are well developed with significantly higher magnetization values than 

those obtained at room temperature. Such a behavior implies that the molecular field of the 

ordered Fe3+ ions magnetizes Tb3+ ions via 4f-3d exchange coupling, aligning their magnetic 

moments parallel with respect to a weak ferromagnetic component of the canted Fe subsystem 

to provide a significant enhancement of the magnetization at 5 K. Similar observations on the 

enhanced magnetization at low temperatures have been reported for rare-earth substituted 

ferrites, such as TbFeO3 with a perovskite type orthorhombic Pnma structure.[24] Substitution-

introduced antiferromagnetic Tb3+-Fe3+ and Tb3+-Tb3+ spin interactions in the orthorhombic 

Pnma phase are expected to weaken the antiferromagnetic interactions between the Fe3+ ions. 

In particularly, the former coupling between the Fe3+ and Tb3+ magnetic moments through the 

intervening O2- ions in 900 position may suppress the magnetic ordering at higher temperatures 

to such an extent that the antiferromagnetic Néel temperature of BiFeO3 is decreased, as 

observed by DSC (Fig. 4). The reduction in the coercive field at low temperature, as compared 

with the room temperature value for all the compositions studied, can be explained by the 

presence of magnetoelectric coupling in these multiferroic systems.[104,105,106] Ruette et al. [100] 

have proposed that the interplay between magnetic order and electrical order parameters 

produces a competing interaction, which acts to decrease the effective magnetic anisotropy in 

magnetoelectrics. A similar reduction in coercivity at low temperatures has been previously 

reported for Dy-, Sm- and Gd-doped BiFeO3 ceramics.[17,55,106] 

To further investigate the magnetic properties and evaluate the development of the positive 4f-

3d magnetism upon doping, the temperature dependence of magnetization of Tb-substituted 

BiFeO3 ceramics was measured over the temperature range 5 – 300 K in the presence of an 

externally applied magnetic field. Fig. 8a shows the field cooling/field heating (FC/FH) 

magnetization vs. temperature plots for the SPS’ed samples of Bi1-xTbxFeO3 (x = 0, 0.05, 0.10, 

0.20 and 0.30) subjected to an external magnetic field of 100 Oe. Pure BiFeO3 exhibits a 

conventional antiferromagnetic behavior in the temperature range of 120 K - 300 K for both the 

field-cooling and field-heating regimes: the small but non-zero magnetization decreases with 

the decrease in the temperature and vice versa (the inset of Fig. 8a). The character of the 

magnetic response is determined by the superexchange coupling between iron magnetic 
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moments (Fe3+-O2--Fe3+). Below 20 K, a steep increase in the FC magnetization values towards 

5 K and sudden drop in the FH magnetization when heating the sample from 5 K reflects the 

presence of residual magnetic impurities in the x = 0 sample. Lebegue et al.[107] have 

demonstrated that even small amounts ( 1 mol%)  of defect Fe3+ ions, for instance due to poor 

quality of starting materials or presence of the sillenite-type impurity phase in sintered BiFeO3 

materials, can produce a Curie-like upturn at low temperatures. Our XRD measurements 

showed a tiny amount of Bi2Fe4O9–like phase to be present in pure BiFeO3 ceramics. However, 

this secondary phase is not ferroelectric, undergoes an antiferromagnetic-to-paramagnetic 

phase transition at a temperature of about 264 K [108] and its formation during processing is 

eliminated by Tb doping, which means that its presence in pure BiFeO3 has no influence on the 

main results and conclusions of this work. Both the FC and FH magnetization curves for the x 

= 0 sample show reversible behavior at temperatures below 70 K. A small thermo-magnetic 

irreversibility observed at higher temperatures is likely caused by the relaxation processes 

associated with a thermal response of the Bi2Fe4O9–type impurity. The onset of an 

antiferromagnetic ordering in Bi2Fe4O9 is thought to be responsible for an anomaly observed in 

the FC and FH M-T curves at temperatures between 250 and 270 K (see the inset of Fig. 7a). 

Similar trends in ZFC and FC magnetization curves were reported for single crystals [109] and 

nanoparticles [110] of BiFeO3. On the other hand, there is no evidence for spin-glass behavior 

or spin reorientation transitions in the measured temperature dependent magnetization, as 

previously reported for BiFeO3 [
109]. 

Upon doping, the temperature dependence of the magnetization changes its character from 

antiferromagnetic to ferromagnetic with a weak magnetic moment. Fig. 8b displays the 

representative data for the x = 0.15 sample. The FC susceptibility ( = M/H) gradually increases 

with decreasing the temperature from 300 to 50 K due to local clustering of spins, and then, 

when further cooled down to 5 K, it sharply increases following a modified Curie-Weiss law 

[111]:  

𝜒 =  
𝐶

𝑇−𝑇𝐶𝑊
+ 𝜒0      (1) 

, where T is the temperature and TCW is the critical temperature. The constants C and 0 

represent the material-related Curie constant and the temperature-independent magnetic 

contributions, respectively. When TCW is positive, the predominant interactions are 

ferromagnetic even though long-range magnetic ordering may not occur. A negative value of 

TCW implies the dominating role of the antiferromagnetic interactions. Fitting of the (T) curve 

gives for Bi0.85Tb0.15FeO3 the value of TCW  - 4.5 K, indicative of the predominance of 
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antiferromagnetic interactions. For the samples with doping levels of 0.05, 0.10, 0.20, 0.25 and 

0.30, the calculated Curie-Weiss temperatures are -5.5, -5.0, -3.6, -3.6 and -3.1 K, respectively, 

confirming antiferromagnetic ordering of iron ions in all these structures. Moreover, TCW 

slightly increases with increasing doping level, which suggests an enhanced exchange 

interaction between the transition metal ions. The ordered magnetic moment determined from 

the thermal data of the x = 0.15 sample ( = 2.827C) is about 3.96 B (B is the Bohr 

magneton), which is in accordance with the value  = 4.0(3) B obtained by neutron scattering 

on similar compositions by Saxin et al. [27].  

  

Conclusions 

In summary, dense ceramic samples of the Bi1-xTbxFeO3 solid-solution system with x varying 

from 0 to 0.30 were prepared by SPS technique and their structural and magnetic properties 

were systematically studied with respect to the added Tb content. The XRD study 

complemented by Raman spectroscopy data revealed that the A-site terbium substitution causes 

the transformation of an initial rhombohedral structure (space group R3c) to an orthorhombic 

(Pnma) phase. The two phases with a variable R3c/Pnma weight ratio were found to coexist in 

samples over a wide concentration range 0.10  x  0.20. Results of detailed structural analyses 

on these biphasic compositions suggest that the polar-to-nonpolar phase transition is 

predominantly driven by tilting of oxygen octahedra. The observed substitution-induced 

suppression of low-frequency R3c E+A1 Raman active modes (broadening, damping and blue-

shifting) in the doped samples indicates the weakening of long-range ferroelectric order due to 

dilution of Bi 6s2 lone pairs by Tb doping. The reduced degree of the Bi – O hybridization in 

Tb-doped samples was demonstrated by the ELNES spectroscopy. The progressive loss of 

ferroelectricity with increasing Tb content was also confirmed by DSC measurements, which 

showed a decreasing Curie point with increasing Tb substitution. SQUID magnetometry 

revealed the existence of the weak room-temperature ferromagnetism in Bi1-xTbxFeO3 ceramic 

series. The appearance of a weak ferromagnetic moment even at small amounts of Tb (x = 0.05) 

and the enhancement of the net magnetization on further doping was found to nicely correlate 

with the unveiled structural evolution. The increased antiphase octahedral tilt accompanying 

the substitution-induced lattice distortion resulted not only in the structural transformation, but 

provoked also the transition from a spatially modulated canted spin structure to a homogeneous 

commensurate antiferromagnetic ordering of spins. It is suggested that the dominant 

mechanism responsible for the enhanced magnetic moment originates from the progressive 
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Dzyaloshinskii-Moryia interaction driven by the structural R3c-to-Pnma phase transition. The 

results of the STEM-ELNES and XAFS studies at the O K, Fe L and Fe K edges of the Bi1-

xTbxFeO3 ceramics indicate that the changes in the electronic structure (e.g., the weakening of 

both the 3d-4p and Fe 3d - O 2p hybridizations) by the Tb doping may result in the enhanced 

macroscopic magnetization due to local structural distortions in the FeO6 octahedron. The 

SPS’ed sample exhibiting a ferroelectric ordering and, at the same time, the highest values of 

the magnetization at room temperature corresponded to a composition with x ≈ 0.20. At low 

temperatures, a significant increase in the net magnetization was observed and ascribed to an 

indirect magnetic interaction (a positive f-d exchange) between the introduced Tb3+ ions and 

the canted antiferromagnetic Fe subsystem. 

The results of the present work are of importance for understanding the phenomena of the 

composition-driven phase transitions and weak ferromagnetic state in rare-earth-substituted 

BiFeO3 multiferroics. A comprehensive study of structural and multiferroic properties of spark 

plasma processed ceramics within the Bi1-xTbxFeO3 series enabled to identify the composition 

which offers a phase-pure room-temperature multiferroic with improved magnetic properties. 
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Figures captions 

 

Figure 1. (a) Room-temperature X-ray diffraction patterns of Bi1-xTbxFeO3 (0  x  0.30) 

ceramics prepared by SPS. The main peak from the Bi2Fe4O9 impurity phase is indicated by 

asterisk (*) for the BiFeO3 (x = 0) sample. (b) and (c) display the enlarged parts of the 

patterns to demonstrate structure evolution on doping. 

 

Figure 2. The substitution-induced variation in the primitive cell volume of Tb-substituted 

BiFeO3 ceramics. 

 

Figure 3. Raman spectra of the SPS processed Bi1-xTbxFeO3 (0  x  0.30) ceramics (collected 

at room remperature). The inset demonstrates the appearance and evolution of the phonon 

mode at  620 cm-1. 

 

Figure 4. (a) Specific-heat measurements of BiFeO3 (x = 0) on heating and cooling. The inset 

shows the Néel temperature of the antiferromagnetic-to-paramagnetic transition. (b) and (c) 

compare the DSC data obtained for Bi1-xTbxFeO3 (0  x  0.30) ceramics in the heating and 

cooling regimes, respectively. The temperatures of the magnetic and ferroelectric phase 

transitions are indicated for each composition. 

 

Figure 5. Magnetic hysteresis loops obtained for the Bi1-xTbxFeO3 (x = 0, 0.05, 0.15 and 0.25) 

samples in a maximum applied field of 5 T at (a) 300 K and (b) 5 K. The inset in (a) shows 

the dependence of the remanent magnetization on addition of Tb and (b) shows the enlarged 

loops around zero field. 

 

Figure 6. (a) Atomic resolution RGB composite image of BiFeO3 ([010] view direction). The 

STEM-HAADF image (blue) is interleaved with STEM-ABF (yellow) image to differentiate 

atomic positions of Bi, Fe and light oxygen atoms. In the enlarged image (inset), cations of Bi 

and Fe are marked by purple and light brown open circles, respectively; O anions are rounded 

by red circles. (b) and (c) HAADF images overlaid by the [010] projected crystal structures of 

the respective R3c and Pnma unit cells (insets: Bi – purple, Fe – brown, and O – red circles) 

for the BiFeO3 and Bi0.7Tb0.3FeO3 samples, respectively. Scale bar is 2 nm. 
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Figure 7. (a) The ELNES O K edge spectra, and (b) the NEXAFS Fe K edge spectra of Bi1-

xTbxFeO3 (x = 0, 0.15 and 0.30). 

 

Figure 8.  (a) Magnetization as a function of temperature for Bi1-xTbxFeO3 (x = 0, 0.05, 0.10, 

0.20 and 0.30) ceramics subjected to a magnetic field of 100 Oe. The inset shows the 

thermomagnetic data of pure BiFeO3 at cryogenic temperatures with an anomaly at about 260 

K due to the presence of antiferromagnetic Bi2Fe4O9. (b) Curie-Weiss behaviour of the 

magnetic susceptibility of the Bi0.85Tb0.15FeO3 sample. The inset shows the reciprocal 

susceptibility as a function of temperature. Full squares represent the experimental data, red 

solid lines are the Curie-Weiss model fits.  
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Figure 1. (a) Room-temperature X-ray diffraction patterns of Bi1-xTbxFeO3 (0  x  0.30) 

ceramics prepared by SPS. The main peak from the Bi2Fe4O9 impurity phase is indicated by 

asterisk (*) for the BiFeO3 (x = 0) sample. (b) and (c) display the enlarged parts of the 

patterns to demonstrate structure evolution on doping. 
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Figure 2. The substitution-induced variation in the primitive cell volume of Tb-substituted 

BiFeO3 ceramics.  

 

 



32 

 

 
 

Figure 3. Raman spectra of the SPS processed Bi1-xTbxFeO3 (0  x  0.30) ceramics (collected 

at room remperature). The inset demonstrates the appearance and evolution of the phonon 

mode at  620 cm-1. 
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Figure 4. (a) Specific-heat measurements of BiFeO3 (x = 0) on heating and cooling. The inset 

shows the Neél temperature of the antiferromagnetic-to-paramagnetic transition. (b) and (c) 

compare the DSC data obtained for Bi1-xTbxFeO3 (0  x  0.30) ceramics in the heating and 

cooling regimes, respectively. The temperatures of the magnetic and ferroelectric phase 

transitions are indicated for each composition. 
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Figure 5. Magnetic hysteresis loops obtained for the Bi1-xTbxFeO3 (x = 0, 0.05, 0.15 and 0.25) 

samples in a maximum applied field of 5 T at (a) 300 K and (b) 5 K. The inset in (a) shows 

the dependence of the remanent magnetization on addition of Tb and in (b) shows the 

enlarged loops around zero field. 
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Figure 6. (a) Atomic resolution RGB composite image of BiFeO3 ([010] view direction). The 

STEM-HAADF image (blue) is interleaved with STEM-ABF (yellow) image to differentiate 

atomic positions of Bi, Fe and light oxygen atoms. In the enlarged image (inset), cations of Bi 

and Fe are marked by purple and light brown open circles, respectively; O anions are rounded 

by red circles. (b) and (c) HAADF images overlaid by the [010] projected crystal structures of 

the respective R3c and Pnma unit cells (insets: Bi – purple, Fe – brown, and O – red circles) 

for the BiFeO3 and Bi0.7Tb0.3FeO3 samples, respectively. Scale bar is 2 nm. 
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Figure 7. (a) ELNES O K edge spectra (b) NEXAFS Fe K edge spectra of Bi1-xTbxFeO3 (x = 

0, 0.15 and 0.30).  
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Figure 8.  (a) Magnetization as a function of temperature for Bi1-xTbxFeO3 (x = 0, 0.05, 0.10, 

0.20 and 0.30) ceramics subjected to a magnetic field of 100 Oe. The inset shows the 

thermomagnetic data of pure BiFeO3 at cryogenic temperatures with an anomaly at about 260 

K due to the presence of antiferromagnetic Bi2Fe4O9. (b) Curie-Weiss behaviour of the 

magnetic susceptibility of the Bi0.85Tb0.15FeO3 sample. The inset shows the reciprocal 

susceptibility as a function of temperature. Full squares represent the experimental data, red 

solid lines are the Curie-Weiss model fits.  
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Table S1. The crystal symmetry and refined unit cell parameters of the Bi1-xTbxFeO3 samples 

(the values obtained by Rietveld refinement of the room-temperature XRD data). 

 

Sample Phase Lattice parameters 

x (wt.%) a (Å) b (Å) c (Å) V (Å3) 

0 R3c (98%)* 5.5782(0) 5.5782(0) 13.8686(1) 373.73(0) 

0.05 R3c (99%)* 5.5716(1) 5.5716(1) 13.8426(1) 372.15(1) 

0.10 R3c (90%) 5.5630(2) 5.5630(2) 13.8061(6) 370.02(2) 

 Pnma (10%) 5.6529(15) 7.8174(32) 5.4196(12) 239.50(13) 

0.15 R3c (51%) 5.5614(2) 5.5614(2) 13.8020(8) 369.69(3) 

 Pnma (49%) 5.6272(2) 7.8115(3) 5.4325(2) 238.80(1) 

0.20 R3c (9%) 5.5604(2) 5.5604(2) 13.7984(13) 369.46(4) 

 Pnma (91%) 5.6253(3) 7.7987(4) 5.4231(3) 237.91(2) 

0.25 Pnma (100%) 5.6261(2) 7.7893(3) 5.4213(2) 237.58(1) 

0.30 Pnma (100%) 5.6249(1) 7.7789(1) 5.4152(1) 236.95(0) 

 

* contains I23-type impurity phase 
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Table S2. Refined room-temperature structural parameters for selected single phase (R3c and 

Pnma) and biphasic (R3c+Pnma) samples. 

 
Sample x = 0.0 x = 0.15 x = 0.25 

Crystal 

system 

Rhombohedral Biphasic Orthorhombic 

Space group: R3c R3c Pnma Pnma 

Atomic 

coordinates: 

    

Bi/Tb  (0,0,0.282) (0,0,0.278) (0.05,0.25,0.999) (0.05,0.25,0.993) 

Fe  (0,0,0) (0,0,0) (0,0,0.5) (0,0,0.5) 

O1  (0.771,0.662,0.28) (0.818,0.695,0.392) (0.479,0.25,0.09) (0.466,0.25,0.06) 

O2   (0.259,0.563,0.204) (0.199,0.545,0.191) 

Bond 

lengths (Å): 

    

Bi-O 2.435(1) 2.153(4) 2.209/2.288(1) 2.346/2.364(1) 

Fe-O1 1.752(1) 1.880(1) 1.991(4) 1.983(3) 

Fe-O2 2.312(1) 2.135(3) 2.029(4) 2.017(3) 

Bond angles 

(deg.): 

    

Fe-O-Fe 153.2(4) 158.8(2) 154.8/147.1(6) 156.6/147.8(4) 

R-factors:     

Rp(%)/Rwp(%) 9.45/12.2 9.02/12.59 8.7/11.3 

2 1.5 1.4 1.4 

 

 

 

 

 

 

 

 

 

Table S3. Frequencies (in cm-1) and assignment of the R3c signature Raman modes obtained 

for the Bi1-xTbxFeO3 (0  x  0.20) samples at room temperature. 

 

 x = 0 x = 0.05 x = 0.10 x = 0.15 x = 0.20 

Mode  

E(TO1) 70 70 69 69 71 

E(TO2) 135 137 137 138 141 

A1(LO1) 167 170 171 171 171 

A1(LO2) 215 218 224 224 233 
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Figure S1. Observed (black open circles), calculated (red solid line) and difference (blue solid 

line) patterns obtained from the Rietveld analysis of the X-ray diffraction data of Bi1-

xTbxFeO3 ceramics for (a) x = 0, (b) x = 0.30, and (c) x = 0.15. The allowed Bragg reflections 

for the corresponding space groups (R3c, Pnma and I23) are marked by green ticks. The insets 

in (a) and (b) show micrographs of respective compositions. The inset in (c) illustrates the 

schematic representations of the crystal structures coexisting in biphasic (R3c+Pnma) x = 

0.15 sample. 
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Figure S2. Comparison of the thermal behavior of the BiFeO3 and Bi0.95Tb0.05FeO3 samples; 

(a) heating run, (b) cooling run. 
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Figure S3. Two-dimensional elemental distribution maps derived from the same HAADF-

STEM image (a) of Bi0.7Tb0.3FeO3 for (b) Bi (green)/Fe (red), (c) Tb (blue)/Fe (red), and (d) 

composed Bi (green)/Tb (blue)/Fe (red) to confirm the occupancy of the A- sites by Bi and Tb 

and the B- site by Fe.  
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Figure S4. The ELNES spectra acquired at the Fe L2,3 edge of Bi1-xTbxFeO3 (x = 0, 0.15 and 

0.30). The representative spectra for each composition were obtained from three different 

regions of the sample (scanned region 4 x 4 x 15 nm) of nearly the same thickness and the 

same crystallographic orientation for the limited time of exposition of 10 s in order to 

minimize the effects of electron irradiation on the sample materials (avoid electron-beam 

damage of the sample material). Other regions of samples displayed almost identical spectral 

features at the O K and Fe L2,3 edges. 
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Figure S5. Fourier transformation of the EXAFS function, (k), into real space for Bi1-

xTbxFeO3 (x = 0, 0.05, 0.15 and 0.20). 

 

 

 

 

Figure S6. (a) The calculated crystallographic cluster around the absorber Fe atom (5 Å 

radius) from the XANES data (FEFF 8.1). (b) and (c) show the experimental and simulated 

XANES spectra of pure (x = 0) and doped (x = 0.15) BiFeO3, respectively.  
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