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Abstract 

Graphene has emerged as a revolutionary material in different fields of science and 

engineering due to its extraordinary properties such as: high electron mobility, high 

thermal conductivity, mechanical properties, easy functionalization, etc. The field of 

textiles is continuously integrating new materials to provide fabrics with new 

functionalities, hence its incorporation on fabrics was a logical step. Its application to the 

field of textiles has been recently reported, which has allowed the development of textiles 

with different functionalities such as: antistatic, UV-protecting, electroconductive, 

photocatalytic, antibacterial, energy storage in supercapacitors, electrodes for batteries, 

thermal conductivity, sensors, etc. Up to date no review has been written regarding 

graphene-based fabrics and their applications. The present review aims to fill the existing 

gap and provide perspectives into the preparation and applications of graphene-based 

fabrics and yarns. 
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Abbreviations: 

AQSA: anthraquinone-2-sulfonic acid sodium salt monohydrate, APS: ammonium persulphate, 

BN: boron nitride, BSA: bovine serum albumin, CNT: carbon nanotube, CV: cyclic voltammetry, 

CVD: chemical vapor deposition, DMF: dimethylformamide, ERGO: electrochemically reduced 

graphene oxide, FLG: few layer graphene, G: graphene, GFV: graphene woven fabrics, GNP: 

graphene nanoplate, GNR: graphene nanoribbon, GNS: graphene nanosheet, GO: graphene oxide, 

GWF: graphene woven fabric, MB: methylene blue, MWCNT: multiwalled carbon nanotube, 

Na2NDS: naphthalene-2,6-disulfonic acid disodium salt, NCPCl: N-cetylpyridinium chloride, 

NP: nanoparticle, Pani: polyaniline, PBS: phosphate buffer solution, PDMS: 

polydimethylsiloxane, PEDOT: poly(3,4-ethylenedioxythiophene), PES: polyester, PET: 

poly(ethyleneterephthalate), PLA: polylactic acid, PMS: polymethylsiloxane, PP: polypropylene, 

PSS: poly(styrenesulfonate), PU: polyurethane, PVA: polyvinyl alcohol, PVP: 

poly(vinylpyrrolidone), QD: quantum dot, RGO: reduced graphene oxide, SDS: sodium dodecyl 

sulfonate, SWCNT: single walled carbon nanotubes, UPF: ultraviolet protection factor, WPU: 

waterborne anionic aliphatic polyurethane. 

 

1. Introduction 

The field of textiles has experimented a great development and high degree of innovation 

during the last years. Modern textiles cannot longer be considered as mere garments since 

nowadays they incorporate new functionalities. These functionalites are normally 

provided by the development and application of new materials. The different applications 

developed include: flame resistance [1], thermal regulation [2], electrochromic [3], 

antimicrobial [4], UV protection [5], self-cleaning [6], solar energy harvesting [7], 

photonic [8], electrical conduction [9], or even catalysis [10] have been reported on 

textiles. Electrical conduction is of particular interest since its development allows the 

integration of computing, digital components and electronics in the fabrics. Different 



methods have been developed for conferring conductivity on fabrics, such as: the 

employment of metallic fibres [11], chemical metallization of fibers [12], extrusion of 

fibers with conducting particles [13] or the synthesis of conducting polymer film on the 

fabrics [14-16].  

Recently, graphene has emerged as a revolutionary material due to its amazing properties 

such as: high electron mobility at room temperature (2.5·105 cm2·V-1·s-1), high thermal 

conductivity (above 3000 W·m·K-1), Young’s Modulus (1 TPa), intrinsic strength (130 

GPa), impermeability to any gases, ability to sustain high electric currents densities, easy 

chemical functionalization, etc. [17]. Its isolation in 2004 by A.K. Geim and K.S. 

Novoselov [18] and the groundbreaking experiments they performed allowed them to be 

awarded the Nobel Prize in Physics in 2010 [19]. Possible applications of graphene 

materials pointed out in bibliography include: flexible electronics, photonics and 

optoelectronics, spintronics, composite materials, energy generation and storage, 

biomedical applications, sensors, etc. [17,20]. The number of papers published every year 

related to graphene has suffered an exponential evolution, as does the number of patents. 

European Union has devoted a great economic effort (1000 million €) to graphene 

research under the Graphene Flagship Horizon 2020 programme. The aim of this 

programme is “to take graphene and related layered materials from the realm of 

fundamental science to industrial and societal applications in the space of ten years”.   

Having mentioned all the properties and applications of graphene materials family, the 

integration of graphene into textiles was a logical step to achieve not only conductive 

textiles but also multifunctional fabrics. Several reviews have been written about the 

production and application of graphene fibers that is another area of development in the 

field [21-24]. The methods for the production of G fibers are normally based on the 

coagulation of a precursor solution. However, up to date, no review has been written about 



graphene-based fabrics and their applications. The aim of this review is to fill the existing 

gap with an evaluation of all the work performed in this area and their applications. The 

review is focused on the most widely employed approaches to obtain G-based fabrics: 

The chemical deposition of G, GO or RGO on fabrics and the production of GWFs by 

means of CVD.  

 

2. Graphene-based fabrics 

Mainly, three methods have been developed in bibliography for the production of 

graphene-based fabrics/yarns. The first one is the coating of fabrics/yarns with G 

materials such as G, GO, RGO, etc. The second one consists in the CVD process of G on 

a metallic mesh (Cu normally) that is later removed by an acid treatment, remaining the 

G-fabric structure, these type of fabrics are named graphene woven fabrics (GFV). And 

the third one, includes the production of G fibers and its application on fabrics that is not 

considered in the review.  

The most widely employed method is the first one due to its easy of application, as well 

as scalability. As well, usually, the material employed to coat the fabrics is GO that is 

cheaper (según datos suministrado por Grafenea (multinacional española fabricante de 

óxido de grafeno (GO)) en el periodo 2016-17 el precio del GO bajará hasta 150 euros/kg 

y a partir de 2018 este precio se reducirá aún más, 50 euros/kg. Por lo que la progresión 

indica un importante abaratamiento de la materia prima. En lo que se refiere al proceso 

de recubrimiento de RGO a partir de la reducción de GO con ditionito (apartado C.1.4-

A.1.-a), lo que estamos aplicando es una adaptación del proceso que a nivel industrial se 

utiliza para las tinturas con colorantes tina (como el índigo de la ropa vaquera). Esto 

reduce los costes de una aplicación mayor escala. Además, hemos conseguido evitar el 



uso de reductores muy tóxicos y peligrosos, como la hidrazina, que son los que aparecen 

habitualmente en la bibliografía. En esto también estamos siendo pioneros.) 

 than G and can be obtained in larger quantities due to the process of production that 

consists in chemical oxidation methods [25,26]. GO is an insulating material due to the 

disrupted sp2 structure produced by the oxidation of graphite during its synthesis. 

However, its conductivity can be partially restored after reduction to produce RGO 

[25,26]. 

 

2.1. Graphene-coated fabrics 

This section provides a compilation of the work performed in bibliography employing 

simple coating of G, GO, RGO, etc. on fabrics or textile fibers mainly by aqueous solution 

impregnation (dip coating). As mentioned previously, GO is the most employed material 

due to its lower prize. In addition, GO has a negatively charged structure which makes it 

ideal for its dispersion in aqueous solutions [27]. What is more, the negative charges of 

GO allow its interaction with the functional groups of the fabrics, thus increasing the 

fixation of GO. The posterior conversion to RGO by chemical, electrochemical, thermal 

or UV methods allows the partial restoration of conductivity as explained previously. 

However, the reduction is not complete and recalcitrant oxidized groups cannot be 

reduced, thus conferring a negative zeta potential to the surface of RGO [27]. On the other 

hand, G has no charged surface and tends to precipitate in aqueous solutions. When 

employing G in solution to coat fabrics, the deposition has to be aided by dispersants to 

help in the dispersion and stability of the G solutions. A lot of work has been performed 

employing the coating of fabrics [28-85].  

Fig. 1 shows the adsorption process of GO sheets on the surface of different fibers to form 

a GO layer. Therafter, the reduction converts insulating GO to conducting RGO due to 



the partial restoration of the sp2 structure. GO on fabrics has a characteristic brown color, 

which is converted into black color after reduction. The process for fixing G is similar to 

this one but it does not include the reduction process.  

The interaction of GO, G or RGO with the fibers is essential to allow their fixation on the 

fibers surface and obtain a proper coating with good conductivity. Functional groups 

present on the fibers help in their fixation. Their interaction with the fibers can be through 

electrostatic interaction, van der Waals forces, hydrogen bonding, π-π interactions, 

hydrophobic interactions, etc. In order to boost their fixation, different chemicals and 

processes have been also employed for such purpose. 

 

Fig. 1. Schematic of the cladding process, mechanism and photographs of cladded 

materials. Reproduced from [46] with permission from The Royal Society of Chemistry. 



 

BSA, which is a pH sensitive protein, has been widely employed for this objective 

[37,40,45,49,57,58,62]. Below pH 4.9 it has positive charge and above pH 4.9 negative 

charge. The positive charges created on the fabric helped in the adsorption process of GO 

(which has negative charges) and created electrostatic forces that allowed the self-

assembly of GO on the fabrics. Molina et al. [45] applied plasma treatment to generate 

negative charges on the surface of PES, these negative charges increased the BSA fixation 

that charged positively the surface of the fabrics, and allowed the self assembly of GO 

sheets. In addition, the high roughness produced by the plasma treatment also helped in 

the fixation process of GO sheets. Zhao et al. [80] also applied plasma treatment in order 

to increase the wettability of nylon/lycra fabrics and facilitate GO adhesion. 

NCPCl has been employed to treat PES fibers and increase GO adsorption [34]. The 

interaction between PES and NCPCl was due to hydrogen bond between carboxyl groups 

of PES and pyridinium group of the surfactant. A complete study taking into account the 

different interactions (and their energy) that can take place between the fiber surface and 

GO was performed. The most effective adsorption took place at pH 3 (0.38 mg GO/g 

fiber) 

Chitosan has been employed as dispersant and binding additive of GNSs [28]. WPU has 

been also employed as dipersant and binding additive of GNPs. Hydrogen bonds were 

formed between –NH gropus of WPU and –OH groups of GNPs [29,31]. The employment 

of PU has been also reported [50], it was fixed on PET due to the interaction between the 

carbonyl group of PET and the –NH group of PU. Dipolar interactions or hydrogen 

bonding helped in the fixation of RGO on the fabrics. Resins have also been employed in 

the process of fixation of G derivatives [52]. 



PEI, which reacted with hydroxyl groups of cellulose, was employed to form a cationic 

layer on cotton fabrics. Therafter layer-by-layer self-assembly approach was employed to 

coat samples with multiple alternate layers (up to 6) of PEDOT-PSS-GNS (polyanion) 

and chitosan (polycation) based on electrostatic interaction [30].  

SDS surfactant helped in the dispersion of GNRs (obtained from unzipping of CNTs) in 

solution but also increased their affinitiy to cotton fibers and produced a more evenly 

distribution of GNRs on the surface of the fibers [60] (Fig. 2).  Sodium cholate surfactant 

has also been employed for the dispersion of GNSs [72,73]. 

Acid treatment has been also reported on carbon fibers to increase their hydrophilicity 

and increase ERGO adhesion [82]. 

 

Fig. 2. Schematic illustration of the fabrication process of GNR coated cotton fabric. 

Reprinted from [60] with permission from Elsevier.  

 

The dip coating method has been widely employed, and the majority of papers have 

employed this approach. The fabric is placed in contact with the solution containing the 

G material to be coated for a certain time and after this the fabric is dried. If necessary, 



reduction is performed afterwards. However, others methods for G and GO deposition 

have been employed, such as: Vacuum filtration [32,61], brush coating [33,78], direct 

electrochemical deposition [82,84], electrophoresis [64,67,68], kinetic trapping method 

[47], wet transfer of monolayer films [42,75] or screen printing [63]. The use of 

ultrasonication during the synthesis has also been reported and allowed a proper 

distribution of the coating on the fabrics [48,50,61,71,76].   

When employing GO, a reduction method is necessary to restore the conductivity of the 

G structure. The majority of works employing GO as precursor, employ chemical 

reductants such as ascorbic acid [36,38,61,80], Na2S2O4 [38,39,43-45,57], hydroiodic 

acid [37,46,49,51,59,62,65,85], hydrazine [38,40,46,48,50,58,59,67,68,74,76,84], 

NaBH4 [38,69], NaOH [38,83], TiCl3 [54,56], ammonium hydroxide [67], hydroxylamine 

hydrochloride [81]. However, other methods such as thermal reduction [71,77-79], 

electrochemical reduction [64,82,84] or UV reduction [33] have been applied due to the 

advantage that no chemicals are employed and no by-products are generated by the 

process. In the case of thermal reduction, the process has to be carried out in inert 

atmosphere and damage to the fibers can occur due to the elevated temperature. The 

electrochemical reduction needs a conductive substrate to carry the current and for this 

reason is mainly applied on carbon cloth substrates. In a study, the effect of the reductant 

(NaBH4, N2H4, C6H8O6, Na2S2O4 and NaOH) on the electrical properties of RGO/cotton 

fabrics was performed by Shateri-Khalilabad et al. [38]. To achieve proper levels of 

conductivity, different number of G/RGO layers are normally applied to the fabrics.  

Different textile substrates have been employed in bibliography, Table 1 shows a 

summary of the work performed [28-85]. As well, composition, different parameters 

employed during the synthesis of the coating, method of reduction, application of the 

fabric and properties of interest have been included in Table 1.  



 

2.2. Applications of graphene coated fabrics 

2.2.1. UV-blocking 

Graphene derivatives have been widely employed as UV-blocking materials for coating 

the fabrics and obtain functional fabrics [28-33]. G has a UV absorption peak around 281 

nm, hence it can absorb UV radiation with a wavelength comprised in the 100-281 nm 

range. For wavelengths > 281, reflection could play a role due to the planar structure of 

G [29]. With a value a UPF >50, excellent protection is achieved, in all the works 

performed in bibliography, high UPF factors can be easily achieved with low G 

concentrations. The durability of the coatings was confirmed after washing tests, where 

little variation of the UPF factor was observed [28-32].   

Tian et al. [28] coated cotton fabrics with GNSs with the aid of chitosan as dispersant and 

binding additive. With a low G content in the coating solution (< 1% wt) the UV-blocking 

properties of the substrate increased a 60-fold when compared with bare cotton. Qu et al. 

[29] coated cotton fabrics with GNPs. WPU was employed to aid the dispersion of GNPs 

at different content (0.05-0.4 % wt). Hydrogen bonds were formed between –NH gropus 

of WPU and –OH groups of GNPs. With a small GNPs content a high UPF was achieved 

(356.74, 10-fold increase when compared to bare cotton fabric). Tian et al. [30] deposited 

by electrostatic layer-by-layer self-assembly PEDOT-PSS (polyanion) and chitosan 

(polycation). GNS were also employed to dope PEDOT to enhance its electronic and UV-

shielding properties. First of all, a cationic layer was formed on cotton fabrics with PEI 

coating, which reacted with hydroxyl groups of cellulose fibers. Thereafter the anionic 

layer (GNS/PEDOT/PSS) was deposited by electrostatic self-assembly. After washing 

and drying, the cationic layer (chitosan) was applied. This process was repeated from 1 

to 6 times. The presence of GNS produced a decrease of the electrical resistivity of 2 



orders of magnitude. The UPF also increased notably due to the presence of GNS (92.4 

vs. 312, without and with GNSs, reepectively). 

Hu et al. [31] coat cotton fabrics with GNPs. Fig. 3-a shows the cotton fabric prior the 

GNPs deposition and Fig. 3-b shows the fabric after the coating was applied. The UPF 

value achieved in this case was 500 (0.8 % wt GNPs), a 60-fold increase when compared 

to bare cotton fabrics. In addition, the fabrics also showed increasing far-infrared 

emissivity as the GNPs content increased. The higher content of GNPs allows the heat to 

be converted into infrared light that could be detected by a thermograph (this can be 

observed from Fig. 3-c to Fig. 3-f). Far-infrared radiation boostes blood circulation and 

metabolism as well as it helps in recovering muscles form fatigue. For this reason this 

materials have been employed for therapeutic and health purposes. Conductivity and 

thermal conductivity increased as well with the increasing G content.  

 

Fig. 3. Images of (a) uncoated cotton fabric, (b) graphene-coated fabric, (c-f) 

thermographs of graphene-coated fabrics with different coated weights (control cotton 



fabric, 240, 320, and 480 mg/m2 graphene-coated fabrics, respectively). Reprinted from 

[31] with permission from Elsevier. 

 

Tang et al. [32] coated cotton with GO by vacuum filtration deposition, therafter Pani was 

chemically deposited on the surface of the GO/cotton fabric. Fabrics acted as UV-

blocking and conductive materials. Since GO is an insulating material, Pani provided the 

conductivity. When GO was deposited on the surface of cotton, it provided a substrate 

where Pani could be homogeneously coated and avoided aglomerations, which boosted 

the conductivity of the fabrics. Javed et al. [33] coated cotton and wool fabrics by brush 

coating with GO. Later GO was reduced to RGO by UV light irradiation, avoiding the 

employment of additional chemical to achieve the GO reduction. Strong GO adsorption 

was obtained on both fabrics due to strong van der Waals forces, hydrogen bonds and 

covalent bonds. Excellent UV blocking properties were also observed by the authors.  

 

2.2.2. Hydrophobic fabrics 

Graphene oxide is amphiphilic since it has hydrophobic areas where functional groups 

are not present and hydrophilic ones where they are present. The edge regions are more 

hydrophilic due to the presence of these functional groups and facilitate the adhesion with 

the functional groups of cotton fibers. However, the central part of the GO sheets is 

mainly composed of C=C bonds which confere them a hydrophobic behavior in this part. 

Tissera et al. [35] coated cotton fabrics with GO by dipping method in solutions 

containing different GO concentrations. With the more concentrated solutions, thicker 

GO coatings were deposited on the fabrics, mid regions of GO were dominant 

(hydrophobic regions) and consequently more hydrophobicity was obtained.  



Shateri-Khalilabad et al. [36] produced conductive superhydrophobic textiles by coating 

cotton with RGO and later with nanostructured PMS (a hydrophobic material in the form 

of filaments 30-90 nm). GO was fixed on cotton through Van der Waals and hydrogen 

bonds and was reduced by ascorbic acid. The reduction of GO to RGO produced the 

removal of functional groups and RGO gained hydrophobicity as measured by contact 

angle measurements. The additional PMS coating provided nanoscale roughness and 

further increased the contact angle on the conductive fabrics. Thus, self-cleaning fabrics 

could be obtained. Fig. 4 shows images of water contact angle measurements performed 

on original cotton fabric (Fig. 4-a), RGO-cotton (Fig. 4-b) and PMS-RGO-cotton (Fig. 4-

c).  

 

 



Fig. 4. Red-dyed water droplets sitting on a) the original cotton; b) the graphene-cotton; 

c) the PMS-graphene-cotton. The images on the right show corresponding goniometer 

images for 5 μL droplets. Reprinted from [36] with permission from Springer. 

 

2.2.3. Electrically conductive fabrics  

The majority of works compiled in this review take advantage of G, or RGO coatings to 

produce conductive fabrics. The conductivity gained allow these fabrics to be employed 

for functional textiles, antistatic materials, etc. The conductivity obtained on the fabrics 

depends on the concentration of G or GO in the solution employed to coat the fabrics. 

Fig. 5 shows an evolution of the surface conductivity of PET fabrics with the RGO 

content employed in the dying solution. In this study, PU was employed as an 

intermediate adhesive layer and dipolar interactions or hydrogen bonding helped in the 

fixation of RGO on the fabrics. With a concentration higher than 0.001 % RGO wt. in 

solution an abrupt change in the surface conductivity was obtained due to the formation 

of a continuous conducting RGO layer on PET fabrics. Being such an important 

parameter, the concentration of the GO/RGO/G solutions for the different studies has 

been also included in Table 1 when available. 

 



Fig. 5. Change in the surface conductivity of the composite fabrics with the increase in 

the weight fraction of RGO in the initial aqueous dispersion. The insets display SEM 

images of the composite fabrics prepared at RGO fractions of 0.001 (I), 0.030 (II) and 

0.080 wt% (III). Reprinted from [50] with permission from The Royal Society of 

Chemistry. 

 

The conductivity obtained also depends on the number of G/RGO layers applied and it is 

normal to obtain fabrics with high number of G/RGO coatings to achieve appropriate 

levels of conductivity. Fig. 6 shows an evolution of the resistance of the cotton fabrics 

coated with RGO-BSA (CCF-RGO) and RGO (SCF-RGO) and it can be seen that BSA 

coating improves the fixation and conductivity of the fabric whatever the number of 

coating is. The number of G/RGO layers applied on the fabrics has been also indicated in 

Table 1 when available. 

 

Fig. 6. Comparison of the decrease in resistance with dipping number of SCF-RGO 

(RGO/cotton) and CCF-RGO (RGO-BSA/cotton). Reprinted from [58] with permission 

from Elsevier. 

 



As explained previously, the reductant has also a marked influence on the conductivity 

obtained. Shateri-Khalilabad et al. [38] coated cotton with GO and studied the effect of 

the reductant employed on the conductivity of RGO/cotton fabrics obtained after 

chemical reduction. The reduction time is also important and it is a parameter that should 

be optimized when obtaining RGO coatings since it depends on the type of reductant 

employed as well as the synthesis conditions. In this sense, Ha et al. [49] studied the 

reduction process of RGO deposited on PES and cotton aided by BSA coating. Authors 

performed a Raman spectroscopy to study the reduction by HI and showed that the 

conducting patways on the fibers are formed within the first minute of reduction. 

Thereafter, conductivity remains stable till 20 min of reduction, and beyond this time, a 

decrease of conductivity was observed, maybe due to the deposition of I- that could act 

as scattering centers for the current flow. 

The most important parameters of conducting fabrics have been summarized in Table 1 

(conductivity, sheet resistance, electrical resitance, etc). However, some aspects of the 

papers dealing principally on conductivity will be summarized following (special 

synthesis methods, special properties or applications, etc).  

Yun et al. [37] obtained conductive and colored nylon-6 yarns through dying RGO with 

rhodamine 6G. The conductivity of the fabrics only varied a 9 % in the 220-325 K, which 

demonstrated its applicability for real-life applications.  

Woltornist et al. [47] coated PET simulated leather fabrics with a mixture of FLG and 

graphite obtained by ultrasonication. The approach employed was a kinetic trapping 

method, which consisted in a mixture of n-heptane and water. Both are poor solvents for 

FLG and graphite and both accumulate in the interface between the two solvents, the 

exfoliation of graphite was also facilitated in this way by means of ultrasonication. When 

a hydrophilic surface was present, FLG/graphite deposited on its surface. Fabrics were 



placed in contact with the mixture and were ultrasonicated to allow the deposit of the 

coating, weight uptakes as high as 15 % of graphitic material on the fabrics were achieved. 

Graphite tended to accumulate in the interstices between the fibers and FLG were 

deposited on the surface of the fibers. 

Other methods employed for obtaining conductive yarns include wet transfer of 

monolayer G. Neves et al. [42] synthesized monolayer G by CVD on Cu foil and 

transferred it to PP and PLA fibers by wet method to produce conductive and transparent 

coatings on the fibers (fibers were immobilized on a rigid PET support). The surface of 

the fibers was previously treated with ultraviolet-ozone treatment to remove impurities 

from the surface of the fibers and produced a more uniform surface that promoted G 

adhesion. 

Due to the resistive response of G conducting fabrics, they have been tested as 

electrothermal material. Their temperature can be tuned by varying the potential and 

shows applicability for heating garments (for instance for maintaining the body 

temperature of patients, etc.) [50]. Fig. 7 shows the evolution of the temperature of RGO-

PU/PET fabrics depending on the applied potential.  

 



Fig. 7. Time dependence of temperature for the composite fabrics prepared in an aqueous 

dispersion with an RGO content of 0.080 wt %. Reprinted from [50] with permission 

from The Royal Society of Chemistry. 

 

Molina et al. published different works [43-45] in which PES fabrics were coated with 

RGO and they performed a complete electrochemical characterization of these materials 

with not traditionally employed techniques for the characterization of these materials such 

as: cyclic voltammetry, electrochemical impedance spectroscopy or scanning 

electrochemical microscopy. The RGO coatings demonstrated to be electroactive and 

were homogeneously distributed on the surface of the fabrics. In their electrochemical 

characterization using scanning electrochemical microscopy, its amphoteric behavior was 

observed. The RGO coatings could act either as a reductant or as an oxidant [44]. In cyclic 

voltammetry characterization, only low scan rates allowed the observation of RGO redox 

processes due to the resistive nature of the coatings, composed of lots of RGO sheets that 

allowed the electrical flow through the fabric. 

Hsiao et al. [51] coated PU fiber mats, obtained by electrospinning, with GO, later GO 

was converted to RGO with hydriodic acid as the reducing agent. Electrical conduction 

of the fiber mats was further improved with the deposition of thiofenol-modified AgNPs. 

Fig. 8 shows a schematic representation of the production process, in which the functional 

groups of GO bonded with the functional groups of PU nanofibers by means of hydrogen 

bonding. AgNPs were fixed due to π-π interaction between RGO and thiophenol-modified 

AgNPs. Fig. 9-a shows the PU nanofibers, and after GO deposition it can be seen that all 

the voids between the nanofibers were coated with GO (Fig. 9-b).  



 

Fig. 8. Schematic representation of the procedure for preparing the AgNP@RGO/WPU 

composites. Reprinted from [51] with permission from Elsevier.  

 

 

Fig. 9. SEM images of the surface of (a) PU, (b) GO/PU. Reprinted from [51] with 

permission from Elsevier. 

 

Hybrid conducting materials consisting of GO and a conducting polymer were reported 

by Molina et al. [41] who deposited PPy/GO hybrid material on PES fabrics by means of 

chemical oxidation of pyrrole/GO solution by FeCl3. Different GO contents were 

employed (10, 20 and 30 % wt. respect to pyrrole mass) to study the effect on the 

conductivity. During the polymerization, GO acted as a counter ion (negative charge) to 

neutralize the positive charges created in the structure of PPy (polarons and bipolarons). 



When PPy/GO was deposited the fabric became conductive (177 Ω/square, for 10 % wt. 

GO content). When the GO content increased, the surface resistivity also increased 

slightly. An excessive amount of GO, increases electrical resistance due to its insulating 

nature. In addition, X-ray photoelectron spectroscopy measurements showed a decrease 

of the doping level of the polymer (N+/N) as the GO content increased, in accordance 

with the surface resistivity results. GO as counter ion has the advantage of its high size 

when compared with traditional organic counter ions, and cannot be expulsed from the 

PPy structure due to dedoping. 

 

2.2.4. Thermally conductive fabrics and flame retardant fabrics 

Abbas et al. [52] coated cotton fabrics with G to increase its thermal conductivity. This 

could be useful for the production of summer clothing that allows the rapid dissipation of 

heat. It is also important to increase the hydrophilicity of the fabrics, which allows sweat 

to not be accumulated, thus allowing heat dissipation. The increase of the thermal 

conductivity was due to the presence of G which is a good thermal conductor and it was 

also related to the concentration of the filler. In addition, the reduction of the air 

permeability of the fabrics (lower porosity) also enhanced the thermal conductivity of the 

fabrics. When comparing with other fillers (MWCNTs and boron nitride), better results 

were obtained with G. Authors also performed dyeing of the conductive fabrics with 

different colors and different filler contents to see the effect of the fillers on the fabric 

color. The thermal conductivity provided by RGO also minimized resistive heating and 

allowed stable field emission [68]. Hu et al. [31] also observed the increase in the thermal 

conductivity of cotton fabrics when coated with GNPs. 

Graphene derivatives have been also employed as flame-retardant fillers to produce 

fabrics with more thermal stability and flame retardant properties. Huang et al. coated 



cotton fabrics with intumescent flame retardant-polyacrylamide/GO by layer-by-layer 

assembly [53]. An increase in the temperature of decomposition and the time of iginition 

was observed. Conversely, the heat release rate was diminished. 

 

2.2.5. Photocatalytic fabrics, antibacterial and antifungal fabrics 

GO and RGO coatings have shown photocatalytic activity on fabrics [55,58].  

Krishnamoorthy et al. [55] coated cotton fabrics with GO to obtain photocatalytic and 

antibacterial fabrics. Photocatalytic activity was measured by measuring the 

photoreduction of resazurin (blue) to resorufin (pink) under UV irradiation. UV- light of 

energy 3.54 eV was irradiated on the fabric, which produced the creation of electron/hole 

pairs since the energy irradiated is higher than the GO bandgap (3.26 eV in this study). 

The electron reacted with the resazurin dye, which was reduced. Antibacterial activity 

was tested with gram-positive (Streptococcus iniae) and gram-negative (Escherichia coli 

DH5α) bacteria, being more toxic to the former ones. The antibacterial mechanism could 

involve direct contact (due to damaging produced by functional groups) and/or oxidative 

stress (reactive oxygen species created by GO). 

Sahito et al. [58] cationised a cotton fabric with BSA. With the BSA coating an increase 

of 67.74 % of GO deposited was obtained when compared to bare cotton. Finally, GO 

was converted to RGO by hydrazine hydrate vapors. Electrical conductivity and 

photocatalytic activity in the degradation of a MB solution were improved with the BSA 

coating, due to the higher amount of RGO deposited. In addition the authors pointed out 

the possibility of employing the fabric in the future for textile-structured solar cells.  

RGO-coated fabrics have been also employed as substrate materials onto which TiO2NPs 

have been deposited to obtain photocatalytic fabrics [54,56,57]. Under irradiation, 

TiO2NPs produce electrons and holes. Electrons combine with oxygen and produce O2
−, 



and holes and water generate hydroxyl radicals. This highly active oxygen generated 

species can oxidize organic pollutants. The efficiency of photocatalytic processes is 

determined by the electron/hole pair life, which is around 10-9 s for TiO2 alone [54]. The 

time needed for chemical interaction with organic matter is in the 10-8-10-3 s order; 

therefore a decrease of the photocatalytic efficiency is observed. In this sense, G materials 

act as conducting materials and enable the effective electron/hole separation due to their 

conducting patways. In this way, the lifetime of the electron/hole pair is increased, as 

does the photocatalytic efficiency of these materials. Other advantage is that G materials 

can also extend light absorption, acting as an electron donor to produce more O2
- radical 

species. In addition, G materials can also act as adsorbants of organic matter, thus 

facilitating the contact between the photcatalytic material and the pollutants, organic 

matter, bacteria, etc. [54]. 

Karimi et al. [54] coated cotton fabrics with GO and PU. Therafter TiCl3 was added, and 

acted as a reductant of GO and at the same time, TiO2NPs (8-13 nm) were formed due to 

the oxidation of Ti3+. Authors performed a series of experiments varying the GO and 

TiCl3 concentrations. The effect of these parameters on the photocatalytic efficiency (in 

the degradation of MB dye solution) was measured and optimized with a mathematical 

model. The modified fabrics were also employed as antimicrobial (Escherichia coli and 

Staphylococcus aureus) and antifungal materials (Candida albicans). Cytotoxicity tests 

were performed and showed no hazard for health. In [56] authors published a similar 

study. 

Molina et al. [57] developed RGO-coated PES fabrics and coated them with commercial 

TiO2NPs. An increase in the number of RGO coatings applied, produced an increase of 

the conductivity and a decrease of the charge transfer resistance of the fabrics in solution. 



Consequently, an increase in the photocatalytic efficiency (in Rhodamine B degradation) 

was also observed.  

 

2.2.6. Fabric sensors 

Taking advantage of their high surface area and conductivity, G coated fabrics/fibers have 

also been employed as sensors for different purposes: electrodes for heart rate monitoring 

[59], strain sensor [60], H2O2 sensor [61], glucose sensor [61], NO2 gas sensor [62], and 

acetone and methanol sensor [63].  

Yapici et al. [59] coated nylon fabrics with RGO to produce electrodes for obtaining 

electrocardiograms. The performance was very similar to the conventional electrodes 

employed for such purpose and presented several advantages over traditional electrodes 

(Ag/AgCl) such as: They alleviate the need for gel, provide comfort, wearability, 

reusability and easy integration to personal clothing. 

Gan et al. [60] coated cotton fabrics with GNRs obtained from MWCNTs unzipping by 

strong oxidants. Bending, stress-strain and washing experiments showed no significant 

degradation of the conductivity of the fabrics. A linear dependence of the resistance on 

the strain was observed when elongation was lower than 20 %, indicating that the fabric 

could be employed as a strain sensor in smart textiles. GWFs have been more widely 

applied for this purpose due to its high sensitivity as will be seen in section 2.4.1. 

Liang et al. [61] coated silk fiber mats with GO via vacuum filtration. Later GO was 

reduced to RGO chemically. The morphology of the composite showed a loose structure 

on the top of the film and a compact structure at the bottom of the film, due to the 

accumulation of RGO sheets. The porous structure helped in the diffusion of analytes to 

the electrode. The composite material also showed capacitative properties due to the high 

surface area of the silk/RGO composite. Thereafter, PtNPs were deposited on the 



RGO/silk fiber mats via CV electrodeposition (Fig. 10-a,b), a spiky structure in the form 

of flowers was obtained. Fig. 10-c shows the EDX analysis which corroborates the 

presence of PtNPs on the surface of the fibers. The modified fibers were employed as 

electrode materials for H2O2 sensor (Fig. 10-d). H2O2 is a by-product of many analyte-

specific enzymes, as well as a known brain neuromodulator. After modification with 

glucose oxidase enzyme, the conducting fibers were also employed as glucose sensing 

material that could be employed for diabetes diagnosis. 

Yun et al. [62] coated cotton and PES fibers with BSA to facilitate GO adsorption. After 

chemical reduction, the conductive fibers were embroidered in commercial fabrics and 

employed as gas sensors. The obtained sensors were 3-fold more sensitive to NO2 than 

when obtained in the form of flat RGO films, which can be attributed to the high surface 

area of the yarns. When exposed to NO2 as an oxidizing gas, the resistance of the RGO 

sensor decreases owing to the increased hole concentrations resulting in the negative sign 

of the response. Washing and bending (1000 tests) did not affect the performance of the 

fibers and provided a constant response for 7 days monitoring (0.13 % variation). Ethanol, 

ethylene, acetone, and CO2 gases in 10-fold concentrations did not cause interference in 

the NO2 determination. 



 

Fig. 10. (a) An SEM image of a G/silk film decorated with Pt nanospheres. (b) A high-

magnification SEM image of the G/silk film decorated with Pt nanosphere. The right inset 

right shows a Pt spiky nanosphere and the left inset shows a photograph of a spiky flower 

head that is similar to the Pt nanosphere. (c) EDX spectrum of the Pt nanosphere 

decorated G/silk film. (d) Calibration curve of H2O2 detection by the Pt nanosphere 

decorated G/silk film at 0.65 V vs. Ag/AgCl. The inset shows a magnified calibration 

curve at low H2O2 concentration (1 mM to 10 mM). Reprinted from [61] with permission 

from The Royal Society of Chemistry. 

 

Skrzetuska et al. [63] coated cotton fabrics with G pellets (23 nm of thickness, 68 G layers 

on average,) and MWCNTs by screen printing technique and the developed fabrics were 

employed as gas sensors. The change of the electrical resistance of the fabrics when 

exposed to different vapor gases was employed as an indication of the gas concentration. 

Methanol and acetone gases were employed to test sensing properties of the screen printed 

electrodes, being more sensitive to methanol than towards acetone. The differences could 



be attributed to differences in the dipole moment that is lower in the case of methanol 

(1.61 D vs. 2.91 D for acetone).  

 

2.2.7. Electrocatalytic materials 

G materials are also electrochemically active and have been employed for producing 

fabric electrodes for different electrochemical applications such as anodes for microbial 

fuel cells [64], cathodes in dye sensitized solar cells [65] cathode membranes for dye 

degration [66] or photoelectrode materials [74]. 

Liu et al. [64] deposited electrochemically ERGO on carbon cloth. The fabrics were 

employed as anode materials for a Pseudomonas aeruginosa mediatorless microbial fuel 

cell. ERGO promoted the growth of bacteria growth due to its biocompatibility and 

enhanced electron transfer rate due to two mechanisms: direct electron transfer and 

through cell-excreted mediator-enabled electron transfer pathways. Pseudomonas 

aeruginosa produces pyocyanin, phenazine-1-carboxamide or phenazine-1-carboxylic 

acid that can function as redox mediators for the transfer of electrons between the bacteria 

and the anode electrode. The ERGO modification improved power density and energy 

conversion by 2.7 and 3 times, respectively.  

Sahito et al. [65] obtained RGO coated fabrics and employed them as counter electrode 

in dye sensitized solar cells. The counter electrode in this type of cells is usually coated 

with Pt to increase its electroactivity, the counter electrode with RGO is Pt free and hence 

is cheaper. The energy conversion efficiency obtained with the RGO/cotton fabric was 

lower than that for Pt counter electrode. However, there are several with these type of 

electrodes, such as: the low cost, the simple production method, flexibility and 

biodegradability of the materials, which make these type of electrodes promising 

candidates for future technology of textile structured solar cells. 



Zhao et al. [66] developed PPy/RGO coated PES filter cloth membranes and employed 

them at the same time as membrane and cathode material. AQSA was employed as a 

dopant to improve the conductivity of the membrane and the generation of radicals. The 

filtration effect enhanced the contact between the membrane and the pollutants. The 

membrane was employed in an electro-Fenton system to degrade pollutants (MB). H2O2 

was produced on the cathode through O2 reduction, which reacted with Fe2+ to produce 

hydroxyl and hydroperoxyl radicals that were responsible for oxidizing organic matter. 

Hydroxyl radicals could also be directly produced on the cathode. RGO acted as an 

effective bridge between PPy and the catalyst. 

Tian et al. [74] wrapped CNT fibers with GO by means of π-π interaction, and later 

reduced to RGO. TiO2 was also deposited by CVD to produce photoelectrode materials. 

When depositing TiO2/RGO on CNTs, the photocurrents obtained were multiplied by a 5 

factor when compared with TiO2/CNT (132 vs. 25 μA·cm-2). This was due to the 

deposition of more TiO2NPs and the creation of donor-acceptor interfaces due to tight 

binding between RGO and TiO2NPs. 

 

2.2.8. Field emission fabrics 

Roy et al. [67] deposited RGO and CNTs on carbon cloth/PET substrate for increasing 

field emission for flexible device applications. A decrease in the turn-on field and in the 

current density at the threshold field was observed and was due to an enhanced edge effect 

of RGO caused by the synergy between RGO and CNTs. In [68] a similar study for the 

same application was performed. RGO was deposited on carbon cloth and was etched 

with plasma to produce G nanocones that acted as cold electron emitters. The effect of 

the time of plasma etching was studied, obtaining the best results with 3 min etching. The 

thermal conductivity of G minimized resistive heating and allowed stable emission. As 



examples of application authors pointed out rolled-up field emission displays, bendable 

X-ray generators, etc. 

 

2.2.9. Capacitors and energy storage 

Carbon materials are of interest for the production of capacitors since its high surface area 

allow them to adsorb more electrolyte ions, which increases the capacitance of the double-

layer capacitor. In this sense, G and derivatives have a high surface area (2630 m2·g-1) 

[20] which make them ideal candidates for such purpose. In addition, its conductivity 

enhances the performance of the capacitors and reduces their internal resitance, thus 

improving the rate performance. This is why the use of G derivatives for supercapacitors 

is on the increase. The same happens in the field of fabrics, where the applications of G 

materials allows to obtain flexible supercapacitors [61,69-85]. Fig. 11 displays a diagram 

showing the double layer capacitative performance of a carbon fiber electrode before and 

after ERGO deposit. An increase in the surface area allows the material to adsorb more 

ions. Fabric supercapacitors have also the advantage that they are highly porous and 

facilitate electrolyte access. However, the capacitance obtained by carbon materials is 

low and other pseudo-capacitative materials are usually added on top of them to increase 

their capacitance. These materials include conducting polymers suc as PPy 

[70,71,80,81,83], Pani [74,85], PEDOT [73] and metal oxides such as MnO2 [72,73,83], 

V2O5 [75]. The use of MWCNTs has also been reported to increase double layer 

capacitance and conductivity [75,81]. The design of the supercapacitor has been studied 

as a key factor for enhancing the electrolyte-accessible surface area and increase the 

capacitance of the system when compared with traditional configurations [77]. Following, 

the most interesting works related to G-based fabrics for supercapacitor applications will 

be briefly summarized. 



 

Fig. 12. Schematic diagram of the mechanism that, by stably attaching ERGO additives, 

increased specific surface area featuring a unique wrinkled structure for adsorption of 

electrolyte ions contributing to the excellent electrochemical double-layers. (A) Pure 

carbon fiber electrode. (B) ERGO-carbon fiber electrode. Reprinted from [82] with 

permission from The Royal Society of Chemistry. 

 

Yaghoubidoust et al. [70] coated cotton fabrics with GO and later with PPy obtained by 

chemical oxidation, obtaining a double layer coating. The previous GO deposit enhanced 

conductivity of the fabric, it should be taken into account that GO could be partially 

reduced to RGO during the oxidation process of pyrrole to PPy. Specific capacitance was 

also improved by the GO coating as measured by cyclic voltammetry. Xu et al. [71] 

employed a similar approach to [70], however in this case authors reduced GO to RGO 

to obtain more conductive coatings. Although the presence of RGO produced a thinner 

PPy coating (1.5 mg·cm-2 vs. 6 mg·cm-2), the capacitance was higher in the case of 

PPy/RGO coating. This can be attributed to a higher surface area, yielding increased 

electrode/electrolyte interface areas. In addition, RGO formed a conducting layer below 

the PPy layer, which facilitated the electron transfer between RGO and PPy. The presence 



of RGO coating stabilized PPy and increased its cycling stability due to the interaction 

between RGO and PPy (π-π interaction) which limited the swelling and shrinking of the 

PPy coating. A similar effect of stabilization of the conducting polymers has been 

observed by other authors [85]. Zhao et al. [80] coated nylon-lycra fabrics with RGO and 

later a PPy film was also deposited on the surface of the fabrics. In this case, the 

capacitative performance was even better under 50 % stretching, since allowed a better 

contact between RGO sheets.  

Liu et al. [81] coated PES non-woven fabrics with RGO, PPy and MWCNTs and studied 

its performance as supercapacitor material. A synergistic effect was observed among all 

the components of the flexible fabric. The presence of RGO increased the surface area of 

PPy and MWCNTs increased the conductivity, high rate performance and the stability. 

Yu et al. [85] deposited Pani nanowire array coating on nitrogen-doped carbon fiber cloth. 

Thereafter RGO was deposited on top of the Pani coating to buffer the volume change of 

Pani that suffers in the oxidation/reduction process, which contributed to enhance the long 

term stability of the supercapacitor. Strong π-π interaction allowed gooed electron transfer 

between Pani and the basal plane of RGO. Nanostructured Pani allowed a high 

electrode/electrolyte interface area and short diffusion lengths and RGO decreased the 

internal resistance of the electrode. 

Huang et al. [83] deposited RGO, MnO2 and PPy successively on the surface of stainless 

steel fibers. The obtained fibers could be knitted into fabrics for wearable energy storage 

textiles. RGO improved charge transfer with MnO2 and increased capacitance. MnO2 

contributted to the capacitance and PPy improved electron transfer and also participated 

in the pseudocapacitative charge storage. The yarns could be assembled in series and in 

parallel to meet the voltage and current requirements in real applications. In addition, the 

yarns could be knitted into patterns without loosing their properties. 



Yu et al. [72,73] published two works in which they coated fabrics with GNS/MnO2 

coatings. Fabrics were previously coated with exfoliated GNS and after this, 

electrochemical deposition of MnO2 was performed. Materials with high specific 

capacitance were obtained (315 F·g-1). MnO2 was employed as a typical active 

pseudocapacitive material which uses fast and reversible redox reactions at the surface of 

electroactive materials. GNS acted as a conductor which facilitated the electrochemical 

synthesis of MnO2NPs and facilitated fast electron transport between GNS and 

MnO2NPs. The morphology of the MnO2NPs (flower-like) enhanced the surface area and 

reduced ion diffusion length during charging/discharging. In addition, GNS acted as a 

double layer capacitor, accumulating electrical charges arising from ion absorption 

(double layer capacitance). In [73] authors employed a conductive wrapping of 

PEDOT/PSS or SWCNTs on the GNS-MnO2/PES fabrics. This wrapping further 

increased the specific capacitance (till 380 F·g-1) and the rate capability, which can be 

attributed to shorter ion diffusion path and increased electronic conductivity. The 

additional conductive wrapping created a new electron transport path and also 

participated in increasing the capacitance through double layer capacitance (SWCNTs) 

or pseudocapacitance (PEDOT).  

Shakier et al. [75] obtained supercapacitor electrodes based on layer-by-layer assembly 

of G layers acting as conductive spacers between layers of V2O5 coated-MWCNTs. The 

G coatings provided an extra conductive pathway, avoided the agglomeration of 

MWCNTs and enhanced the specific capacitance by a 67 %, till values as high as 2590 

F·g-1. Electrodes stored charge through electric double layer capacitance (MWCNTs) and 

through pseudocapacitative mechanism (V2O5). The optimal thickness of the V2O5 

coating on MWCNTs was 3 nm, a higher thickness decreased the ratio of utilization which 

decreased the specific capacitance. 



Wang et al. [76] employed nanofabrics of electrospun polyamide coated with RGO to 

produce supercapacitative materials. The nanofabrics increased the surface area of the 

fabric and avoided the aggregation of RGO, thus being advantageous when compared to 

microfabrics (capacitance when employing nanofabrics was 4.4 times higher than with 

microfabrics). GO with different sizes was coated on the fabrics to study the influence of 

this parameter on the capacitative behavior (diameters: < 200 nm (S), 200-450 nm (M), 

>450 nm (L)). GO was fixed on polyamide through hydrogen bonding between GO 

functional groups and the amide groups of polyamide 66. The optimal size of GO 

nanosheets was 200-450 nm, because they had a size that could wrap the fibers and 

maintained the pores of the fabric. The lowest size (<200 nm) did not produce proper 

coatings due to an incomplete coverage of the fibers, and the highest size (>450 nm) 

blocked the pores of the fabric due to the larger size of GO nanosheets. Medium size GO 

nanosheets improved GO loading and fixation, surface area, conductivity and electrolyte 

could easily access, thus obtaining the highest capacitance values. Fig. 11 shows 

micrographs of the coatings obtained on the nanofabrics depending on the size of the GO 

sheets. A schematic representation is also included to clarify the effect of the GO sheets 

size. 

Ramadoss et al. [79] coated carbon fabrics with GO and later reduced it to RGO by 

thermal treatment at low temperature. High values of specific capacitance were achieved 

(414 F·g-1) and a good rate capability was also observed, which was attributed to a shorter 

diffusion path for electrolyte and electrons, a highly activated surface and improved 

electrical conductivity. Two pieces of the conducting fabric, were separated by filter 

paper separator and a flexible solid state supercapcitor was obtained employing a 

H3PO4/PVA gel as electrolyte. Bending did not cause significant change in its properties. 

5 supercapacitors were mounted and charged and they powered a LED for more than 15 



minutes. A nanogenerator was also integrated to harvest the energy from vibrational and 

mechanical deformation to charge the capacitor and this one supplied power to a 

photosensor. This demonstrates their application for wearable and portable devices. 

 

Fig. 11. The SEM images of (a, e) PA66 nanofibers, (b, f) S-RGO/PA66-nano, (c, g) M-

RGO/PA66-nano, and (d, h) L-RGO/PA66-nano. Reprinted from [76] with permission 

from Elsevier. 

 

Liu et al. [84] coated cotton yarns with Ni by a polymer-assisted metal deposition method. 

Later ERGO was deposited by means of electrochemical methods and was further 

reduced with hydrazine. The fibers obtained showed high capacitance values and could 

be embroidered or weft due to the enhanced mechanical resistance provided by Ni 

coating. The fibers could be connected in series, in parellell or in a combination of both 

to meet operational voltage or power requirements.  



Table 1. Work performed with fabrics and graphene coatings by wet methods.  

Material 
composition 

Properties Method of synthesis Reductant Application Ref. 

GNS-
chitosan/cotton 
fabrics 

UPF: 465.8 (chitosan-GNS/Cotton), 7.31 (cotton) 
UPF after laundering 10 times: 432.7 (chitosan-GNS/Cotton), 7.28 
(cotton) 

GNS coating: Dip coating (0.2 % wt. chitosan + 2 % v/v 
acetic acid + 0.1-1 % wt. GNS, 2 h). Padding 2 times, 
drying 70º C (10 min), curing 110 ºC (10 min) 

- UV-blocking [28] 

GNPs-
WPU/cotton 
fabrics 

UPF: 356.74 (GNPs-WPU/cotton), 32.71 (cotton) 
UPF after laundering 10 times: 5 % decrease 

GNP coating: Dip coating (WPU + 0.05-0.4 % wt. GNP, 1 
h). Padding 2 times, drying 65º C (5 min), curing 110 ºC (5 
min) 

- UV-blocking [29]  

PEDOT-G-
PSS/chitosan-
PEI/cotton fabric 

UPF: 312 (PEDOT-G-PSS/chitosan/PEI/cotton), 92.4 (PEDOT-PSS-
chitosan-PEI/cotton), 9.37 (cotton) 
UPF after laundering 10 times: 301.39 (PEDOT-G-PSS-
chitosan/cotton) 
Electrical resistivity: 2.29 Ω·m (PEDOT-G-PSS-chitosan/cotton), 208.4 
Ω·m (PEDOT-PSS-chitosan-PEI/cotton), 7.79·108 Ω·m (cotton) 

PEI coating: Dip coating (0.01 M PEI, 2 h, 75 ºC) 
Chitosan coating: Dip coating (3 % wt. chitosan in 2% 
acetic acid) 
PEDOT/PSS/GNS coating: Dip coating (1 % wt. PEDOT 
+ 0.5 % wt. PSS + 10 mg·L-1 (~1 % wt) GNS, 20 min) 
(1 to 6 coatings applied alternatively by layer-by-layer self-
assembly: 1-6 coatings of PEDOT/PSS/GNS and 1-6 
coatings of chitosan) 

- UV blocking, 
electrical 
conductivity 

[30] 

GNPs-
WPU/cotton 
fabrics 

UPF: 500 (GNPs-WPU/cotton), 8.19 (cotton) 
UPF after laundering 10 times: 2 % increase 
Electrical resistivity: 2.94·10-1 Ω·m (GNPs-WPU/cotton) 1.15·107 Ω·m 
(cotton) 
Far-infrared emissivity: 0.911 (wavelength 4-18 μm) (GNPs-
WPU/cotton) 
Thermal conductivity: 50.633 W/mK x 10-3 (0.48 g·m-2 GNPs), 38.5 
W/mK x 10-3 (0 g·m-2 GNPs) 

GNP coating: Dip coating (WPU + 0.8 % wt. GNP, 100 
min). Padding 2 times, drying 70º C (10 min), curing 120 ºC 
(5 min) 
GNP content on fabrics: 240, 320, 480 mg·m-2 (1, 2, 3 
coating cycles) 

- UV-blocking, far-
infrared emission, 
electrical 
conductivity, 
thermal conductivity 

[31] 

Pani-GO/cotton 
fabric 

UPF: 445.21 (Pani-GO/cotton), 424.88 (GO/cotton), 29.43 (Pani/cotton), 
6.86 (cotton) 
UPF after laundering 10 times: 412.63 (Pani-GO/cotton), 380.95 
(GO/cotton), 29.21 (Pani/cotton), 6.82 (cotton) 
Electrical resisitivity: 48.35 Ω·cm (Pani-GO/cotton), 2084.91 Ω·cm 
(Pani/cotton) 
Electrical resisitivity after laundering 10 times: 52.37 Ω·cm (Pani-
GO/cotton), 2108.78 Ω·cm (Pani/cotton) 

GO coating: Vacuum filtration deposition (5 g·L-1 GO) 
Pani coating: Adsorption (20 mL aniline + 80 mL ethanol, 
90 min), oxidation by APS, 120 min (APS ratio 1:1, HCl 
ratio 1:0.5, ratio respect aniline)  

- UV-blocking, 
electrical 
conductivity 

[32] 

RGO/wool fabric 
RGO/cotton fabric 

Surface resistivity: 45 kΩ/square (RGO/wool fabric), 100.8 kΩ/square 
(RGO/cotton fabric) 
UPF: 5 (cotton), >50 (RGO/cotton fabric) 

GO coating: Brush coating (2 g·L-1 GO, pH 4.5). Drying: 
90 ºC, 10 min.  
(Process repeated 5 times to increase GO adsorption) 

UV light (8 passes 
UV irradiation 
line) 

UV blocking, 
electrical 
conductivity 

[33] 

GO-NCPCl/PES 
fibers 

GO weight uptake: 0.38 mg GO/g PES (pH 3), 0.14 mg GO/g PES (pH 
4.5), negligible deposition (pH 9) 

NCPCl coating: Dip coating (10-4 M NCPCl, 293 K, 24 h) 
GO coating: Dip coating (0.4 g·L-1 GO, 293 K, 12000 s) 

- - [34] 

GO/cotton fabric Water contact angle: 143 º (0.4 g·L-1 GO), 135 º (0.2 g·L-1 GO), 121º 
(0.1 g·L-1 GO), 60º (0.05 g·L-1 GO), 0º (cotton) 

GO coating: Dip coating (0.05-0.4 g·L-1 GO, 45 min) - Hydrophobicity [35] 

PMS-RGO/cotton 
RGO/cotton 

Surface resistance: 91.8 kΩ/square (RGO/cotton), 112.5 kΩ/square 
(PMS-RGO/cotton) 

GO coating: Dip coating (0.2 g·L-1 GO, 30 min, repeated 3 
times.  
(Multiple coatings, 1 to 20). 

0.05 M C6H8O6, 
95 ºC, 60 min 

Hydrophobicity, 
electrical 
conductivity 

[36] 



Surface resistance of RGO/cotton with number of RGO coatings: 1 
(400.2 kΩ/square), 5 (12.6 kΩ/square), 10 (3.4 kΩ/square), 20 (0.84 
kΩ/square) 
Water contact angle: 143.2º (RGO/cotton), 163º (PMS-RGO/cotton) 

PMS coating: Dip coating (methyltrichlorosilane in hexane, 
15 min). Curing 110 ºC, 60 min. 
 

RGO-BSA/nylon-
6 yarns and 
fabrics (or PES or 
cotton yarns) 

Conductivity: 1040 S·m-1 (RGO-BSA/nylon-6 fabric) BSA coating: Dip coating (0.5 % wt. BSA, 10 min), drying 
1 hour, washing. 
GO coating: Dip coating (1 g·L-1 GO) 

HI (2 mL HI + 5 
mL acetic acid, 15 
min) 

Electrical 
conductivity 

[37] 

RGO/cotton 
fabrics 

Surface resistance of RGO/cotton as function of reductant: NaBH4 
(34600 kΩ·cm-1), NaOH (23300 kΩ·cm-1), N2H4 (62.7 kΩ·cm-1), C6H8O6 
(31.2 kΩ·cm-1), Na2S2O4 (19.4 kΩ·cm-1). 
Surface resistance with number of RGO coatings (Na2S2O4 
reductant): 1 (201.1 kΩ·cm-1), 10 (1.27 kΩ·cm-1), 20 (0.374 kΩ·cm-1) 

GO coating: Dip coating (0.05 % wt. GO, 30 min) 
(Multiple coatings, 1 to 20) 
 

NaBH4, N2H4, 
C6H8O6, Na2S2O4 
and NaOH (25 
mM, 95 ºC, 60 
min. Best 
reductor: Na2S2O4 
(30 min, 95 ºC) 

Electrical 
conductivity 

[38] 

RGO/polyarylate 
yarns 

Electrical resistivity: 92.52 Ω·cm-1 (it could be tuned from 102 Ω·cm-1 to 
109 Ω·cm-1 depending on the RGO content). 
GO weight uptake: 8 mg GO/g fiber 

GO coating: Dip coating (0.3 % wt. GO, pH 2.13, 15 min) 0.5 % wt. 
Na2S2O4, 363 K, 
30 min 

Electrical 
conductivity 

[39] 

RGO-BSA/silk 
fabrics 
RGO-BSA/silk 
yarns 

Surface resistance: 386.6 kΩ/square (1 coating), 1.5 kΩ/square (5 
coatings) (RGO-BSA/silk fabrics) 
Electrical conductivity: 3595 S·m-1 (RGO-BSA/silk yarns) 

BSA coating: Dip coating (0.5 % wt BSA, 10 min). Drying 
30 ºC, 15 min 
GO coating: Dip coating (2 g·L-1 GO, 30 min) 
(Multiple coatings, 1 to 7) 

Hydrazine, 
overnight  

Electrical 
conductivity 

[40] 

PPy-GO/PES 
fabrics 

Surface resistivity: 177 Ω/square (10 % wt. GO in solution), 385 
Ω/square (20 % wt. GO in solution), 472 Ω/square (30 % wt. GO in 
solution) 

PPy/GO coating: Dip coating (0.02 M pyrrole + GO (10 %, 
20 %, 30 % wt. respect to pyrrole mass), 30 min adsorption. 
Pyrrole oxidation: 0.05 M FeCl3, 150 min 

- Electrical 
conductivity 

[41] 

G/PP fibers 
G/PLA fibers 

Sheet resistance: 1 kΩ/square (G/PP) 
Optical transparency: 89 % (G/PP), 92 % (PP) 

G coating: Monolayer G grown by CVD and transferred to 
the fibers by wet methods 

- Electrical 
conductivity 

[42] 

RGO/PES fabrics Resistance: 26 kΩ·cm2 (1 RGO coating), 700 Ω·cm2 (2 RGO coatings), 
23.15 Ω·cm2 (3 RGO coatings), >1011 Ω·cm2 (PES) 

GO coating: Dip coating (3 g·L-1 GO, 30 min).  
(Multiple coatings, 1 to 4) 
 

0.5 % wt Na2S2O4, 
90 ºC, 30 min 

Electrical 
conductivity, 
antistatic material 

[43] 

RGO/PES fabrics Impedance modulus: 105 Ω (1 RGO coating), 19450 Ω (2 RGO 
coatings), 2157 Ω (3 RGO coatings), 667 Ω (4 RGO coatings), >1010 Ω 
(PES) 

GO coating: Dip coating (3 g·L-1 GO, 30 min).  
(Multiple coatings, 1 to 4) 

0.5 % wt. 
Na2S2O4, 90 ºC, 
30 min 

Electrical 
conductivity, 
antistatic material 

[44] 

RGO-
BSA/plasma 
treated PES 
fabrics 

Impedance modulus: 73 Ω (RGO-BSA/PES plasma treated), 4.6·105 Ω 
(RGO/PES-plasma + chemical reduction) 2.1·107 Ω (RGO/PES), >1011 Ω 
(RGO/PES-plasma) >1011 Ω (PES) 

BSA coating: Dip coating (0.5 % wt BSA, pH 7, 15 min). 
Washing to remove BSA excess 
GO coating: Dip coating (3 g·L-1 GO, 30 min).  
(Multiple coatings, 1 to 10) 

50 mM Na2S2O4, 
90 ºC, 30 min 

Electrical 
conductivity, 
antistatic material 

[45] 

RGO/(PES, nylon, 
cotton, Kevlar 
mats; wool and 
glass fibers) 

Electrical conductivity: 13 S·cm-1 (RGO/Kevlar), 4.5 S·cm-1 
(RGO/nylon), 0.6 S·cm-1 (RGO/glass), 0.1 S·cm-1 (RGO/PES), 40 
mS·cm-1 (RGO/cotton), 10 mS·cm-1 (RGO/wool) 

GO coating: Dip coating (0.37 g·L-1 GO, 80 ºC) HI or hydrazine 
solution, 30 min 

Electrical 
conductivity 

[46] 

FLG-
graphite/PET 
fabric 

Sheet resistance: 77.9 MΩ/square (2.5 % wt. FLG), 3.6 kΩ/square (7.4 
% wt. FLG), 2.5 kΩ/square (10.7 % wt. FLG) 

FLG coating: Dip coating (graphite + heptane + water, 
sonication, 1 h) (Kinetic trapping method) 

- Electrical 
conductivity 

[47] 



RGO/cotton fabric Resistance: 4.1·1015 Ω (cotton), 8.45·1010 Ω (cotton/GO), 2.01·107 
(cotton/RGO) 

GO coating: Dip coating (4 g·L-1 GO, ultrasonication, 30 
min) 

27 % wt. 
hydrazine 
solution, 100 ºC, 
24 h, reflux 

Electrical 
conductivity 

[48] 

RGO-BSA/PES 
fibers 
RGO-BSA/cotton 
fibers 

Conductivity: 10-1 S·m-1  BSA coating: Dip coating 
GO coating: Dip coating 
 

HI solution (2 mL 
HI + 5 mL acetic 
acid), 40 ºC, 1-20 
min 

Electrical 
conductivity 

[49] 

RGO-PU/PET 
fabric (nonwoven) 

Surface conductivity: 2.0·10-5 S/square (RGO-PU/PET fabric, 0.08 % 
wt. RGO in solution), 2.2·10-14 S/square (PET fabrics) 

PU coating: Dip coating (0.1 % wt. PU in DMF, 60 s) 
RGO coating: Dip coating (0.001-15 % wt. RGO, 10 min, 
0ºC, ultrasonication) 

1 mL/L hydrazine 
hydrate 

Electrical 
conductivity, heat 
generation 

[50] 

Thiofenol/AgNPs-
RGO/PU 
(electrospun PU 
fiber mats) 

Surface resistivity: 3.5·102 Ω/square (RGO/PU), 10 Ω/square 
(Thiofenol/AgNPs-RGO/PU) 

GO coating: Dip coating (500 mg·L-1 GO, 2 h) 
AgNPs coating: Dip coating (0.5-3 % wt. AgNPs, 30 min) 
(diameter AgNPs ~20 nm) 

HI, 100 ºC, 10 s Electrical 
conductivity, 
thermal stability 

[51] 

G-resin/cotton 
fabrics 
MWCNTs-
resin/cotton 
fabrics 
BN-resin/cotton 
fabrics 

Thermal conductivity: 0.047 W/mK (cotton), 0.078 W/mK (11.1 % G), 
0.10 W/mK (20.0 % G), 0.14. W/mK (33.3 % G), 0.29 W/mK (50.0 % G) 

GO coating: Dip coating (0.5, 1, 2, 4 % G in 4 % wt. 
Hercosett XC resin and 1.2 % wt. 3-(N, N-
dimethylmyristylammonio)-propanesulfonate) (11.1, 20.0, 
33.3, 50 % final content of G filler in the coatings, 
respectively) 
Drying and curing: 120 ºC, 10 min 

- Thermal 
conductivity 

[52] 

Intumescent flame 
retardant-
polyacrylamide 
GO/cotton fabrics 

Temperature of decomposition: 324 º C (cotton), 351 ºC (intumescent 
flame-retardant polyacrylamide-GO/cotton, 20 coatings) 
Time to ingnition: 41 s (cotton), 64 s ((intumescent flame-retardant 
polyacrylamide-GO/cotton, 20 coatings) 
Peak heat release rate: 77 kW/m2 (cotton), 153 kW/m2 (intumescent 
flame-retardant polyacrylamide-GO/cotton, 20 coatings) 

Polyacrylamide coating: Dip coating (0.1 g·L-1 
intumescent flame retardant-polyacrylamide, 10 s) 
GO coating: Dip coating (0.02 g·L-1 GO, 30 s) 
(Multiple coatings) 

 Flame retardant [53] 

TiO2-PVP-
GO/cotton fabric 

Photocatalytic activity (degradation MB 10 mg·L-1, UV irradiation): 
87.14 %  
Antibacterial activity: 99 % (E. coli and S. aureus) 
Antifungal activity: 99 % (C. albicans) 

GO coating: Dip coating (0.42 % wt. GO, 45 min, 70 ºC) 
PVP coating: Dip coating (2 g·L-1 PVP, 10 min) 
TiO2 coating: Dip coating (1.53 mL TiCl3, 100 mL H2O, 95 
ºC, 60 min) 
Curing: 130 ºC, 3 min 

1.53 mL TiCl3 
/100 mL H2O 

Photocatalytic 
activity, 
antibacterial, 
antifungal 

[54] 

GO/cotton fabrics Photocatalytic activity: Measured in 1.5 mg·L-1 resazurin dye under UV 
light irradiation. 
Antibacterial activity: 46 %, 62 %, 74 % (gram-negative bacteria for 6 
h, 12 h and 24 h, respectively). 68 %, 86 %, 100 % (gram-positive 
bacteria for 6 h, 12 h and 24 h, respectively) 

GO coating: Dip coating (0.25 g in water, stirring 300 rpm, 
24 h) 
 

- Antibacterial, 
photocatalyic fabrics 

[55] 

TiO2-PVP-
GO/cotton fabric 

Electrical resitance: 4·106 Ω/square (0.02 % wt. GO, 0.8 mL TiCl3), 
3.6·10-3 Ω/square (0.5 % wt GO, 0.8 mL TiCl3) 
Photocatalytic activity (degradation MB 10 mg·L-1, UV irradiation): 
87.14 % (0.5 % wt. GO, 1.2 mL TiCl3) 
Antibacterial activity: 99.4 % (E. coli), 99.4 % (S. aureus) (0.5 % wt 
GO, 1.2 mL TiCl3) 
Antifungal activity: 99.2 % (C. albicans) (0.5 % wt GO, 1.2 mL TiCl3) 

GO coating: Dip coating (0.5 % wt. GO, 45 min, 70 ºC) 
PVP coating: Dip coating (2 g·L-1 PVP, 10 min) 
TiO2 coating: Dip coating (0.8/1.2 mL TiCl3 in 100 mL 
H2O, 95 ºC, 60 min) 
Curing: 130 ºC, 3 min 

0.8 mL/1.2 mL 
TiCl3 (15 % TiCl3 
in 10 % HCl) 

Electrical 
conductivity, 
photocatalytic 
activity, 
antibacterial, 
antifungal 

[56] 



TiO2-RGO-
BSA/plasma 
treated PES 
fabrics 

Impedance modulus: 2102 Ω (1 RGO-BSA/PES plasma treated), 112 Ω 
(4 RGO-BSA/PES-plasma treated), >1011 Ω (PES) 
Charge transfer resistance: 727.3 Ω (1RGO-BSA/PES plasma treated), 
197.3 Ω (4RGO-BSA/PES-plasma treated) 
Photocatalytic activity (degradation Rhodamine B 10 mg·L-1, UV 
irradiation): 70.4 % (1 RGO coating), 77.9 % (4 RGO coatings) 

BSA coating: Dip coating (0.5 % wt. BSA, pH 7, 10 min. 
Washing to remove BSA excess) 
GO coating: Dip coating (3 g·L-1 GO, 60 min) 
(Multiple coatings, 1 to 4) 
TiO2 coating: Dip coating (5 g·L-1 TiO2, 2 min, padding 2 
bar. Drying 100 ºC). 

50 mM Na2S2O4, 
90 ºC, 30 min 

Electrical 
conductivity, 
photocatalytic 
activity 

[57] 

RGO-BSA/cotton 
fabric 

Surface resistance: 40 Ω/square (RGO-BSA/cotton), 510 Ω/square 
(RGO/cotton) 
Photocatalytic activity (degradation 10 mg·L-1 MB, 100 min 
irradiation): 27 % (RGO/cotton), 45 % (RGO-BSA/cotton)  

BSA coating: Dip coating (0.15 g·L-1 BSA, 5 min), 30 min 
drying 60º C, 3 washings.  
GO coating: Dip coating (0.1 % wt. GO, 30 min, 80 ºC) 
(Multiple coatings, 1 to 10) 

40 mM hydrazine, 
100 ºC, 30 min  

Electrical 
conductivity, 
photocatalytic 
activity 

[58] 

RGO/nylon fabric Electrical conductivity: 4.5 S·cm-1 (RGO/nylon) 6·10−12 S·cm-1 (nylon) GO coating: Dip coating (0.37 g·L-1). 
 

HI solution, 
hydrazine solution 

Electrical 
conductivity, 
electrocardiogram 
monitoring 

[59] 

GNR/cotton fabric Resistance: 80 Ω GNR coating: Dip coating (0.25 g·L-1 GNR + 2.5 g·L-1 
SDS) 

- Electrical 
conductivity, strain 
sensor 

[60] 

RGO/silk fibers 
(capacitor) 
PtNPs-RGO/silk 
fibers (H2O2 
sensor) 
Enzyme-PtNPs-
RGO/silk fiber 
mat (glucose 
sensor) 

Conductivity: 57.9 S·m-1 (RGO/silk) 
Sheet resistivity: 90 Ω/square (RGO/silk) 
Capacitance: 17.75 mF·cm-2 (RGO/silk) 
H2O2 sensor: 0–2.5 mM (linear range), 0.2 μM (detection limit), 0.56 
mA·mM-1·cm-2 (sensitivity) 
Glucose sensor: 10 μM–10 mM (linear range), 1 μM (detection limit), 
150.8 μA·mM-1·cm-2 (sensitivity) 
 

GO coating: Dip coating (50 mg silk fibers, 10 mg GO, 
ultrasonication 15 min, filtering) 
PtNPs synthesis: Electrochemical synthesis (CV, 0→-0.6 
V, 50 mV·s-1, 10 mM H2PtCl6 + 0.1 M HCl solution) 
Glucose oxidase fixation: Dip coating (10 g·L-1 glucose 
oxidase + 30 g·L-1 BSA + 0.01 M PBS (pH 7.4). Exposure 
to glutaraldehyde (50 μL, 25 %, 35 ºC, 3 h) for cross-linking 
glucose oxidase to BSA 

10 g·L-1 ascorbic 
acid, 100 ºC, 2 h 

Sensor (H2O2, 
glucose) 
Capacitor 

[61] 

RGO-BSA/cotton 
yarns 
RGO-BSA/PES 
yarns 

Current sensitivity to 0.25 ppm NO2: -7 % (RGO/cotton), -6 % 
(RGO/PES) 
Current sensitivity to 1.25 ppm NO2: -12 % (RGO/cotton), -12 % 
(RGO/PES) 

BSA coating: Dip coating (0.5 % wt. BSA, 30 min. Drying 
1 h. Washing) 
GO coating: Dip coating (2 g·L-1 GO) 

HI (2 mL HI + 5 
mL acetic acid) 40 
ºC, 10 min 

NO2 gas sensor [62] 

G 
pellets/MWCNTs-
cotton fabric  

Surface electrical resistivity: 4.7 kΩ (3 % wt. G), 9.1 kΩ (1 % wt. G), 
12.8 kΩ (0.5 % wt. G), 13 kΩ (0 % wt. G) 
Relative change in resistance: 50 % (methanol exposure) 15 % (acetone 
exposure) 

GO coating: Screen printing (G pellets 0.5, 1, 3 % wt. + 
MWCNTs 3 % wt + aliphatic urethane acrylate + Esacure 
DP250 photoinitiator. Mechanical stirring 30 min. 
Application of the paste to the fabric. Curing 30 min with IR 
light) 

- Vapor sensor 
(acetone and 
methanol) 

[63] 

ERGO/carbon 
cloth 

Charge transfer resistance: 2.5 Ω (carbon cloth), 0.6 Ω (ERGO/carbon 
cloth) 
Plateau discharge rates: 15.8 μA·cm-2 (carbon cloth), 24.5 μA·cm-2 
(ERGO/carbon cloth) 
Discharge life: 230 h (carbon cloth), 330 h (ERGO/carbon cloth) 
Maximum power density: 19.5 mW·m-2 (carbon cloth), 52.5 mW·m-2 
(ERGO/carbon cloth) 
Electrical energy converted: 1.75 J (carbon cloth), 5.34 J 
(ERGO/carbon cloth) 

GO coating: Electrophoresis on carbon cloth (0.2 g·L-1 GO, 
0.3 mA·cm-2, 30 min. Reduction. 
Drying and UV sterilization, 3h  

Electrochemical 
reduction, -0.6 
mA·cm-2, 90 s 

Anode for microbial 
fuel cell 

[64] 



RGO/cotton fabric Surface resistance: 114 Ω/square (20 GO coatings), 55 Ω/square (20 GO 
coatings after acid treatment) 
Charge transfer resistance: 9.68 Ω·cm2 (RGO/cotton), 6.74 Ω·cm2 (Pt-
coated electrode) 
Conversion efficiency I3

-: 2.52 % (RGO/cotton), 7.20 % (Pt-coated 
electrode) 
Short circuit current: 9.08 mA·cm-2 (RGO/cotton),  14.88 mA·cm-2 (Pt-
coated electrode) 
Open circuit voltage: 0.64 V (RGO/cotton), 0.66 V (Pt-coated electrode) 
Fill factor: 42.97 (RGO/cotton), 71.18 (Pt-coated electrode) 

GO coating: Dip coating (1 % wt GO, 80 ºC, 30 min). 
(Multiple coatings, 1 to 20) 

0.1 M HI, 90 ºC, 
vapor reduction 

Cathode in dye 
sensitized solar cells 

[65] 

PPy/AQSA-
RGO/PES filter 
cloth 

Electrical conductivity: 0.7 kΩ·cm-1 (PPy/RGO), 2 kΩ·cm-1 (PPy) 
Degradation rate of MB: 59.2 % (PPy), 64.0 % (PPy/RGO), 74.6 % 
(PPy/RGO with Fe2+ in solution) (Conditions: -1 V (cathode), 0.2 mM 
Fe2+, 5 mg·L-1 MB, 0.05 M Na2S2O4 supporting electrolyte, after 120 min 
of reaction). 

RGO coating: Dip coating (0.02 g·L-1 RGO, 10 min) 
RGO/AQSA coating: Dip coating (0.02 g·L-1 RGO, 0.25 
mM AQSA, 10 min) 
Sprying: APS solution (20 mg·L-1, 50 mL) 
PPy coating: 0.5 mL, 90 ºC, 15 min (vapor phase 
polymerization) 

- Electrocatalytic 
membrane (acting as 
cathode) 

[66] 

RGO-
CNTs/carbon 
cloth-PET 

Turn-on field at 10 μA·cm-2: 0.26 V·μm-1 (RGO-CNTs), 0.49 V·μm-1 
(CNTs), 0.43 V·μm-1 (RGO) 
Current density at threshold field (0.55 V·μm-1): 1 mA·cm-2 (RGO-
CNTs), 60 μA·cm-2 (CNTs), 250 μA·cm-2 (RGO) 

RGO/CNTs coating: Electrophoretic deposition (1 mA·cm-

2, 10 min (CNTs); 2.5 mA·cm-2, 10 min (RGO)) 1 g·L-1 GO 
Reduction with 
hydrazine hydrate 
(35 % wt), 
ammonium 
hydroxide (25 % 
wt), 90ºC, 1 h 

Field emission 
device 

[67] 

RGO/carbon cloth 
+ Ar plasma 
treatment 

Turn-on field at 10 μA·cm-2: 0.78 V·μm-1 (0 s plasma), 0.59 V·μm-1 (40 
s plasma), 0.41 V·μm-1 (3 min plasma) 
Threshold field: 0.96 V·μm-1 (1 mA·cm-2) (40 s plasma), 0.81 V·μm-1 (1 
mA·cm-2) (3 min plasma). For 0s plasma treatment, emission dos not 
achieve the threshold value. 

RGO coating: Electrophoretic deposition (2.4 mA·cm-2, 5 
s- 10 min) 
Plasma etching: Ar gas, 0.2 mbar, 150 W, 50 s- 5 min 

Hydrazine hydrate 
(80%) (1:7 weight 
ratio with GO), 90 
ºC, 6 hours 

Field emission 
device 

[68] 

RGO/cotton 
fabrics 

Sheet resistance: 560 Ω/square  
Specific capacitance: 40 F·g-1 (5 mV·s-1, 0 V→1 V) 
Capacitance rentention: 90 % (1000 cycles at 0.85 A·g-1) 

GO coating: Dip coating (2 g·L-1 GO, 30 min) 
(20 coatings) 

0.5 M NaBH4, 12 
h 

Capacitor [69] 

PPy/GO/cotton 
fabrics 

Electrical conductivity: 0.9 S·cm-1 (PPy/cotton), 1.12 S·cm-1 
(PPy/GO/cotton) 
Capacitance (50 mV·s-1): 24.3 F·g-1 (PPy/cotton), 35.7 F·g-1 
(PPy/GO/Cotton) 

GO coating: Dip coating (5 g·L-1 GO, 30 min) 
PPy coating: Dip coating (2 mM pyrrole, 2 h (pyrrole 
adsorption), 0.08 M FeCl3 addition (oxidation, 4 h, 0-5 ºC, 
N2 gas flow) 

- Capacitor, electrical 
conductivity 

[70] 

PPy/RGO/cotton 
fabrics 

Electrical conductivity: 1.2 S·cm-1 (PPy/RGO/cotton) 
Capacitance: 336 F·g-1 (PPy/RGO/cotton), 234 F·g-1 (PPy/Cotton) 
Energy density: 21.1 W·h·kg-1 (at 0.6 mA·cm-2) 
Capacitance rentention: 64 % (PPy/RGO/cotton), 35 % (PPy/cotton) 
(500 cycles at 0.6 mA·cm-2) 

GO coating: Dip coating (2 g·L-1 GO, 30 min, 
ultrasonication). Reduction. 
PPy coating: Dip coating (1 M pyrrole, 30 min 
(adsorption), 0.5 M FeCl3 adding (oxidation, 2 h, ice bath)) 

Thermal 
reduction, 250 ºC, 
2h , N2 
atmosphere 

Supercapacitor, 
electrical 
conductivity 

[71] 

MnO2-GNS/PES 
fabrics 

Sheet resistance: 700 Ω/square (35 cycles of deposition)  
Specific capacitance: 315 F·g-1 (2 mV·s-1, 0 V→0.85 V) 
Maximum power density: 110 kW·kg-1 
Energy density: 12.5 W·h·kg-1 
Capacitance rentention: 95 % (5000 cycles at 2.2 A·g-1) 

GNS coating: Dip coating (~3 g·L-1 GNS + 0.5 g·L-1 
sodium cholate). MnO2 coating: Electrodeposition (20 mM 
Mn(NO3)2 + 100 mM NaNO3, 60 min, 0.1 mA·cm-2) 
(35 coatings) 

- Supercapacitor [72] 



PEDOT/PSS-
MnO2-GNS/PES 
fabrics 
SWCNTs-MnO2-
GNS/PES fabrics 

Sheet resitance: 700 Ω/square 
Specific capacitance: 380 F·g-1 (0.1 mA·cm-2) (PEDOT/PSS-MnO2-
GNS/PES fabrics) 
Capacitance rentention after: 93 % (MnO2-GNS/PES fabrics), 95 % 
(PEDOT/PSS-MnO2-GNS/PES fabrics), 96 % (SWCNTs-MnO2-
GNS/PES fabrics) (3000 cycles at 1 mA·cm-2) 

GNS coating: Dip coating (0.15 g·L-1 + sodium cholate 
surfactant) 
(Multiple coatings) 
MnO2 coating: Electrochemical deposition (20 mM 
Mn(NO3)2 + 100 mM NaNO3, deposition under constant 
current of 100 μA·cm-2, 90 min) 
SWCNTs coating: Dip coating (0.2 g·L-1 SWCNTs) 
PEDOT/PSS coating: dip and dry (2-3 times) 

- Supercapacitor [73] 

Pani-GO/CNT 
fibers 
TiO2-RGO/CNT 
fibers 

Capacitance (three electrode configuration, 1 M H2SO4, 20 mV·s-1): 
229.5 F·cm-3 (Pani-GO/CNT fibers), 186 F·cm-3 (Pani-RGO/CNT fibers) 
Photocurrent (at 100 mW·cm-2 irradiation): 132 μA·cm-2 (TiO2-
RGO/CNT fibers), 25 μA·cm-2 (TiO2/CNT fibers) 

GO coating: Dip coating (0.05 g·L-1 GO + 1-2 % DMF, 2h, 
2 times) 
Pani coating: Electrosynthesis (0.05 M aniline + 1 M 
H2SO4, 0.75 V, 10 min) 
TiO2 coating: Metal-organic CVD (10 min) 

Hydrazine (95 ºC, 
1 h, hydrazine:GO 
wt. ratio (7:10) 

Capacitor, 
photoelectrode 

[74] 

(G-
V2O5/MWCNTs)1

0 /PES fabrics 
coated with 
Ni/Cu/Ni/Au 

Specific capacitance (1 mV·s-1): 2590 F·g-1 (G-V2O5/MWCNTs), 1600 
F·g-1 (V2O5/MWCNTs) (3 nm V2O5), 510 F·g-1 (V2O5/MWCNTs) (20 nm 
V2O5)  
Power density: 800 W·kg-1 
Energy density: 96 W·h·kg-1 
Capacitance rentention: > 97 % (5000 cycles, 20 mV·s-1) 

G coating: G transfer method 
V2O5/MWCNTs coating: spray coating 
(Multiple coatings, 1 to 10) 

- Supercapacitor [75] 

RGO/polyamide 
66 nanofibers 
(electrospun) 

Volume resistance: 330 Ω·cm (d GO <200 nm), 1.1 Ω·cm (d GO 200-
450 nm), 14.3 Ω·cm (d GO >450 nm), 1670 Ω·cm (d GO 200-450 nm, 
microfiber fabric, 1 coating), 0.5 Ω·cm (d GO 200-450 nm, microfiber 
fabric, 5 coatings) 
Specific capacitance: 280 F·g-1 (d GO 200-450 nm), 65.4 F·g-1 (d GO 
<200 nm), 95.3 F·g-1 (d GO >450 nm), 130 F·g-1 (d GO 200-450 nm, 
micrometer fabric, 5 GO coatings) (10 mV·s-1) 
Specific energy: 10 W·h·kg-1 (at 0.5 A·g-1) (d GO 200-450 nm) 
Specific power: 1500 W·kg-1 (3 A·g-1) (d GO 200-450 nm) 

GO coating: Dip coating (0.5 g·L-1 GO (diameter GO < 200 
nm, 200-450 nm or >450 nm), ultrasonication 2 h) 

Hydrazine vapor, 
120 ºC. Oven 200 
ºC, 2h (to remove 
C-N bonding) 

Supercapacitor [76] 

RGO/cotton 
fabrics 

Sheet resistance: 910 Ω/square (RGO/cotton), 1.09·108 Ω/square 
(GO/cotton) 
Capacitance: 87.53 mF·cm-2 (2 mV·s-1), 81.4 F·g-1 (2 mV·s-1) 
Capacitance rentention: 89.82 % after 1000 cycles (2 mV·s-1), 90.5 % 
after 100 bending cycles (2 mV·s-1) 
Volumetric capacitance: 5.53 F·cm-3 (62.5 mA·cm-3) 
Energy density: 767.36 μW·h·cm-2 (31.26 mW·cm-3) 

GO coating: Dip coating (4 g·L-1 GO) 
(5 coatings) 

Thermal reduction 
and carbonization 
of cotton fabrics, 
300 ºC, 2 h, Ar 
atmosphere 

Supercapacitor [77] 

RGO/cotton 
fabrics 

Electrical resistance: 225 Ω·cm-1 

Mass loading: 1.08 mg·cm-2  
Specific capacitance: 326.8 F·g-1 (10 mV·s-1) 
Power density: 1.5 kW·kg-1 (3 A·g-1) 
Energy density: 7.13 W·h·kg-1 (3 A·g-1) 
Capacitance rentention: 93.8 % (after 1500 cycles) 

GO coating: brush coating (2 g·L-1 GO) 
(50 coatings) 

Thermal reduction 
and carbonization 
of cotton fabrics, 
300 ºC, 2h, Ar 
atmosphere 

Supercapacitor [78] 

RGO/carbon 
fabrics 

Mass loading: 0.6-0.8 mg·cm-2  
Specific capacitance: 414 F·g-1 (5 mV·s-1) 
Device capacitance: 70.4 F·g-1 (5 mV·s-1) 
Energy density: 5.8 W·h·kg-1 (27.7 kW·kg-1) 

GO coating: Dip coating  
(5 coatings) 

Thermal 
reduction, 160 ºC, 
2 h, Ar 
atmosphere 

Supercapacitor [79] 



Capacitance rentention: 93 % (after 1000 cycles) 
RGO/nylon lycra 
fabrics 
PPy-RGO/nylon 
lycra fabrics 

Surface resistivity: 240 Ω/square (25 cycles) 
RGO loading (25 cycles): 2.3 mg·cm-2 
Capacitance: 12.3 F·g-1 (RGO), 15.5 F·g-1 (RGO, 50 % strain), 114 F·g-1 
(PPy-RGO), 125 F·g-1 (PPy-RGO, 50 % strain) (5 mV·s-1) 
PPy loading: 2.8 mg·cm-2  
Capacitance rentention: 76 % (RGO), 89 % (RGO, 50 % strain), 74 % 
(PPy/RGO), 79 % (PPy/RGO, 50 % strain) (after 2000 cycles, 0.1 A·g-1) 
Energy density: 2.53 W·h·kg-1 (5 mV·s-1) 

Plasma treatment of the fabric: Previous to GO coating 
GO coating: Dip coating (3 g·L-1 GO, 30 min) 
(25 coatings) 
PPy coating: Dip coating (Pyrrole + Na2NDS (30 min, ice 
bath). Addition of APS (oxidation). Reaction time: 2h) 
 

0.1 M L-ascorbic 
acid, 95 ºC, 60 
min 

Supercapacitor [80] 

MWCNTs-PPy-
RGO/PES non-
woven fabrics 

Conductivity: 0.4 S·cm-1 (RGO/PES) 
Capacitance: 305 F·g-1 (MWCNTs-PPy-RGO/PES) 290 F·g-1 (PPy-
RGO/PES), 118 F·g-1  (RGO/PES), 72.6 F·g-1 (PPy/PES), 222.9 F·g-1 
(MWCNTs/PES) (5 mV·s-1) 
Capacitance rentention: 83.4 % (PPy-RGO/PES), 94.5 % (MWCNTs-
PPy-RGO/PES) (after 1000 cycles, 80 mV·s-1) 

GO coating: Dip coating (GO 5 g·L-1 + hydroxylamine 
hydrochloride 0.125 M, 5 min) 
PPy coating: Dip coating (FeCl3·6H2O solution, 5 min). 
Exposure to pyrrole vapor (polymerization during 5 h). 
MWCNTs: Dip coating (2 g·L-1 MWCNTs, 5 min) 

Hydroxylamine 
hydrochloride, 
130 ºC, 30 min 

Supercapacitor [81] 

ERGO/carbon 
fibers 

Specific capacitance: 10.3 μF·cm-2, 22.6 μF·cm-1 (10 mV·s-1) (single 
fiber), 307 mF·cm-2, 13.5 mF·cm-1 (250 fibers) (0.05 mA·cm-1) 
Capacitance rentention: 85 % (250 fibers) after 5000 cycles (0.05 
mA·cm-1) 
Energy density: 1.09 μW·h·cm-1 (27.2 μW·cm-1) 
Power densitiy: 748.6 μW·cm-1 

Carbon fiber treatment: H2SO4/HNO3 (3:1 in volume, 10 
h). 
GO coating: Electrochemical deposition (3 g·L-1 GO, 0.1 M 
LiClO4, -1.2 V, 10 min) 

Electrochemical 
reduction 

Supercapacitor [82] 

PPy-MnO2-
RGO/stainless 
steel yarns 

Three-electrode configuration (1 M Na2SO4) 
Specific capacitance: 36.6 mF·cm-1, 486 mF·cm-2  
Two-electrode configuration (solid state PVA-H3PO4 electrolyte) 
Specific capacitance: 31 mF·cm-1, 411 mF·cm-2 
Energy density: 0.0092 mW·h·cm-2, 1.1 mW·h·cm-3 
Capacitance rentention: 92 % (after 4950 cycles, 80 mA·cm-3) 

RGO coating: Deep coating (6 g·L-1 GO (6 mL) + 1 M 
NaOH (20 μL) + yarns. Autoclave, 180 ºC, 12 h) 
MnO2 coating: Electrochemical deposition (0.02 M 
Mn(NO3)2 + 0.01 M NaNO3. 0.92 V, 45 min) 
PPy coating: Electrochemical deposition (0.1 M p-
toluenesulfonic acid + 0.3 M sodium toluenesulfate + 0.5% 
pyrrole monomer (v:v) at 0 ºC. 0.8 V, 1.5 min) 

NaOH Supercapacitor [83] 

ERGO-Ni/cotton 
yarns 

Electrical resistance: 1.6 Ω·cm-1 

Two electrode configuration (1 M Na2SO4) 
Capacitance: 292.3 F·cm-3, 311 F·g-1 (87.9 mA·cm-3) 
Two electrode configuration (PVA/LiCl gel, solid state) 
Capacitance: 0.11 F·cm-1 
Maximum energy density: 6.1 mW·h·cm-3 
Maximum power density: 1400 mW·cm-3  
Capacitance rentention: 82 % (after 10000 cycles, 439.6 mA·cm-3) 

Ni coating: Electroless deposition (60 min) 
GO coating: Electrochemical deposition (3 g·L-1 GO + 0.1 
M LiClO4, -1.2 V, 10 min) 

Electrochemical 
reduction + 
hydrazine vapor 
reduction, 60 ºC, 3 
h 

Supercapacitor [84] 

RGO-
Pani/nitrogen-
doped carbon 
fiber cloth 

Three-electrode configuration (1 M H2SO4) 
Specific capacitance: 1145 F·g-1 (RGO-Pani/N-doped carbon cloth), 
1050 F·g-1 (Pani/N-doped carbon cloth), 940 F·g-1 (GO-Pani/N-doped 
carbon cloth), 520 F·g-1 (Pani) 
Maximum energy density: 25.4 W·h·kg-1 (at 52.5 kW·kg-1) 
Maximum power density: 92.2 kW·kg-1 (at 20.3 W·h·kg-1) 
Capacitance rentention: 94 % (after 5000 cycles) 

Nitrogen doping carbon fiber cloth: Cold plasma 
treatment N2/O2, 2 min 
Pani coating: Dip coating (aniline + 1 M H2SO4, 10 min) 
APS oxidation (24 h, ratio aniline:APS (4:1)) 
GO coating: Dip coating (0.5 g·L-1, 15 min) 

HI reduction Supercapacitor [85] 



2.3. Graphene woven fabrics 

Another method that has been applied for the synthesis of G-based fabrics is the 

production of graphene woven fabrics [86-101]. This method consists in growing G 

coating on a metallic mesh (normally Cu) by CVD (Fig. 13-a) [86]. During the growth, 

Cu wires interconnect due to the high temperature employed in CVD growth (~1000 ºC). 

Thereafter, the Cu mesh is removed by FeCl3/HCl treatment and the G structure collapses 

(upper and lower part of the wires) to produce graphene micron-ribbons. The resulting 

structure has the form of the Cu mesh employed (Fig. 13-b). Fig. 13-c shows a photograph 

of the resulting GFWs structure. Fig. 13-d shows a TEM micrograph and the diffraction 

pattern which shows a hexagonal symmetry. Two sets of the hexagonal spots can be 

observed with a rotation of 26º between them. This is due that the two sides of the GWF 

that collapsed are analyzed at the same time. The GWF structure obtained is 

polycrystalline with several G layers and surface wrinkles are present. The sheet 

resistance of GWFs can be tuned by varying the coverage of G simply varying the 

parameters of the supporting Cu mesh (width of wires and distance between wires). 

 

Fig. 13. Fabrication of GWFs by CVD using copper wire meshes as substrates. (a) 

Schematic of steps for GWF preparation. (b) Macroscopic optical images (left), top-view 



SEM images (right) of copper meshes before (top) and after (bottom) graphene growth. 

Scale bars, 200 mm. (c) Optical images of GWF films floating on water and deposited on 

glass and PET. Scale bars, 5 mm. (d) TEM image of a GMR and selected area electron 

diffraction pattern from the region marked with a yellow box. Scale bars, 50 nm (left), 5 

(1/nm) (right). Reprinted from [86] with permission from Nature. 

 

2.4. Applications of graphene woven fabrics 

2.4.1. Sensors for strain, torsion, movement, acoustic, pulse, etc. monitoring 

GWFs have been widely employed for the production of strain sensors due to the high 

sensitivity of its structure to deformation. Li et al. [86] coated the obtained GWFs with 

PDMS to produce composites that were employed as strain sensors. The sensors were 

more sensitive when the strain was applied in the direction of the fibers (x direction) 

rather than when a combined stress was applied (x and y directions) (Fig. 14-a). The strain 

range was limited to 5 % to avoid irreversible tensile strain that provoked breakage of the 

G structure. Under this limit, the sensor was reversible (Fig. 14-b). Fig. 14-c shows the 

application of the sensor for monitoring the movement of a finger. 

 



Fig. 14. GWF/polymer hybrid films. (a) Resistance-strain curves for GWF/PDMS hybrids 

along different directions. Inset shows the schematics and corresponding optical images. 

Scale bars, 300 mm. (b) Electromechanical properties of the GWF/PDMS films. 

Resistance change relative to the original value (ΔR/R0) recorded for a number of cycles 

at tensile strains of 2% and 5%. (c) Stretchable sensor fixed to a finger, and relative 

changes in resistance for finger motion. Insets show corresponding photographs. 

Reprinted from [86] with permission from Nature. 

 

In [87], the same authors performed a similar study and explained the mechanism 

underlying for such good performance of GWFs as strain sensors. Under strain, cracks in 

the structure begin to form at weak points. The crack length and crack density propagate 

with the increasing strain (Fig. 15). After removing the external force, the cracks 

disappear and the fractured GWF recovers to its initial position since it is stuck to PDMS 

substrate. These cracks are responsible for the change in resistance of the sensor. In this 

paper, very high gauge factors for GWF/PDMS were reported (106 for strain > 7 %). The 

sensors were also employed for compression, torsion and shearing strain sensing, 

although the response was much lower. Wang et al. [88] applied bio-inspired Voronoi 

polycrystalline micromechanics model and experimental validations to explain such high 

gauge factors. It was demonstrated that the successive cracking, the “fish-scale” like 

network structure of GWFs (overlapping of G crystals on the grain boundary), and the 

superlubricity between overlapped G flakes play a crucial paper. 

Lee et al. [89] produced piezoresistors by assembling GWF on PDMS where Ti-Au 

electrodes had been previously deposited (round and band type) to produce touch sensors. 



The method employed for producing GWFs has also been employed for producting G 

fibers by Wang et al. [90]. The G fibers were coated with PVA to produce protected 

conducting fibers that were mounted on PDMS film to construct a strain sensor.  

 

Fig. 15. A series of optical images showing the formation of crack and their evolution in 

GWF under different strain, and corresponding schematics. Reprinted from [87] with 

permission from Nature. 

  

Yang et al. [91] employed GWFs as strain sensors for human monitoring (human skin 

movement, pulse, jugular venous pressure, body movement), acoustic signal acquisition, 

and spatially resolved monitoring of external stress distribution. Fig. 16 shows some of 

the applications and the experiments performed. Thicker G coatings produced GWFs with 

a larger stretching range (> 20 %), however sensitivity was sacrificed (lower gauge 

factor). The higher stretching limit would allow to employ these sensors for monitoring 

activities such as walking, running and grasping. Wang et al. [92] applied the GWFs for 

similar body motion monitoring (clenching, phonation, expression change, blink, breath, 

and pulse). Authors pointed out applications such as lie detectors based on muscle 

deformation amplitude, or evaluation of the degree of fatigue by measuring the frequency 

and amplitude of the blinks, etc. 

Torsion sensors have also been reported by Yang et al. [93] by wrapping GWF/PDMS 

around a PDMS rod and applying torsion to the polymeric rod. Differences were observed 



when pre-stretching to the PDMS film was applied or not. When applying a 20 % pre-

stretching, the sensor could withstand torsions of up to 800 rad·m-1 because waving of 

the GWFs was avoided and their tolerance to high strains was improved. Lower pre-

tensions favoured the sensitivity due to a large gauge factor. The sensor could 

discriminate among forward and backward torsion by the change in resistance and the 

response it was not dependent on the frequency of the applied load. 

 

Figure 16. (a) Conformal adhesion of a GWF-based strain sensor on the human skin. (b) 

Measured relative resistances of pulse (insets: photograph, typical pulse waveform, 

measured profile) and (c) jugular venous pressure measured in real time (insets: 

photograph, a typical jugular venous pulse, measured profile). (d) Resistance response at 

the successive stages of making a fist. (e) Recognition of a sound signal using the GWF 

strain sensor. The insets show the sensor on an earphone and the sound wave profile. 

Reprinted from [91] with permission from American Chemical Society. 

 

Wang et al. [94] employed GWFs for sound signal acquisition and recognition. The 

sensor, which was very sensitive to tiny strains and vibrations, was located on a human 



throat and it was employed to register the muscular movement/vibration. It was used for 

collecting and recognizing the 26 English letters, some typical Chinese characters, 

phrases and animal sounds. The waveforms were specific of each letter and showed 

similar key features when performed by different people. The same signal wave forms 

were obtained without vocalization, which could help patients with problems in 

vocalization. In addition, authors pointed out the employment of these sensors in 

earthquake monitoring, animal communication and robotic voice development. The 

sensor was also employed to perform measurements with a loudspeaker, where the sensor 

was located on the loudspeaker membrane. The audio frequency and the collected signal 

had a matching synchronization.  

 

2.4.2. Solar cells 

GWFs have been also employed in solar cells where GWF functioned as the transparent 

electrode in Schottky junction with Si to allow enhanced photovoltaic conversion [86]. In 

addition GWF allowed electron/hole separation and hole transport, while electrons were 

driven into silicon, which allowed the production of electricity. Different additives were 

employed to improve solar energy conversion (HNO3, PEDOT and HBr/Br2 redox 

mediator). Kang et al. [95] deposited PtNPs on GWFs for producing hybrid Shottky 

junctions and photoelectrochemical solar cells. The deposition of Pt increased the work 

function of GWFs and reduced the sheet resistance. The optical pathlength was also 

increased by PtNPs absorption of light and more carriers were photogenerated. However, 

an excessive amount of PtNPs was detrimental since it hindered light transmittance. Fig. 

17 shows a scheme of the solar cell configuration (Fig. 17-a), as well as the synthesis of 

PtNPs (Fig. 17-b) and the final cell configuration with PtNPs (Fig. 17-c). The presence 

of PtNPs improved the open circuit voltage and the short circuit current density. 



Photoexcited charge carriers generated in n-Si were separated by the built-in field, 

electrons were directed to the n-Si region and holes moved towards GWF. The solid 

electrolyte, acted as a redox mediator and holes were captured by NO3
- that diffused to 

the GWF and was reduced again to NO3
-. This redox reaction forms a 

photoelectrochemical channel for hole carriers. Both effects were synergistic and 

contributed to enhance the power conversion efficiency. In addition, the solid electrolyte 

acted as an anti-reflection layer and as a chemical carrier.  

 

Fig. 17. Schematic diagrams of (a) pristine GWF/n-Si solar cell, (b) in situ galvanic 

synthesis of Pt-GWF, and (c) Pt-GWF/n-Si solar cell. Reprinted from [95] with 

permission from The Royal Society of Chemistry. 

  

2.4.3. Electromagnetic shielding 

Han et al. [96] employed the GWFs for obtaining IR transparent and conducting materials 

that were applied for electromagnetic shielding. The influence of square aperture and wire 

width of the mesh on the optical transmittance, electromagnetic shielding and 

conductivity was evaluated. An increase in the square aperture caused an increase of the 

transmittance, however conductivity and electromagnetic shielding followed the inverse 

trend. The thickness of the ribbons was around 6 nm, and 12 nm in the intersections. The 

dominant shielding mechanism of GWFs was microwave absorption to electromagnetic 

radiation in the frequency range of 9.2–15 GHz. The high surface area of GWFs caused 

multiple reflections of the radiation in the GWFs that enhanced its absorption. 

 



2.4.4. Supercapacitative materials 

GWFs have been also employed as flexible supercapacitative materials, alone [97,98] or 

combined with pseudocapacitative materials such as MnO2 [98] or Pani [99,100]. 

Zang et al. [97] obtained GWFs and deposited them on different substrates (polishing 

cloth, polyethylene, PET and filter paper) and studied their capacitative behavior. 

Supercapacitors with very low thickness (< 1 mm) were mounted with PVA-H3PO4 as 

polymer gel electrolyte and the best results were obtained on polishing cloth. Deformation 

of the devices (fold, twist, knead, and curl) increased capacitance due to a better contact 

between the electrode and the gel electrolyte. Therefore, the supercapacitors could be 

shaped into different forms without loss in their capacitance. 

Li et al. [98] obtained GWFs composed of G layers and porous carbon on the core, hence 

integrating the conductivity of G and the porous characteristics of porous carbon. 

Depending on the synthesis conditions and cooling rate, the composition of the material 

could be adjusted. Thinner multilayer G films provided a larger specific surface area and 

voids for high-performance supercapacitor electrodes. Thicker deposits provided a better 

skeleton structure to be filled with other functional materials. The mean pore size of the 

material was in the 2-3 nm range, favouring the formation of an electrical double layer. 

N-doping enhanced the pseudocapacitative effect and improved the specific capacitance 

by a 150 %. Capacitance could be further increased depositing other materials such as 

MnO2 on the surface of the GWFs. 

Zang et al. [99] coated GWFs with Pani obtained by potentiostatic deposition and 

employed the Pani/GWFs composite as supercapacitor material. GWF acted as support 

material onto which Pani could be deposited and also as a current collector for capacitance 

measurements. In addition, GWFs also acted as a double layer capacitor and Pani acted 

as a pseudo-capacitor material. The presence of Pani improved greatly the capacitance of 



GWFs (from 2 mF·cm-2 to 23 mF·cm-2) (Fig. 18). The supercapacitor showed great 

stability after 2000 cycles with no appreciable loss of capacitance; what is more, bending 

and curling even improved the areal capacitance since a better contact between the 

polymer gel electrolyte and the electrode was favored. 

 

Fig. 18. Electrochemical performance of the GWF + PANI (15 min) film supercapacitor. 

(a) CV curves (60 mV·s−1), (b) galvanostatic charge–discharge curves (0.1 mA·cm−2), (c) 

areal capacitances (0.1 to 2 mA·cm−2) of GWF and GWF + PANI. (d) Areal capacitance 

versus electropolymerization time. (e) Cycling stability of the flexible GWF + PANI 

supercapacitor. (f ) Schematic diagram of the GWF electrodes. Reprinted from [99] with 

permission form The Royal Society of Chemistry. 

 



In [100] the same authors employed the same approach to produce supercapacitors and 

tested the static and dynamic performance under strain. The GWFs were assembled on 

pre-stretched polymer substrates in order to improve flexibility and enlarge the strain 

range of the supercapacitors. Till a 30 % strain, no change in the capacitance was 

observed. Pani was also electropolymerized on GWFs as explained previously in order to 

increase capacitance [99]. No change in the capacitance was neither observed till a 30 % 

strain. According to this, the maximum strain for the dynamic tests was restricted to 30 

%. The supercapacitors could withstand high rates of dynamic stretching (60 %/s, strain 

frequency 1 Hz). The GWFs increased the surface area and the robustness, being more 

suitable for dynamic stretching deformation.  

 

2.4.5. Mechanical properties 

GWFs also confer enhanced mechanical strength. Liu et al. [101] reinforced epoxy resin 

with GWF which provided exceptional electrical, mechanical and fracture toughness to 

the composite. The mechanical properties of epoxy resin were improved by the presence 

of GWF. When the force was applied at 45º respect the direction of the fibers, the 

composite had better mechanical properties than when it was applied at 0º. In the latter 

case, only the fibers that are parallel to the force play a role in mechanical resistance. On 

the other hand, at 45º, both the weave and weft of the GWF make a contribution towards 

the improvement of its mechanical properties.  

Zhang et al. [102] performed an interesting analysis of the mechanical properties and 

behavior of GWFs by computational modelling. Authors provided guidelines for the 

theoretical mechanical analysis of GWFs and concluded that the mechanical properties 

of GWFs can be adjusted by varying the weave density. 



Table 2. Work performed with graphene woven fabrics.  

Material composition Properties Method of synthesis Application Reference 
GWF/PDMS (sensor) 
GWF (solar cells) 

Surface resistivity: 500-2500 Ω/square (GWF), 200-1200 Ω/square (GWF + 
HNO3 treatment) 
Optical transparency: 50-90 % 
Linearity as strain sensor: strain < 5 % (reversible) 
Change of electrical resistance under strain: 25-fold (2 % strain), 230-fold (5 % 
strain) 
Efficiency, solar energy conversion: 2.5 % GWF, 3 % (GWF/Si), 3.6 % 
(GWF/PEDOT), 3.8 % (GWF/Si-HBr-Br2), 6.1 % (GWF/Si-HNO3) 

CVD synthesis on Cu mesh followed 
by Cu etching 

GWF/polymer composites as strain sensors 
GWF/semiconductor in solar cells 

[86] 

GWF/PDMS  
 

Change of electrical resistance under strain: 1-fold (0.5 % strain), 5-10-fold (2 
% strain), 103-104-fold (8 % strain).  
Gauge factor: 103 (2-6 % strain), 106 (> 7 % strain) 
Linearity as strain sensor: strain < 10 % (reversible) 
Stability: > 100 cycles 

CVD synthesis on Cu mesh followed 
by Cu etching 

GWF/polymer composites as strain sensors  [87] 

GWF/Ti-Au-PDMS  Sheet resistance: 1840 Ω/square 
Transmittance: 92.4 % (550 nm) 
Linearity as strain sensor: 3.025 % (warp), 0.727 % (weft) (round electrodes) 
Change of electrical resistance under strain: 60 % on average 

CVD synthesis on Cu mesh followed 
by Cu etching 

GWF/polymer composites as strain sensors [89] 

G fibers/PVA 
G fibers/PVA-PDMS 

Conductivity: 9.6·103 S·m-1 (for 10 % wt PVA) 
Tensile strength: 590 MPa (16 % elongation) 
Limit of strain: 7.1 % (to maintain conductivity) 
Gauge factor: 5.02 (1-6.3 % strain) 
Stability: 200 cycles, bending radius 5.5 mm. 200 cycles, elongation 6 %. 

CVD synthesis on Cu wires followed 
by Cu etching 
PVA coating: 1, 3, 5, 10 % PVA 
solutions. Drying: 3 h, room 
temperature 

Strain sensor [90] 

GWF/PDMS 
 

Change of electrical resistance under strain: 1-2-fold (1 % strain), 5-10-fold (2 
% strain), 103-104-fold (8 % strain) 
Gauge factor: 500 (2 % strain), 10000 (> 8 % strain) 
Stability: 24 % decrease of initial response after applying 2 % strain for 1000 
cycles. 20 % strain can be achieved by adjusting growth parameters or 40 % by 
changing growth and adopting oblique direction stretching 

CVD synthesis on Cu mesh followed 
by Cu etching 

Sensor for human motion detection, sound 
signal acquisition, spatially resolved 
monitoring of external stress distribution 

[91] 

GWF/PDMS-medical 
tape  

Sheet resistance: 400–500 Ω/square 
Change of electrical resistance under strain: 10-fold (2 % strain), 104-fold (8 % 
strain). 
Reversibility: < 30 % strain 

CVD synthesis on Cu mesh followed 
by Cu etching 

Sensor for human motion detection: 
clenching, phonation, expression change, 
blink, breath, and pulse 

[92] 

GWF/PDMS Detection limit: 0.3 rad·m-1 (0 % pre-stretching of PDMS film) 
Ratio of tolerance limit: 1000 (100 rad·m-1) 
Limit: 800 rad·m-1 (20 % pre-stretching of PDMS film) 
Stability: 1000 cycles (0-100 rad·m-1) (10 % pre-strain, 45 º winding angle) 

CVD synthesis on Cu mesh followed 
by Cu etching 

Torsion sensor [93] 

GWF/PDMS-tape Change of electrical resistance for letters registration: > 4 % CVD synthesis on Cu mesh followed 
by Cu etching 

Acoustic sensor [94] 

PtNPs/GWF/n-Si Efficiency, solar energy conversion: 3-5 % (GWF/n-Si), 7.51 % (GWFs/n-Si + 
solid electrolyte), 7.94 % (PtNPs/GWF/n-Si), 10.02 % (PtNPs/GWF/n-Si + solid 
electrolyte) 

CVD synthesis on Cu mesh followed 
by Cu etching 

Solar cells [95] 



PtNPs synthesis: H2PtCl6 10 mM, 
irradiation 82 mW·cm-2, 3-15 min. 
Solid electrolyte: PVA/HNO3 

GWF Electrical conductivity: 66.7-127 S·cm-1 
Electromagnetic shielding effectiveness: 12.86 dB (10 GHz) 
Lowest IR Transmittance: 70.85 % (4500 nm) (120 mesh) 
Highest IR transmittance: 87.85 % (2500-6500 nm) (40 mesh) 

CVD synthesis on Cu mesh followed 
by Cu etching 

Electromagnetic shielding [96] 

GWF/polishing cloth 
GWF/polyethylene 
GWF/PET 
GWF/filter paper 

Areal capacitance (at 60 mV·s-1): 9 mF·cm-2 (GWF/polishing cloth), 3 mF·cm-2 

(GWF/filter paper), 2 mF·cm-2 (GWF/polyethylene), 1 mF·cm-2 (GWF/PET) 

Specific capacitance: 267 F·g-1 (GWF/polishing cloth) 
Stability: 100 % after 1000 cycles of charge/discharge (GWF/polishing cloth, 
GWF/filter paper, GWF/PET) 

CVD synthesis on Cu mesh followed 
by Cu etching 
 

Supercapacitor [97] 

GWF/porous carbon 
core 
GWF/porous carbon 
core N-doped 
MnO2-GWF/porous 
carbon core N-doped  

Sheet resitance: 10 Ω/square 
Specific surface area: 688 m2·g-1 
Total pore volume: 435 m3·g-1 
Areal capacitance: 44 mF·cm-2 
Specific capacitance: 173 F·g-1 (N-doped), 225 F·g-1 (N-doped/MnO2) 
Stability: 95 % after 1000 cycles of charge/discharge at 20 A·g-1 

CVD synthesis on Ni mesh followed 
by Ni etching 

Supercapacitor [98] 

Pani/GWF Areal capacitance (0.1 mA·cm-2): 23 mF·cm-2  (Pani-GWF), 2 mF·cm-2 (GWF) 

Specific capacitance (0.1 mA·cm-2): 771 F·g-1  (Pani-GWF), 66.7 F·g-1 (GWF) 

Highest energy density: 15 mW·h·m−2 (0.33 mW·cm-2, Pani-GWF), 1.4 
mW·h·m−2 (0.03 mW·cm-2, GWF) 
Highest power density: 1 mW·cm-2 (2.6 mW·h·m−2, Pani-GWF), 0.3 mW·cm-2 
(0.8 mW·h·m−2, GWF) 
Stability: 100 % after 2000 cycles of charge/discharge 

CVD synthesis on Cu mesh followed 
by Cu etching 
Pani coating: 0.5 M aniline + 0.1 M 
HCl, potentiostatic synthesis at +0.8 
V, 15 min 

Supercapacitor [99] 

Pani-GWF/PDMS Maximum static strain: 30 % 
Maximum dynamic stretching rate: 60 %/s 
Maximum specific capacitance (60 mV·s-1): 8 mF·cm-2 (20 % pre-stretching, 
Pani-GWF/PDMS), 17  μF·cm-2 (no pre-stretching, GWF/PDMS), 26 μF·cm-2 (20 
% pre-stretching, GWF/PDMS) 
Stability: 100 % after 1000 cycles of charge/discharge 

CVD synthesis on Cu mesh followed 
by Cu etching 
Pani coating: 0.5 M aniline + 0.1 M 
HCl, potentiostatic synthesis at +0.8 
V, 15 min 

Supercapacitor [100] 

GWF/epoxy 
composite 

Electrical conductivity: 2.9 S·cm-1 (GWFs), 0.15 S·cm-1 (GWF/epoxy) (0.19 % 
wt. G), 10-12 S·cm-1 (epoxy) 
Fracture toughness: 1.67 MPa·m1/2 (application force at 0º in the direction of the 
fibers) and 1.78 MPa·m1/2 (45º direction fibers) (0.62 % wt. G) 

CVD synthesis on Ni mesh followed 
by Ni etching 
Epoxy application: 80 ºC, 0.5 h. 120 
ºC, 2h 

Composite materials with conductivity and 
enhanced mechanical properties 

[101] 



3. Conclusions and perspectives 

Textile fabrics present different advantages when compared with sheet materials, such as 

its high surface area, flexibility, mechanical properties, etc. that make them attractive 

substrates onto which deposit functional materials. On the other hand, graphene (G) has 

emerged as a revolutionary material in the field of materials science and physics due to 

its extraordinary properties. G materials provide a conductive platform that can be 

integrated into textiles by means of chemical deposition, by producing graphene woven 

fabrics (GWFs) or by integrating conductive fibers of G in the fabrics. A lot of work has 

been performed with G-based fibers and there are several reviews that deal with this topic 

[21-24]. For this reason, this subject has not been included in the present review. The 

present review is focused on the chemical deposition of G materials on fabrics/yarns and 

the synthesis of GWFs and their applications.  

The chemical method is simple and can be scaled up by means of traditional techniques 

employed in textile industry such as soaking, drying, reducing with chemical compounds, 

etc. Graphene oxide (GO) is employed as the main G source since it is cheap and it can 

be produced in great quantitities and for the moment is the only G derivative that could 

meet the great requirements of G for textile industry if this technology were to be 

established. GO is simply adsorbed on the surface of the fabrics by means of chemical 

interactions (electrostatic, hydrogen bonds, π-π interactions, etc.). GO is an insulating 

material, however, its conductivity is partially restored by means of chemical reduction, 

thermal reduction, electrochemical or UV reduction to produce reduced graphene oxide 

(RGO). However, the conductivity obtained with this procedure is lower than in the case 

of GWFs since RGO retains some degree of oxidation (functional groups) after reduction. 

The applications for these type of fabrics (composed only of G or other with other 

functional materials) can be: UV protection, conducting fabrics, antistatic fabrics, IR 



emission, hydrophobicity, sensors for electrocardiogram acquisition, heat generation, 

thermal conduction, photocatalytic activity, electrocatalytic activity, antibacterial, 

antifungal, gas and liquid sensors, anode for microbial fuel cells, cathode for solar cells, 

field emission devices, capacitative materials for energy storage, etc. 

With the GWFs, higher conductivity is obtained, however the synthesis route consists on 

chemical vapor deposition on a Cu mesh (most widely metal employed as substrate), the 

subsequent removal of the copper mesh by chemical dissolution and the transfer of the 

remaining G mesh to a substrate to support it. The GWFs are composed of several G 

layers with polycrystalline nature. Due to the high conductivity obtained, this method 

could be employed for applications where high conductivity is needed, being sensors one 

of the main uses of these types of textile structures. The high sensitivity of these fabrics 

as strain sensors, as demonstrated by their very high gauge factors, opens the door to new 

applications such as voice recognition, movement sensors, breath and pulse sensors, etc. 

Energy storage is another area of investigation where these fabrics are being applied for 

producing flexible energy storage devices. 

Regarding future developments, more effort should be devoted to increasing the adhesion 

of G/GO/RGO coatings. In the case of GO, given the negative charges of GO due to the 

presence of oxygen containing functional groups, cationization of the surface of the 

fabrics should be accomplished. This has been mainly attained by means of chemical 

compounds (already under investigation, being bovine serum albumin coatings the most 

employed). The application of other methods such as nitrogen plasma modification to 

create positive charges has not been studied and could be a possibility. 

The application of semiconducting nanoparticles on G fabrics should be studied in more 

depth, since mainly TiO2 nanoparticles have been applied [54,56,57,74]. With the 

functionalization by other semiconductors, G fabrics could be employed as photocatalytic 



materials or could be integrated in solar cells to increase the energy conversion efficiency 

[61,87,95]. Given its organic nature, the modification with organic dyes can be easily 

achieved through π-π interactions or hydrophobic interactions [103], and can be used as 

an approach to increase the bandwith energy absorbance of G materials, which mainly 

absorb radiation in the UV-region, to visible regions where dyes absorb [104]. This 

approach would also led to an increase in the energy conversion efficiency in solar cells. 

Another area of research not covered by bibliography up to date is the employment of 

modified G materials such as nitrogen-doped G [105-107], metallic doped G [108] that 

have been applied for the fields of sensors, catalysis, etc. The application of other 2-D 

materials such as transition metal dichalcogenides should also be subject of future study 

due to its interesting properties [109-112].  

Other field pointed out in bibliography is the production of bionic materials integrating 

nanomaterials (such as G or carbon nanotubes) on natural fibers (for example produced 

by spiders) [113].  
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