Issue 30, 2016

Expanding the aqueous-based redox-facilitated self-polymerization chemistry of catecholamines to 5,6-dihydroxy-1H-benzimidazole and its 2-substituted derivatives

Abstract

Aqueous-base redox-facilitated self-polymerization can be performed with 5,6-dihydroxy-1H-benzimidazole (DHBI) to generate polymeric material that is analogous to poly(dopamine) (PDA), proving the possibility to expand the catecholamine-exclusive chemistry to N-heterocyclic catechol derivatives. DHBI underwent similar reaction pathways as dopamine to self-polymerize into the lightly cross-linked, π-conjugated poly(5,6-dihydroxy-1H-benzimidazole) (PDHBI). However, it was observed that the polymerization of DHBI proceeded faster than dopamine, and can be further enhanced under UV-stimulation, similar to dopamine polymerization. When coated on various substrates, the PDHBI coatings were capable of promoting surface wettability similar to PDA, but exhibited lower thermal stability due to a reduced cross-link density. Copolymerization compatibility between DHBI and dopamine was demonstrated, and it was possible to enhance the thermal stability of PDHBI by incorporating dopamine as a comonomer/cross-linker. Despite the high level of similarity between the two polymers, PDHBI possesses the imidazole moieties as unique features. Because of the versatile chemistry of o-benzenediamine employed for the monomer synthesis, DHBI-based monomers with specific functionality at the 2-carbon position of the imidazole ring can be prepared by choosing a desirable carboxylic acid. Two 2-substituted derivatives of DHBI were synthesized to demonstrate the ability to intrinsically modify the properties of PDHBI-based polymeric materials in terms of solubility, structure, and thermal stability.

Graphical abstract: Expanding the aqueous-based redox-facilitated self-polymerization chemistry of catecholamines to 5,6-dihydroxy-1H-benzimidazole and its 2-substituted derivatives

Supplementary files

Article information

Article type
Paper
Submitted
01 Dec 2015
Accepted
29 Feb 2016
First published
01 Mar 2016

RSC Adv., 2016,6, 25203-25214

Expanding the aqueous-based redox-facilitated self-polymerization chemistry of catecholamines to 5,6-dihydroxy-1H-benzimidazole and its 2-substituted derivatives

K. W. Fan, M. B. Peterson, P. Ellersdorfer and A. M. Granville, RSC Adv., 2016, 6, 25203 DOI: 10.1039/C5RA25590B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements