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First principles calculations of the vibrational, thermodynamic and mechanical properties

of the Ni-Ti-Sn Heusler and half-Heusler compounds have been performed. First, we have

calculated the Raman and infrared spectra of NiTiSn, providing benchmark theoretical data

directly useful for the assignments of its experimental spectra and clarifying the debate

reported in the literature on the assignment of its modes. Then, we have discussed the

significant vibrational density-of-states of Ni2TiSn at low-frequencies. These states are at

the origin of (i) its smaller free energy, (ii) its higher entropy, and (iii) its lower Debye

temperature, with respect to NiTiSn. Finally, we have reported the mechanical properties

of the two compounds. In particular, we have found that the half-Heusler compound has the

largest stiffness. Paradoxically, its bulk modulus is also the smallest. This unusual behavior

has been related to the Ni-vacancies that weaken the structure under isostatic compression.

Both compounds show a ductile behavior.

I. INTRODUCTION

The so-called Heusler and half-Heusler compounds have attracted intensive work during the last

years. These compounds are a class of ternary intermetallics associating three elements in the fol-

lowing stoichiometric proportions 1:1:1 (Half-Heusler) or 2:1:1 (full-Heusler). They are represented

by the general formula: XYZ and X2YZ, where X and Y are transition elements, and Z is a s or

p-element. From the structural point of view, Heusler (resp. half-Heusler) compounds generally

crystallise in the Fm3̄m (resp. F4̄3m) space group with Cu2MnAl (resp. MgAgAs) as prototype 1

(see Fig. 1).

New properties and potential fields of application constantly emerge2 in these materials: topo-

logical insulators and spintronics are recent examples. Their properties can be easily predicted by

the valence electron concentration (VEC)3 and their extremely flexible electronic structure offers

a lot of possibilities for tailoring these materials for interesting physical applications2(a detailed

analysis of the density of states has been done in a separate study4). Concerning more specifi-

cally the thermoelectric properties which we are interested in, it has been demonstrated that a
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value of eighteen for the valence electron concentration leads to potentially good materials5. Since

good thermoelectric materials are typically heavily doped semiconductors (such as degenerated

semiconductors), the classes of materials which are presently under investigation include mainly

half-Heusler compounds. Half-Heusler compounds, like MNiSn (M = Ti, Zr, Hf), are n-type semi-

conductors with a narrow bandgap (Eg= 0.1–0.5 eV), a high Seebeck coefficient (≈ -200µV/K)

and a low electrical resistivity (≈ 10−4 Ωm). Unfortunately at this time, a relatively high thermal

conductivity is known to be around 10 W/mK at 300 K2,6. Recently, Wee et al.7 have estimated the

thermal conductivity of NiTiSn from a semi-analytic model and have confirmed the experimental

findings. A drastic decrease of the thermal conductivity associated to good electronic transport

properties is therefore mandatory if this material is to be used in thermoelectric applications8.

An important contribution to the thermal conductivity is the lattice contribution which is

directly connected to the vibrational properties of the compound. In this context, we report, in

this paper, a complete theoretical study of the lattice dynamics of Ni2TiSn and NiTiSn, as well as

of their thermodynamic and mechanical properties. Our aim is to provide benchmark theoretical

data, directly useful for further studies on materials belonging to the Heusler and half-Heusler

classes. Surprisingly, no comparison between these two compounds has been proposed so far.

Indeed the few studies reported in the literature are devoted to investigate the phonon modes of

NiTiSn7,9,10, whereas those of Ni2TiSn remain presently unexplored to our knowledge, even at

the zone-center. Thus, we have studied the correlation between the zone-center phonons and the

crystal structures of Ni2TiSn and NiTiSn. For the latter, the calculations of its Raman and infrared

spectra allowed us to clarify the debate reported in the literature on the assignment of its phonon

modes. Then, within the quasi-harmonic approximation, we have studied the thermodynamic

properties of Ni2TiSn and NiTiSn, and we bring new insights into the phonon modes at the origin

of their differences. Finally, their mechanical properties are investigated as well. We show that the

response of a given material depends on the nature of the stress, which is not only interesting from

a fundamental point of view but also has some consequences when the materials are to be used in

practical applications.

II. COMPUTATIONAL DETAILS

First-principles calculations of Ni2TiSn (metallic compound) and NiTiSn (semiconducting com-

pound) were performed within the density functional theory (DFT) framework as implemented in

the ABINIT package11. The exchange-correlation energy functional was evaluated using the gen-
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eralized gradient approximation (GGA) parametrized by Perdew, Burke and Ernzerhof (PBE)12

or the local density approximation (LDA) parametrized by Perdew and Wang13. The all-electron

potentials were replaced by norm-conserving pseudopotentials generated according to the Troullier-

Martins scheme14. Ni(3d8, 4s2), Ti(3d2, 4s2), and Sn(5s2, 5p2)-electrons were considered as valence

states. The electronic wave functions were expanded in plane-waves up to a kinetic energy cutoff of

65 Ha and integrals over the Brillouin zone were approximated by sums over a 8×8×8 mesh of spe-

cial k-points according to the Monkhorst-Pack scheme15. A Fermi-Dirac scheme with a smearing

width equal to 0.01 Ha was used for the metallic occupation of Ni2TiSn.

Dynamical matrix, dielectric constants, Born effective charges and elastic tensors were com-

puted within a variational approach to density functional perturbation theory16. Phonon disper-

sion curves were interpolated according to the scheme described by Gonze et al.17. In this scheme,

the dipole-dipole interactions are subtracted from the dynamical matrices before Fourier transfor-

mation, so that only the short-range part is handled in real space. A 4 × 4 × 4 q-points grid in

the irreducible Brillouin zone was employed for the calculation of the vibrational band structure

and the phonon density-of-states (DOS), whereas a denser 120 × 120 × 120 q-points grid was used

for the evaluation of the integrals associated to the thermodynamical properties. The intensity

of the NiTiSn Raman lines18–20 was obtained at the LDA level21 and within a nonlinear response

formalism taking advantage of the 2n+1 theorem.

Structural relaxations were performed until the maximum stresses were less than 1×10−4 GPa.

Our relaxed LDA lattice parameters (a =5.91 Å for Ni2TiSn and a =5.72 Å for NiTiSn) under-

estimate the experimental ones of about -3% (aexp =6.09 Å for Ni2TiSn22 and aexp =5.92 Å for

NiTiSn23), whereas GGA (a =6.21 Å for Ni2TiSn and a =6.00 Å for NiTiSn) overcorrects the

LDA predictions leading to lattice parameters about +2% larger. These trends are usual in DFT.

Our calculated electronic band gap of NiTiSn at the GGA level (EGGAg =0.49 eV) is strongly

overestimated with respect to the experimental value (Eexpg ≈0.12 eV) reported by Aliev et al.24 .

This unusual behaviour is not related to a convergence problem of our calculations, but is rather

a consequence of the existence of structural defects and/or impurities in NiTiSn crystals that are

not considered in our calculations. Our overestimation of the experimental band gap is consistent

with previous first-principles calculations of the electronic structure of NiTiSn23,25 using the GGA

exchange–correlation.
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III. RESULTS AND DISCUSSION

A. Zone-center optical phonon modes

At the zone-center, optical phonon modes of Ni2TiSn can be classified, according to the irre-

ducible representations of the Oh point group, into: Γopt = T2g ⊕ 2T1u. These modes are triply

degenerated and they are either infrared (T1u) or Raman (T2g) active. The Raman mode is cal-

culated at 122 cm−1 and it is assigned to antisymmetric motions of Ni-atoms (see Fig. 2). The

frequencies of the two infrared modes are calculated at 181 and 237 cm−1. The first mode involves

symmetric motions of Ni-atoms counterbalanced by motions of Sn-atoms, whereas the second mode

is only dominated by motions of Ti-atoms (Fig. 2). However these frequencies cannot be compared

to experiment or previous calculations because Raman or infrared spectra of Ni2TiSn are presently

unavailable in the literature. No further investigation of its zone-center phonon modes, like the cal-

culation of infrared and Raman intensities, can be performed within our formalism (Berry phase)

due to the metallic character of this compound21.

In contrast to Ni2TiSn, the NiTiSn structure is represented by four interpenetrating cubic FCC

sublatices, one of which being occupied by Ni-vacancies (see Fig. 1). This structure is therefore

noncentrosymmetric and belongs to the Td point group. In this case, the previous T2g mode is

no longer possible, and the compatibility relations between the Oh and Td groups lead to: T1u →

T2. Thus, the irreducible representation of the zone-center optical phonons of NiTiSn is reduced

to: Γopt = 2T2, where each of these two triply degenerate modes can be both infrared and Raman

active. In the literature, phonon assignments of NiTiSn were performed by Raman and infrared

spectroscopies using a filiation procedure between three compounds: MeNiSn, with Me = Ti,

Zr, Hf9,10. Accordingly, the frequency of the lowest longitudinal optical (LO) phonon mode is

not yet unambiguously identified and some controversies remain about the assignment of the two

transverse optical (TO) modes and the remaining LO mode. Thus, to have a reliable assignment of

the NiTiSn modes, we performed calculations at LDA and GGA levels to estimate the dependence

of the phonon frequencies on the standard exchange–correlation (XC) functionals. These results

are listed in Table I with the experimental data and a previous first-principles calculation reported

in the literature7. We observe that most of our frequencies are systematically downshifted with

respect to the calculation from Wee et al.7, but the two sets of results are however consistent.

We attribute these frequency shifts to the different equilibrium structures obtained using different

convergence parameters and pseudopotentials26. We observe that the experimental TO modes are
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reasonably well predicted by the different XC-functional classes. The experimental frequencies

are bounded between those predicted by LDA and GGA with relative errors smaller than 8%. A

slightly better agreement with the experimental frequencies is however obtained at the GGA level.

The TO1 mode involves motions of the three kinds of atoms, and we assign it to a TiNiSn scissoring

(see Fig. 2). This assignment is consistent with the Ti-Ni-Sn motions reported by Popovic et al.9

and Wee et al.7. We assign the TO2 mode to a TiNiTi out-of-phase wagging where Sn-atoms are

not involved (see Fig. 2). This assignment is in agreement with Wee et al.7, but in disagreement

with Popovic et al.9 who reported opposite motions of Ti and Sn-atoms.

Frequencies of the calculated LO-modes are also reported in Table I with the experimental

values obtained from the fit of the infrared reflectivity spectrum. Their prediction is expected to

be less accurate than for the TO-modes due to typical LDA/GGA inaccuracies. Indeed, the LO-

TO splitting depends on the knowledge of the electronic dielectric tensor and on the Born effective

charges observed to be dependent on the used functional26. However, it is interesting to note that

both LDA and GGA lead to the same frequency of the LO2 mode (284 cm−1), which is close to

the experimental values reported in the 285–292 cm−1 range. Reflectivity spectrum is calculated

at normal incidence according to the methodology from Ref.27 and is displayed in Fig. 3. Since

our approach neglects the damping of the phonon modes, the calculated reflectivities saturate to

unity. We find a relative good agreement between our calculation and the experimental spectra

reported in the literature9,10 (not shown here). We clearly observe that the LO-TO splitting of

the TO1-mode is negligible (around 1 cm−1), whereas it reaches 36 cm−1 for the TO2-mode at the

GGA level. These observations are in agreement with experimental data9,10 and the calculation

from Wee et al.7. Concerning now the assignment of the LO-modes to specific motions, we can

convincingly assign the LO1 and TO1 modes to the same atomic motions due to their negligible

splitting (see Fig. 2). However, in the case of the LO2-mode, its eigendisplacement vectors do

not necessarily correspond to the ones of its corresponding TO2-mode due to long-range Coulomb

interactions. The possible mixing between the LO2 mode and the TO modes has been calculated

according to the overlap matrix19:

〈uLO2|M |uTOn〉 =
∑
α,κ

uLO2(κα)MκuTOn(κα), (1)

where the sum runs over the space directions α and the atoms κ, Mκ is the mass of the κth atom,

and uLO2 (resp. uTOn, where n =1, 2 ) are the eigendisplacement vectors of the LO2-mode (resp.

the two TO modes). We found that this mixing is, however, negligible as the LO2-mode overlaps

at 99% with the TO2 mode. Thus, as in the case of the LO1-mode, we conclude that the LO2 and



6

the TO2 modes have the same assignment (see Fig. 2).

Fig. 4 compares the calculated and experimental Raman spectra of NiTiSn. Frequency posi-

tions and relative intensity of the experimental lines are well reproduced by our calculation. The

experimental spectrum is dominated by three strong lines centered at 220, 255 and 285 cm−1. The

two first lines are assigned to TO-modes by Popovic et al.9 and Mestres et al.10, while only the

last authors have observed the line at 285 cm−1 assigned to a LO-mode. Our calculations unam-

biguously support the identification of the TO2 and LO2 lines. In the case of the LO1 line, our

calculations show that its intrinsic scattering efficiency should be similar to that of the TO1 line

(see Table II). Thus, the LO1 line remains experimentally unobserved because it overlaps with the

TO1 line due to their very close frequencies (∆ω ≈ 1 cm−1). This overlap can be avoided for the

calculated spectrum since we use a constant linewidth to represent the Raman lines (see inset of

Fig. 4, left). The first experimental line at 220 cm−1 should be therefore identified as a juxtaposi-

tion of the TO1 and LO1 modes. Five weak lines, not predicted by the group theory (and so not

obtained in our calculations), can also be observed in the experimental spectrum around 180, 230,

275, 320 and 340 cm−1. They could therefore be associated to structural defects, inhomogeneities,

or impurities in the NiTiSn compound.

To conclude this section, we analyzed the static dielectric permittivity, ε0, of NiTiSn. This

tensor can be decomposed as the sum of an electronic (ε∞) contribution and a contribution of each

individual phonon mode (εphm ) such as16,27:

ε0αβ = ε∞αβ +
∑
m

εphαβ,m = ε∞αβ +
4π

Ω0

∑
m

Sαβ(m)

ω2
m

, (2)

where the sum runs over all modes m, Ω0 is the unit cell volume and S is the infrared oscillator

strength. Results of this decomposition are reported in Table III. We observe that ε0 is mainly

governed by the electronic contribution (≈ 75%). The latter is significantly underestimated at the

LDA and GGA levels (ε∞calc ≈21) with respect to the experimental value (ε∞exp =36.5) reported by

Popovic et al.9 and obtained from the fit of the infrared reflectivity spectrum. This underestimation

is consistent with our overestimation of the electronic band gap of NiTiSn, and this problem

has been discussed in Sec. II. The phonon contribution to ε0 is mainly dominated by the TO2

mode (93%) which combines the largest mode effective charge and oscillator strength. This mode

therefore dominates the infrared absorption spectrum of NiTiSn, as observed in Fig. 3.
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B. Phonon density-of-states and thermodynamic properties

In this section, only our results obtained at the GGA level will be discussed, as they are in better

agreement than the LDA ones with the experimental data (lattice parameters and zone-center

TO phonons). Phonon dispersion curves give a criterion for the crystal stability and indicate,

through the prediction of soft modes, the possible phase transitions. Indeed, if all phonon square

frequencies [ω2(m,q)] are positive, the crystal is locally stable. However, if it appears that some

[ω2(m,q)] are imaginary (soft modes), then the system is unstable. The phonon dispersion curves

of Ni2TiSn and NiTiSn, are displayed in Fig. 5 along several high-symmetry directions. First,

no soft mode is predicted by our calculations in the whole Brillouin zone at ambient pressure

and 0 K. This result supports the absence of a temperature-driven displacive phase transition for

both compounds, in agreement with experiments. Then, the acoustic branches of Ni2TiSn and

NiTiSn show a significant dispersion. In the case of Ni2TiSn, they exhibit a noticeable mixing with

the first low-frequency optical modes in the whole Brillouin zone. So, this compound may have

interesting thermal expansion properties28. Surprisingly, only the thermal expansion of NiTiSn

has been investigated7. The contribution of each kind of atom to each branch is also displayed

in Fig. 5 using a color code. We observe that the dispersion curves of NiTiSn are dominated by

Sn-atoms below 155 cm−1 while both Ni and Ti-atoms are mainly involved above this frequency.

In Ni2TiSn, a clear identification of its atomic contributions is much more difficult due to the

significant dispersion of the branches below 200 cm−1. This dispersion leads to a quite continuous

profile in its vibrational density-of-states (VDOS) spectrum between 0 and 300 cm−1 (see Fig. 6).

In contrast, the optical phonon branches of NiTiSn are quite dispersionless within this frequency

range, leading to well-isolated peaks in its VDOS spectrum. Indeed, NiTiSn shows a more discrete

profile which can be decomposed into three frequency ranges: (i) a peak centered at 100 cm−1

with a shoulder at 125 cm−1, (ii) a phonon gap between 150 and 175 cm−1, and (iii) a complex

multipeak structure up to 300 cm−1. Finally, Ni2TiSn has a significant DOS at low frequencies

whereas a low density of modes is observed in NiTiSn up to the first peak around 100 cm−1. This

last observation suggests that the NiTiSn lattice should have the highest stiffness.

From these DOS, the phonon contributions to entropy, Helmholtz free energy, internal energy,

as well as the constant-volume specific heat can be derived according to the quasi-harmonic ap-

proximation29. Phonon contributions to the entropy of both compounds are displayed in Fig. 7.

NiTiSn is found to have the lowest entropy over the whole temperature range due to the higher

stiffness of its lattice. The zero-temperature value of the Helmholtz free energy and the internal
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energy do not vanish due to the zero-point motion. It can be calculated from the asymptotic

equation:

∆F0 = ∆E0 = 3nN

∫ ωL

0

h̄ω

2
g(ω)dω, (3)

where ωL is the largest phonon frequency, n is the number of atoms per unit cell, N is the number

of unit cells and g(ω) is the VDOS. The latter is normalized according to:
∫ ωL
0 g(ω)dω = 1. We

find ∆F0 = ∆E0 =11.02 kJ.mol−1 for Ni2TiSn and 9.98 kJ.mol−1 for NiTiSn. When increasing

the temperature, the variation of the internal energy shows that the overall profiles between both

compounds are similar: it increases with increasing temperature, the energy of Ni2TiSn being the

highest. In contrast, the variation of their free energy has an opposite trend. The Ni2TiSn free

energy is clearly the lowest above 150 K due to its higher entropy contribution. The constant-

volume specific heats (Cv) are displayed in Fig. 7 with the available experimental data reported

for NiTiSn30. For Ni2TiSn, only measurements of Cv below 25 K have been reported in the

literature to our knowledge24,31. First, we observe that our calculations reproduce with a very

good agreement the experimental specific heat of NiTiSn below room temperature. Above this

temperature, some discrepancies are expected as the anharmonic effects (like thermal expansion)

should be explicitly considered. At high temperatures, the specific heats approach the classical

Dulong and Petit asymptotic limit: Cv(T → ∞) =99.77 J.mol−1.K−1 for Ni2TiSn and Cv(T →

∞) =74.83 J.mol−1.K−1 for NiTiSn. The Debye temperature has also been calculated using a

linear fit of Cv with respect to T 3 at very low temperatures (T < 4 K). We expect that NiTiSn has

the highest Debye temperature since it is closely related to the stiffness or the melting temperature

of a material. Our GGA calculated Debye temperatures are consistent with this assumption, as

we found: θD = 360 K (resp. θD =332 K) for NiTiSn (resp. Ni2TiSn). These values are in fair

agreement with the experimental ones: θD = 417 K for NiTiSn32 and θD = 290±6 K for Ni2TiSn31.

We have not considered the Debye temperatures measured by Aliev et al.24 for this comparison

since Kuentzler et al.32 reported a possible error in their calculations.

C. Mechanical properties

The knowledge of bulk, shear and Young’s moduli and Poisson’s ratio of materials is desirable

for possible applications, since strong materials are preferred to weak ones. These mechanical

properties are usually derived from the elastic contants. Elastic constants can be described by a

fourth-rank tensor (C), relating the stress tensor (σ) to the strain tensor (η), via the generalized
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Hooke’s law:

Cαβ =
∂σα
∂ηβ

, (4)

where α, β =1,2,...,6 denote the Cartesian directions given in Voigt notation. This equation can

be splitted into two main contributions such as:

Cαβ =
∂σα
∂ηβ

∣∣∣∣∣
u

+
∑
κ

∂σα
∂uα(κ)

∂uα(κ)

∂ηβ
. (5)

The first term is the frozen (clamped) ion elastic tensor, whereas the second term includes contri-

butions from force-response internal stress and displacement-response internal strain. The second

term of Eq. 5 also accounts for the ionic relaxations in response to strain perturbations. The

addition of the two contributions is the relaxed-ion elastic tensor, C. In cubic space groups, these

tensors have only three independent elements: C11, C12 and C44. The effective elastic moduli of

polycrystalline aggregates are usually calculated by two approximations due to Voigt33 (V) and

Reuss34 (R) who respectively assume an uniform strain or stress throughout the polycrystal. Hill35

has shown that the Voigt and Reuss averages are limits and suggested that the actual effective

moduli can be approximated by the arithmetic mean of the two bounds, referred to as the Voigt-

Reuss-Hill (VRH) values36. The explicit expressions of the bulk (B) and shear (G) moduli as a

function of elastic constants for cubic systems can be found everywhere37. However for the sake of

clarity in the discussion that follows , we report them here:

BV RH =
1

2
(BV +BR), GV RH =

1

2
(GV +GR), (6)

where

BV,R =
1

3
(C11 + 2C12), GR =

5(C11 − C12)C44

4C44 + 3(C11 − C12)
, GV =

1

5
(C11 − C12 + 3C44). (7)

Elastic constants of Ni2TiSn and NiTiSn, calculated at the LDA and GGA levels, are listed

in Table IV with selected mechanical properties such as: bulk, shear and Young’s moduli, and

Poisson’s ratio. In a recent publication, Roy et al.38 have theoretically investigated the electro-

mechanical coupling coefficient of a large number of Heusler compounds. In particular, they report

the C44 elastic constant of NiTiSn (C44 =62 GPa) calculated using the same method of calculation

(linear response) and the same DFT code than ours. However, when comparing our results with

theirs, supposed to be obtained at the LDA level, we found a close match with our GGA results,

suggesting that their results have probably been obtained at the GGA level.

We observe that our LDA results are systematically larger than the GGA ones. Thus,

since the tendencies between the Heusler and half-Heusler compounds are the same, we will
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focus our discussion on the GGA results. Both compounds are mechanically stable because

their elastic constants satisfy the Born mechanical stability restrictions for cubic structures39:

C11 > |C12|, C44 > 0, C11 + 2C12 > 0. The relaxed-ion elastic constants (physical elastic constants)

are usually smaller than the clamped-ion ones, since the additional internal relaxation allows some

of the stress to be relieved. However, this trend is only observed for C44, both for Ni2TiSn and

NiTiSn. Accordingly, their bulk modulus is independent of any phonon contributions. Phonon con-

tributions to the shear and Young’s moduli are the most important in the case of the half-Heusler

compound (see Table IV).

In agreement with our analysis of the VDOS spectra reported in Sec.III.B, NiTiSn has the

highest Young’s and shear moduli, suggesting that this compound should be the stiffest. However,

we observe that its bulk modulus is also the smallest, which seems paradoxical. To explain this a

priori unusual behaviour, one has to focus on the crystal structure of both compounds. The NiTiSn

structure is characterized by four interpenetrating fcc lattices one of which being unoccupied. Its

Ti-Ni-Sn distances and its unit cell volume are smaller than the ones of Ni2TiSn. Thus, the

Ni2TiSn structure is expected to be the most flexible. Accordingly, Ni2TiSn has the smallest

Young’s modulus, as it describes tensile elasticity. For the same reasons, its shear modulus is also

the smallest. By contrast to Young’s modulus, the bulk modulus describes volumetric elasticity,

or the tendency of an object to deform in all directions when uniformly loaded in all directions.

It can be considered as an extension of Young’s modulus to three dimensions. Thus, we expect

that the Ni-vacancies weaken the NiTiSn structure when the isotropic pressure increases, leading

Ni2TiSn to have the largest bulk modulus.

Poisson’s ratios of the two compounds are in the range of the values obtained for steel (NiTiSn)

or magnesium (Ni2TiSn). Globally the Heusler compound is more incompressible than the half-

Heusler, as suggested by the value of their bulk modulus. Finally, brittle or ductile behavior

of both compounds has been estimated according to the value of the B/G ratio, as proposed

by Pugh40. If B/G > 1.75, a ductile behavior is predicted, otherwise the material behaves in

a brittle manner. We predict that both compounds are ductile. Although Hichour et al.41 have

reported, using the stress-strain method and DFT calculations at the LDA level, a brittle behaviour

for NiTiSn (B/G =1.68), our result is, however, consistent. Indeed, we cannot unambiguously

conclude the brittle or ductile behavior of NiTiSn using only the LDA results because the two sets

of calculations are very close to the limit fixed by Pugh considering the accuracy of the methods used

to compute the elastic constants (linear response or stress-strain method, choice of XC–functional

and pseudopotentials). Nevertheless, our GGA calculations clearly support the ductile behavior of



11

NiTiSn (B/G =2.03) and, as expected, we found that the metallic compound (Ni2TiSn) is more

ductile than the semiconducting one (NiTiSn). At the time being, the lack of experimental data

does not permit to conclude definitely on the mechanical properties of these compounds.

IV. CONCLUSIONS

We have performed a thorough comparison of the vibrational and mechanical properties of the

Heusler (Ni2TiSn) and half-Heusler compounds (NiTiSn) using density functional perturbation

theory. The calculation of the Raman and infrared spectra of NiTiSn allowed us to clarify the debate

reported in the literature on the assignment of its modes. Based on the calculation of the phonon

density-of-states, we have demonstrated that the significant states of Ni2TiSn at low frequencies

are at the origin of (i) its smaller free energy, (ii) its higher entropy, and (iii) its lower Debye

temperature, with respect to NiTiSn. We also expect that Ni2TiSn has a larger linear thermal

expansion than NiTiSn due to the more important mixing of its acoustic and optic branches. We

have also reported the mechanical properties of the two compounds. In agreement with the analysis

of the VDOS spectra, NiTiSn has the highest Young’s and shear moduli, supporting that it should

be the stiffest. Paradoxically, we found that its bulk modulus is also the smallest. We suggest that

this unusual behaviour is related to the ordered Ni-vacancies that weaken the structure of the half-

Heusler compound. Both for Ni2TiSn and NiTiSn, we have evidenced that phonons only contribute

to the C44 elastic constant, indicating that phonons affect their shear and Young’s moduli, but

do not contribute to their bulk modulus. In contradiction with recent LDA results41 we find that

both compounds show a ductile behavior, the largest being for the metallic one.

In this article, we have provided some benchmark theoretical results. Going further in the inter-

pretation would require better experimental characterization of Ni2TiSn and NiTiSn compounds.

We hope our work will motivate such experimental studies on these industrially important mate-

rials.
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Experiments Calculations

Raman Infrared GGA LDA

Ref.10 Ref.9 Ref.10 Ref.9 Present Ref.7 Present Ref.7

(80 K) (300 K) (80 K) (300 K) (0 K) (0 K) (0 K) (0 K)

TO1 220 222 - 222.8 205 219 230 236

TO2 255 254 266 257 248 248 269 260

LO1 - - - 223.2 206 220 231 237

LO2 285 - 292 287.5 284 281 284 293

TABLE I: Zone-center phonon frequencies (in cm−1) of NiTiSn.

ωm a ωm a

(cm−1) (Bohr−3/2) (cm−1) (Bohr−3/2)

TO1 230 0.0087 TO2 269 0.0207

LO1 232 0.0115 LO2 310 -0.0234

TABLE II: Raman susceptibility (a) of NiTiSn phonon modes (ωm) calculated using LDA.

GGA LDA

Sm Z∗m ε0 Sm Z∗m ε0

ε∞ 22.51 19.88

TO1 1.21 1.24 0.47 2.29 1.74 0.83

TO2 24.93 4.93 6.72 23.11 4.69 6.12

Total (Phonons) 7.19 6.95

Total 29.70 26.83

TABLE III: Phonon contributions to static dielectric constant (ε0) of NiTiSn. Mode oscillator strengths

(Sm, ×10−5 a.u.) and mode effective charges19 (Z∗m) are also reported. Note: 1 a.u. = 253.2638413 m3.s−2.
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Ni2TiSn NiTiSn

GGA LDA GGA LDA

Clamped Relaxed Clamped Relaxed Clamped Relaxed Clamped Relaxed

C11 172.28 172.28 218.34 218.34 196.41 196.41 273.50 273.50 (264.94)

C12 127.41 127.41 172.71 172.71 82.16 82.16 92.25 92.25 (89.24)

C44 75.27 75.07 98.24 95.39 77.69 60.61 100.90 83.29 (87.85)

BV,R = B 142.37 142.37 187.92 187.92 120.24 120.24 152.67 152.67 (147.81)

GV 54.14 54.02 68.07 66.36 69.46 59.22 96.79 86.22

GR 38.76 38.73 42.30 41.98 67.91 59.17 96.52 86.08

G 46.45 46.37 55.19 54.17 68.69 59.19 96.66 86.15 (87.84)

E 125.67 125.49 150.80 148.26 173.10 152.54 239.44 217.53 (219.96)

ν 0.35 0.35 0.37 0.37 0.26 0.29 0.24 0.26 (0.25)

B/G 3.07 3.07 3.41 3.47 1.75 2.03 1.58 1.77 (1.68)

TABLE IV: Calculated clamped-ion and relaxed-ion elastic constants (C) and related mechanical properties:

bulk (B), shear (G) and Young’s (E) moduli and Poisson’s (ν) ratio. All these quantities are given in GPa

except for B/G and Poisson ratio which are dimensionless. Calculated LDA values from Hichour et al.41

are in brackets. The subscripts V and R denote the Voigt and Reuss approximations.
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FIG. 1: Structure of NiTiSn and Ni2TiSn in which the open spheres are occupied by Ni atoms. Color of Ni,

Ti and Sn-atoms is cyan, gray and purple, respectively.
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FIG. 2: Normal modes of Ni2TiSn (top) and NiTiSn (bottom). Arrows are proportional to the amplitude

of the atomic motions. Color of Ni, Ti and Sn-atoms is cyan, gray and purple, respectively.



18

FIG. 3: Reflectivity (top) and absorption (bottom) infrared spectra of NiTiSn.
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FIG. 4: Calculated LDA Raman spectrum of NiTiSn using a Lorentzian line shape and a constant linewidth

fixed at 2 cm−1. Inset: (right) Experimental spectrum recorded by Mestres et al.10 at 80 K, (left) Calculated

LDA Raman spectrum in the 227–235 cm−1 range using a smaller linewidth fixed at 1 cm−1.
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FIG. 5: Phonon dispersion curves of Ni2TiSn and NiTiSn calculated at the GGA level. A color has been

assigned to each point based on the contribution of each kind of atom to the associated dynamical matrix

eigenvector: red for the Ni-atoms, green for the Ti-atoms, and blue for Sn-atoms.



21

FIG. 6: Calculated GGA phonon density-of-states of Ni2TiSn and NiTiSn.
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FIG. 7: GGA calculations of phonon contributions to entropy S, Helmholtz free energy ∆F , internal energy

∆E, and constant-volume specific heat Cv of NiTiSn (solid black line) and Ni2TiSn (dashed red line).

Experimental data30 (blue squares) of NiTiSn are also displayed for Cv.
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