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A new energy for the description of large deformations of lipid bilayers is formulated with mathematical rigor. This energy is
derived by considering the smectic A liquid crystalline nature of lipid bilayers and the coupling between the deformations of
the layers and their constituent lipid molecules. Analogies between smectic A liquid crystals, with an infinite number of layers,
and lipid bilayers, with a finite number of layers, are further discussed. The novelty of the energy density is demonstrated by
studying the large deformations of planar lipid bilayers induced by cylindrical inclusions. The results of this study are directly
compared with the results obtained using May’s theoretical framework [May, Eur. Biophys. J., 2000, 29, 17–28] in which
small deformations are assumed. As expected, the proposed energy density predicts larger distortions of the lipid molecules and
deformations of the lipid bilayers close to an inclusion.

1 Introduction

Lipid bilayers are currently being used for engineering nu-
merous bioinspired microsystems ranging from portable and
fast biosensors for detecting biological agents33,37 to biocom-
patible and biodegradable drug delivery carriers.6,57 Many of
these micro-systems work as proof of concept in laboratory
environments. Their application in real-world scenarios, how-
ever, remains to be demonstrated due to the poor stability
of lipid bilayers to mechanical disturbances.23 Current chal-
lenges encountered in experimental biomechanics (e.g., mea-
surement of physical quantities in the nanoscale range) pre-
vent an accurate characterization of the mechanical proper-
ties of lipid bilayers, which is needed to enhance their perfor-
mance. Therefore, the formulation of reliable mathematical
models is essential in making a big leap forward in the devel-
opment of the next generation of bio-inspired microsystems
that include lipid bilayers.

There has been extensive research on modeling the physical
properties of lipid bilayers by employing molecular dynam-
ics,29 coarse-grained models11,51 and continuum models.12,60

Molecular dynamics simulations are very powerful tools for
studying the microstructure of lipid bilayers, especially their
interactions with different molecules and proteins.20,68 Due to
current limitations in computing power, molecular dynamics
can only be used for simulating phenomena that occur at the
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nano-meter spatial scale and nano-second time scale.11,39 In
coarse-grained models, some fine details about the structure
of lipids are averaged out so that the simulations are computa-
tionally less expensive.38,52 Continuum models are, however,
preferred for simulating physical phenomena over long length
and time scales, which are relevant to many processes in cell
biology, experimental studies, and real-world applications in-
volving lipid bilayers.

One of the most successful continuum models for lipid bi-
layers is the spontaneous curvature model first formulated by
Canham15 and then refined by Helfrich.36 According to the
spontaneous curvature model, the free energy per unit area, w,
of lipid bilayers can be expressed in terms of the mean curva-
ture, H, and Gaussian curvature, K, as

w =
κ

2
(2H− s0)

2 +κK , (1)

where κ is the curvature or bending modulus, κ is the saddle-
splay or Gaussian curvature modulus, and s0 is the sponta-
neous curvature, which takes into account possible asymme-
tries between the two leaflets of the lipid bilayer. The mean
and Gaussian curvatures can be defined in terms of the princi-
pal radii of curvature, 1

R1
and 1

R2
, or, in a notation more famil-

iar in liquid crystals, in terms of the unit normal to the lipid
layers, a (Fig. 1(a)). It can be easily shown that43

H =
1
2

(
1

R1
+

1
R2

)
=

1
2

∇·a , (2)

K =
1

R1R2
= ∇·((∇·a)a)+∇·(a× (∇×a)) . (3)
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Fig. 1 (a) Curvature for a two-dimensional surface. R1 and R2
denote the radii of curvature and the vector a represents the normal
to the surface. (b-c) The short bold lines represent the molecules
while the planes represent the layer alignment of the smectic A
liquid crystals. (b) Undistorted smectic A liquid crystal alignment:
the director n coincides with the layer normal a. (c) Distorted
smectic A liquid crystal alignment: the director n decouples from
the layer normal a.

The spontaneous curvature model has been derived by Hel-
frich from the Frank energy density for liquid crystals in which
the normal to the layers, a, coincides with the director, n,
which defines the alignment of the molecules28,63 (Fig. 1(b)).
The relationships among the curvature moduli, κ and κ , and
the constants, k11, k22 and k24, in the Frank’s energy density28

are κ = k11d, and κ = −(k22 + k24)d, where d is the thick-
ness of the membrane.55 This model has been used by hun-
dreds of researchers to study various configurations of lipid
bilayers including their interactions with channels and inclu-
sions.1,2,8,9,22,32 Thus, citing here all the great research that
has followed from Canham and Helfrich’s pioneering work is
clearly impossible.

The spontaneous curvature model cannot describe the tilt
of the lipid molecules that is associated with the deformation
of the layers. Indeed, the energy per unit area presented in
eqs. (1)-(3) depends only on the normal to the layers, a, and
does not contain any term that accounts for the tilting of the
molecules. As recognized by Helfrich in his seminal work36

and, more recently, by other investigators,30,34,47–49 such tilt
of the lipid molecules should be taken into account when
modeling lipid bilayers. The most comprehensive approach,
in which different energetic contributions are considered, has
been presented by May.47 May’s analysis is limited to small
distortions of the lipid molecules and small displacements of
the layers. However, lipid layers undergo large deformations
such as those observed experimentally with vesicles61 and the
tilt of lipid molecules experiences distortion measured to be
as large as 40o.67 Thus, in order to accurately characterize the
mechanical performance of lipid-based micro-devices, contin-
uum models must be formulated to describe the large distor-
tions of lipid assemblies and decoupling between the normal
to the layers, a, and the director alignment, n (Fig. 1(c)).

The objective of this manuscript is to derive novel contin-
uum models for characterizing the equilibrium configurations
of lipid bilayers. The great success of the spontaneous cur-
vature model derived by Helfrich36 from the Frank energy
density for liquid crystals supports the idea that lipid bilay-
ers must be modeled by accounting for their liquid crystalline
nature. The new models will be formulated within the con-
text of a new nonlinear theory for smectic A liquid crystals in
which the alignment of the lipid molecules, which is defined
by the unit vector n, is not constrained to coincide with the
smectic layer normal, which is defined by the unit vector a64

(Fig. 1(c)). This assumption makes the new theory more at-
tractive than the theory for smectic A liquid crystals proposed
by de Gennes24 and the well-known spontaneous curvature
model36 used for lipid bilayers.

2 Energy density for lipid bilayers

The following general energy density, wDS, is proposed for
lipid bilayers

wDS =
1
2

Ka
1 (∇ ·a)

2 +
1
2

Kn
1 (∇ ·n− s0)

2

+
1
2

K2 ∇ · [(n ·∇)n− (∇ ·n)n]+ 1
2

B0|∇Φ|−2(1−|∇Φ|)2

+
1
2

B1
[
1− (n ·a)2]+B2(∇ ·n)(1−|∇Φ|−1) , (4)

where Ka
1 , Kn

1 , K2, B0, B1, and B2 are material constants. The
first term on the right-hand side is the bending energy, the sec-
ond term is the splay energy with s0 denoting the spontaneous
splay, the third term is the saddle-splay energy, the fourth
term is the compression-expansion energy, the fifth term is the
energy due to the coupling between n and a, and the sixth
term is the energy due to the coupling between the splay and
compression-expansion of the layer.

The scalar function Φ in eq. (4) defines the layer structure
of a smectic A liquid crystal in a sense that will be described
in detail in Sec. 3. The unit normal to the smectic layer, a, is
derived from it by setting

a = ∇Φ/|∇Φ| . (5)

For example, Φ = z and a = (0,0,1) for planar smectic layers
that are parallel to the xy plane in the usual Cartesian descrip-
tion.

The energy density wDS presented in eq. (4) needs to be non-
negative. Clearly, this requires that the material constants Ka

1 ,
Kn

1 , B0, and B1 be non-negative, since these are the coefficients
of quadratic terms. In order to determine a priori restrictions
on K2 and B2 in relation to the other material constants, we can
follow standard methods used in liquid crystal theory.63 Thus,
we first note that because Ka

1 and B1 are non-negative and their
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related expressions ∇ · a and n · a do not occur elsewhere in
eq. (4), the remaining terms in such equation can be written as
a quadratic form that only involves the material constants Kn

1 ,
K2, B0, and B2. Moreover, the following identity63

∇ · [(n ·∇)n− (∇ ·n)n] = tr((∇n)2)− (∇ ·n)2 (6)

enables the required quadratic form for the remaining terms to
be written as 1

2 vT ·A ·v where, for s0 = 0, v is a 3×1-matrix
and A is a 3×3-matrix defined by

v =

 ∇ ·n√
tr((∇n)2)

1−|∇Φ|−1

 ,

A =

 Kn
1 −K2 0 B2

0 K2 0
B2 0 B0

 (7)

while, for s0 6= 0, v is a 4× 1-matrix and A is a 4× 4-matrix
defined by

v =


∇ ·n

s0√
tr((∇n)2)

1−|∇Φ|−1

 ,

A =


Kn

1 −K2 −Kn
1 0 B2

−Kn
1 Kn

1 0 0
0 0 K2 0

B2 0 0 B0

 . (8)

The quadratic form 1
2 vT ·A · v is positive semi-definite if and

only if the determinants of all the principal submatrices of the
symmetric matrix A are non-negative.50 It is a simple exercise
to show that, for s0 = 0, the material constants need to satisfy
the inequalities

Ka
1 ≥ 0 , Kn

1 ≥ K2 , K2 ≥ 0 , B0 ≥ 0 , B1 ≥ 0 ,

(Kn
1 −K2)B0−B2

2 ≥ 0 , (9)

while, for s0 6= 0, the material constants must satisfy the in-
equalities

Ka
1 ≥ 0 , Kn

1 ≥ 0 , K2 = 0 , B0 ≥ 0 , B1 ≥ 0 ,

B2 = 0 . (10)

It must be noted that the inequalities that arise when s0 = 0
imply that when Kn

1 = K2 then B2 = 0.
The energy density wDS in eq. (4) does not rule out the pos-

sibility that n and a may coincide at specific locations. It is
invariant under the changes in sign a→−a or, equivalently,
∇Φ→−∇Φ. If we require w to be invariant to a change in
sign of the director n then s0 must be set to zero and B2 = 0:

this is generally not necessarily the case for lipid bilayers in
which n and −n are distinguishable. With the exception of
the Ka

1 -term, we will show in Sec. 4 that this energy density
when linearized is the same as the one proposed by May47 to
model the deformation of a planar lipid bilayer induced by an
inclusion.

3 Compression Energy Term

3.1 Discrete Case

The energy density presented in eq. (4) can be used to model
both smectic A liquid crystals, with an infinite number of lay-
ers, and lamellar structures, with a finite number of layers,
such as lipid bilayers. Of course, in general liquid crystals the
energy density is required to be invariant to the change in sign
of the director n and s0 and B2 need to be set to zero. These re-
quirements are absent when modeling lipid bilayers. It will be
shown hereafter that the compression-expansion energy term,
namely the B0-term in eq. (4), has the same form for smectic
A liquid crystals as it has for discrete numbers of lamellae.
Toward this end, we will adopt many of the mathematical ar-
guments employed by Capriz,13,14 Napoli53,54 and Capriz and
Napoli.16 We will use the terminology of smectic liquid crys-
tals from the outset and, in the discourse that follows in the
next section, draw upon the parallels with the theory of lipid
bilayers.

The lamellar structure of smectic A liquid crystals arises
from a periodic mass density distribution that they exhibit. It is
well known that the corresponding smectic order can be char-
acterized by a periodic mass density, ρ , having the form of a
Fourier series that can be approximated by18,24,42,59

ρ(x)≈ ρ0 +ρ1 cos(2πΦ(x, t)/d∗) , (11)

where x= x(t) is the position vector of a generic point in space
at any time t, ρ0 and ρ1 are constant amplitudes, d∗ is the con-
stant common interlayer spacing of the smectic A liquid crys-
tals in the initial configuration. The time variable, t, is here
introduced to describe distinct configurations of the lamellar
structure. The initial configuration is taken to be the one in
which all the layers are equidistant. The smectic layers can
therefore be represented by k surfaces, Σk for k = 0,1,2,3 . . .,
which can be defined at any given time t as the level sets of
Φ(x, t) through the relation

Φ(x, t) = kd∗ . (12)

For example, a planar layered sample of smectic A, whose lay-
ers are normal to the z-axis, can be represented by z = kd∗ at a
fixed time. At any other different time, away from any planar
layered configuration, the layer structure will continue to be
the level set of Φ(x, t) = kd∗. However, such an equation need
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Fig. 2 Lamellae in reference configuration at t = 0 (a) and current
configuration at t > 0 (b).

not necessarily lead to a description of a planar layered config-
uration, despite the mass density of the sample being the same.
The surfaces Σk defined by Φ(x, t) = kd∗ are, therefore, mon-
itoring the points in space of equal mass density as the time t
evolves. These surfaces are the two dimensional analogues of
the very familiar one-dimensional contours, the isobars, which
appear on two-dimensional air pressure charts. The contours
on such charts represent the locations of air at certain fixed
pre-assigned magnitudes of pressure and these contours can
evolve on the chart with time, yet they always represent the
originally assigned values of the air pressure. Similarly, the
level sets defined by eq. (12) represent the positions in space
of the smectic layers where the mass density is concentrated
and these surfaces can analogously evolve and change position
as time progresses. We remark that the smectic layers, defined
by level sets, need not remain equidistant, as pointed out by
Maxwell46 in his pioneering work on level surfaces.

Consider the lamellar system represented in Fig. 2. It proves
convenient to take an initial configuration at t = 0 that consists
of layers that are delimited by equidistant surfaces denoted
by Σ∗k where k = 0,1,2, . . ., as shown in Fig. 2(a). If we set
ξk = kd∗ where d∗ is the previously defined common distance
between two adjacent surfaces, then such surfaces are defined
as the level sets of Φ∗(X) = ξk, k = 0,1,2,3, ..., with

Φ
∗(X)≡Φ(x(0),0) = a∗ ·X = ξk (13)

where a∗ is a constant vector normal to the surfaces and X =
x(0) is the position of a point at t = 0 on the kth delimiting
surface Σ∗k .

Next, consider the distortion of the lamellar system at some
fixed time t > 0 depicted in Fig. 2(b). Let x0 be an arbitrary
fixed point on the distorted surface Σ0, x0 ∈ Σ0. The shortest
distance from x0 to the distorted surface Σ1, which is denoted
by d, must be taken along a direction perpendicular to the sur-
face Σ1 at some point x1 ∈ Σ1, as shown in Fig. 2(b) (which
may or may not be unique). This direction is given by the unit
vector normal to Σ1 evaluated at x1 (for definiteness, we will
take as the positive direction for this normal to be the one di-
rected towards surface Σ1 from Σ0, that is, along the direction
of the surfaces Σk as their index k increases). In other words,
there exists d such that the vector distance between the two
points x0 and x1 at a fixed time t, which belong to the level
surfaces defined by Φ(x0, t) = ξ0 and Φ(x1, t) = ξ1, respec-
tively, can be written as

x1−x0 = d
∇Φ(x1)

|∇Φ(x1)|
, (14)

where, for notational brevity, we have suppressed the depen-
dence on the fixed value t. It then follows from a Taylor ex-
pansion that70

Φ(x0) = Φ(x1−h) = Φ(x1)−h ·∇Φ(x1)+R(x1,h) , (15)

where

h = d
∇Φ(x1)

|∇Φ(x1)|
, |R(x1,h)|/‖h‖→ 0 as ‖h‖→ 0 (16)

with ‖ ‖ denoting the Euclidean norm. In this case, ‖h‖ = d
and hence whenever d� 1 (for example, if the interlayer spac-
ing is small compared to the lateral dimensions of the smectic
layer surface) it is seen that

d∗ = ξ1−ξ0 = Φ(x1)−Φ(x0)+ d
∇Φ(x1)

|∇Φ(x1)|
·∇Φ(x1) . (17)

It follows immediately that

d∗ + d|∇Φ(x1)| , (18)

and therefore, for small interlayer distances, we have the rela-
tion

d
d∗

= |∇Φ|−1 , (19)

where the dependence of ∇Φ on the fixed values x1 and t has
been omitted for ease of notation. Thus |∇Φ|−1 represents the
current local interlayer distance measured in units of the refer-
ence interlayer distance d∗. It follows from eq. (19) that there
is a compression of the lamellar structure (relative to the initial
configuration) when |∇Φ| > 1 and a dilation when |∇Φ| < 1.
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We remark that the ratio d/d∗ need not be close to unity, de-
spite d and d∗ being small, and that consequently |∇Φ| need
not be close to unity.

The relative extension or compression in the local interlayer
spacing, ε , which is namely the strain, can be written in a
standard form as

ε = 1− d
d∗

= 1−|∇Φ|−1 . (20)

The corresponding energy per unit area of Σ1, w1, is given by

w1 =
1
2

κ

(
1− d

d∗

)2

=
1
2

κ|∇Φ|−2 (1−|∇Φ|)2 , (21)

where κ (N m−1) is analogous to the stiffness constant for
one-dimensional solids and ∇Φ is evaluated at x1 and a fixed
time t. Thus the interlayer spacing behaves as a linear elastic
spring with stiffness κ .

In the above arguments, x0 has been chosen arbitrarily in
Σ0 and served to define x1 ∈ Σ1. It follows that the complete
energy, W1, for one single layer with delimiting surfaces Σ0
and Σ1 is the integral of w1 over the surface Σ1, that is,

W1(t) =
1
2

κ

∫
Σ1

|∇Φ(x, t)|−2 (1−|∇Φ(x, t)|)2 dΣ1 , (22)

where x∈Σ1. The energy presented in eq. (21) has a clear ana-
logue when extending it to the surface Σ2. Thus, the energies
for two smectic A layers such as a lipid bilayer can be obtained
by integrating eq. (21) appropriately over the two surfaces Σ1
and Σ2 and adding the results. It is easily seen that the com-
plete energy for a lamellar system of n-layers, with n ≥ 2, is
then generally given by

Wn(t) =
n

∑
i=1

∫
Σi

wi dΣi =

1
2

κ

n

∑
i=1

∫
Σi

|∇Φ(xi, t)|−2 (1−|∇Φ(xi, t)|)2 dΣi , (23)

with xi ∈ Σi. Note that ∇Φ may be quite different on distinct
layers.

The stiffness κ can be estimated for lipid bilayers by
using an analogy with smectic liquid crystals. Following
the methodology outlined elsewhere55 for example, we may
choose to set

κ = B0d∗ , (24)

as an approximation to κ when constructing the energy density
contribution for a single layer. Here, B0 is the well known
compression constant that arises in smectic A liquid crystals.

3.2 Continuum Case

When modeling arbitrarily many layers in smectic A liquid
crystals, we observe, as pointed out by Capriz,13 that the num-
ber of layers in a sample is often so great that the interlayer
spacing can be considered extremely small in relation to the
combined thickness of the smectic A sample. Thus, while for
a discrete numbers of layers the function Φ in eq. (12) is in-
dexed by the discrete values ξk, for an infinite number of layers
such a function can be indexed by the continuos real variable
ξ . Then, eq. (12) can be replaced by

Φ(x, t) = ξ , (25)

where we also include dependence on the time t ≥ 0. The time
t can be fixed for the discussion that follows so that the layer
structure at any arbitrary time is considered. For notational
brevity, we will suppress the dependence on the fixed value
t. The level sets defined by eq. (25) then describe the smectic
surfaces, denoted by Σξ and indexed over the continuous vari-
able ξ at some given time t. It follows that the unit normal to
each of these surfaces is given by

a =
∇Φ(x)
|∇Φ(x)|

, (26)

where a is evaluated at x ∈ Σξ .
From a modeling perspective, it proves convenient to let ξ

have the dimension of length and let it represent the short-
est distance of the surface represented by Σ∗

ξ
from some fixed

origin in an initial configuration at t = 0. In this initial config-
uration, the surfaces Σ∗

ξ
are equidistant planes defined by

Φ
∗(X)≡Φ(x(0),0) = a∗ ·X = ξ , (27)

where, as before, a∗ is a constant vector normal to the sur-
faces and X = x(0) is the position of a point at t = 0 on the
surface Σ∗

ξ
. For any given fixed value of ξ , Φ∗(X) = ξ rep-

resents one particular planar surface in the initial configura-
tion located such that its shortest distance from the origin is
ξ . Thus, in order to assign a physically meaningful represen-
tation to ξ , we can be take it to be multiples of the common
initial smectic interlayer spacing d∗. During any subsequent
disturbance to the smectic liquid crystal at t > 0 it is supposed
that Φ(x, t) = ξ . In other words, for each ξ and t fixed, Φ = ξ

is a level set (with constant value ξ ) which represents the loca-
tion of one particular smectic layer, following the description
introduced above. A non-dimensionalization is possible, as
discussed by Capriz,13 so that ξ may be replaced by integer
values n ∈ Z. This alternative description, also adopted by
Blake and Virga,10 will not be pursued here.

Following Capriz,13 consider an arbitrary point x1 on the
distorted surface Σξ1

, x1 ∈ Σξ1
. Let x2 be the closest point to

x1 on the distorted surface Σξ2
defined by ξ2 . Then there exists
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a scalar increment with the dimension of length, labelled ∆η ,
such that

x2 = x1 +a∆η , (28)

with a defined by eq. (26) and evaluated at x = x2. Thus, by
setting ∆ξ ≡ ξ2−ξ1, one has that

∆ξ = Φ(x2)−Φ(x1) = Φ(x1 +a∆η)−Φ(x1) , (29)

and therefore

∆ξ

∆η
=

Φ(x1 +a∆η)−Φ(x1)

∆η
. (30)

By taking the limit as ∆η tends to zero, we find that right-
hand side of eq. (30) tends to the derivative of ξ with respect
to η , dξ/dη while the left-hand side tends to the directional
derivative ∇Φ ·a = |∇Φ|, evaluated at x2. Hence,

dξ

dη
= |∇Φ| . (31)

In the above equation, dη/dξ can be interpreted as a measure
of the number of smectic layers per original initial interlayer
length, and so it is the continuum analogue of d/d∗ in the dis-
crete case considered earlier. Therefore, a corresponding mea-
sure of the compression or extension of the layered medium,
analogous to eq. (20), is given by

ε = 1− dη

dξ
= 1−|∇Φ|−1 . (32)

Similar to the discrete case, there is a compression of the
smectic layer structure when |∇Φ| > 1 and a dilation when
|∇Φ|< 1.

It is now straightforward to see that the analogue of the
energy contribution in eq. (21) is actually, in smectic A liq-
uid crystals, a compression energy per unit volume, wc, given
by54

wc =
1
2

B0

(
1− dη

dξ

)2

=
1
2

B0|∇Φ|−2 (1−|∇Φ|)2 , (33)

where B0 (N m−2) is analogous to the Young’s modulus for
one-dimensional solids and ∇Φ is evaluated at x2 and t. The
total bulk energy, Wc, in a sample volume V is therefore given
by

Wc =
∫

V
wc dV =

1
2

B0

∫
V
|∇Φ|−2 (1−|∇Φ|)2 dV . (34)

The analogy between a discrete system of lamellae such as
lipid bilayers and smectic A liquid crystals is evident when
a comparison is made between the total energy expressions
in eqs. (23) and (34) via the approximation (24). Indeed, if
we take the limit as n→ ∞ with a correspondingly suitable

r

z

inclusion

lipid bilayer

R

2hR2h∞

r
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δ(r)

δ(r)
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r r

h(r) head

b(r)
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Fig. 3 Cylindrical inclusion in a planar lipid bilayer (a) and its
section (b).

simultaneous decrease in the value of d∗ between layers, then
in eq. (23) we see that, approximately,

κ

n

∑
i=1

∫
Σi

wi dΣi ≈ B0d∗
n

∑
i=1

∫
Σi

wi dΣi ≈ B0

∫
V

wc dV . (35)

Thus there is a direct correspondence between the energy for
a discrete numbers of lamellae in eq. (23) and the energy for
smectic A liquid crystals in eq. (34).

4 Applications to Inclusion-induced Deforma-
tions

Consider a planar lipid bilayer with volume V having a cylin-
drical inclusion of radius R and height 2hR. The lipid bilayer
can be assumed to have radial symmetry in the direction of
the r-axis about the central z-axis of a cylindrical coordinate
system as depicted in Fig. 3. Let us denote by 2h∞ the height
of the lipid bilayer far away from the inclusion where r→ ∞

as shown in Fig. 3(a).
Following May’s work,47 the function h = h(r) defines the

height of the planar lipid bilayer, the function b = b(r) defines
the length of the lipid molecule, and the variable r̄ shown in
Fig. 3(b) is defined such that, for r ≥ R,

r̄ = r−b(r)sinθ(r) , (36)

h(r̄) = b(r)cosθ(r) , (37)
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where θ = θ(r) is the function that defines the angle formed
between the director of the lipid molecules and the z-axis. Let
δ = δ (r) be the function that defines the angle formed between
the normal to the lipid bilayer and the z-axis. It can be shown
from a careful consideration of the geometry that

tanδ (r) =
dh(r̄)

dr̄
=

dh(r)
dr

dr
dr̄

=
b′(r)cosθ(r)−b(r)sinθ(r)θ ′(r)

1−b′(r)sinθ(r)−b(r)cosθ(r)θ ′(r)
, (38)

or, equivalently, that

δ (r) =

arctan
(

b′(r)cosθ(r)−b(r)sinθ(r)θ ′(r)
1−b′(r)sinθ(r)−b(r)cosθ(r)θ ′(r)

)
. (39)

Following our notation, in the coordinate system shown in
Fig. 3, the layer normal a that appears in eq. (4) can be written
for r ≥ R as

a =−sinδ (r)r+ cosδ (r)z , (40)

while the director n for r ≥ R has the form

n =−sinθ(r)r+ cosθ(r)z . (41)

Given eq. (5), the function Φ = Φ(r,z) describing the layer
structure can be found by solving the linear partial differential
equation defined by

a =
∇Φ

|∇Φ|
. (42)

Thus, it readily follows that69

∂Φ

∂ r
=−sinδ (r) ,

∂Φ

∂ z
= cosδ (r) ,

∂Φ

∂ r
+ tanδ (r)

∂Φ

∂ z
= 0 . (43)

By using the methods of characteristics, the solution to
eq. (42) for a defined in eq. (40) is found to be

Φ = c(z−u(r)) , (44)

where c is a dimensionless constant that can be set to unity.
As noted in the previous sections, the surfaces that delimit the
lipid layer are defined as the level sets of eq. (44) and are,
thus, independent of the value of c. The function u = u(r) is
the nonlinear displacement of the layer that is equal to

u(r) = u(∞)−
∫

∞

r
tan(δ (t))dt (45)

where we can assume that u(∞) = 0. The height of the planar
lipid bilayer defined by the function h = h(r) is related to u(r)
via the following

h(r) = h∞−u(r) . (46)

It follows easily from eqs. (44)-(45) that

∇Φ =− tanδ (r)r+ z , |∇Φ|= secδ (r) . (47)

Next, we will determine each of the energy density pro-
posed in eq. (4) and, except for the Ka

1 -term, its corresponding
linearized version. We will show hereafter that the linearized
version of the energy density in eq. (4) coincides with the one
proposed by May (eq. (3) in May’s manuscript,47 page 19).
We note that

∇ ·a =− sinδ (r)
r

− cosδ (r)δ ′(r) , (48)

and

∇ ·n =− sinθ(r)
r

− cosθ(r)θ ′(r) . (49)

Then the Ka
1 -term in eq. (4) takes the form

1
2

Ka
1 (∇ ·a)

2 =
1
2

Ka
1

(
sinδ (r)

r
+ cosδ (r)δ ′(r)

)2

(50)

while the Kn
1 -term becomes

1
2

Kn
1 (∇ ·n− s0)

2 =

1
2

Kn
1

(
sinθ(r)

r
+ cosθ(r)θ ′(r)+ s0

)2

. (51)

The above Kn
1 -term can be approximated to the first order in θ

by

1
2

Kn
1 (∇ ·n− s0)

2 +
1
2

Kn
1

(
θ(r)

r
+θ

′(r)+ s0

)2

. (52)

Let us consider the saddle-splay term in eq. (4) and recall that

1
2

K2 ∇ · [(n ·∇)n− (∇ ·n)n] =

1
2

K2
[
tr((∇n)2)− (∇ ·n)2] . (53)

With the specific choice of n presented in eq. (41), it can be
easily shown that

tr((∇n)2) = (cosθ(r))2(θ ′(r))2 +
(sinθ(r))2

r2 , (54)

(∇ ·n)2 =
(sinθ(r))2

r2 +(cosθ(r))2(θ ′(r))2

+
2
r

sinθ(r)cosθ(r)θ ′(r) , (55)
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from which it follows that

1
2

K2 ∇ · [(n ·∇)n− (∇ ·n)n] =

−K2
sinθ(r)cosθ(r)θ ′(r)

r
. (56)

The K2-term in eq. (4) can be approximated to the first order
in θ by

1
2

K2 ∇ · [(n ·∇)n− (∇ ·n)n]+−K2
θ(r)θ ′(r)

r
. (57)

We now consider the compression-expansion term in eq. (4),
which has been described in more detail in Sec. 3. By using
eq. (47) we have that

|∇Φ|−1(|∇Φ|−1) = 1− cosδ (r) . (58)

and, hence, the B0-term takes the form

1
2

B0|∇Φ|−1(|∇Φ|−1) =
1
2

B0 (1− cosδ (r))2 . (59)

The above expression can be rewritten using May’s notation
as

|∇Φ|−1(|∇Φ|−1) = 1− h(r̄)
h∞

, (60)

where h∞ is the reference interlayer distance which remains
unchanged away from the inclusion and h(r̄) = b(r)cosθ(r) is
the current interlayer distance as defined in Fig. 3. Moreover,
we note that h∞ = b∞ where b∞ represents the length of the
lipid molecule in the reference configuration or away from the
inclusion. Given eq. (60) and the previous remarks, the B0-
term in eq. (4) can be written as

1
2

B0|∇Φ|−2(|∇Φ|−1)2 =
1
2

B0

(
1− b(r)cosθ(r)

b∞

)2

, (61)

which can be approximated to the first order in θ by

1
2

B0|∇Φ|−2(|∇Φ|−1)2 +
1
2

B0

(
1− b(r)

b∞

)2

. (62)

The coupling term in eq. (4) with a and n defined in eq. (40)
and eq. (41), respectively, takes the form

1
2

B1
[
1− (n ·a)2]= 1

2
B1
(
1− cos2(θ(r)−δ (r))

)
=

1
2

B1 sin2(θ(r)−δ (r)) , (63)

which can be approximated to the first order in δ and θ to

1
2

B1
[
1− (n ·a)2]+ 1

2
B1(θ(r)−δ (r))2 . (64)

The function δ (r) presented in eq. (39) can be then approxi-
mated to the first order in θ , θ ′, b, and b′ to

δ (r)+ arctan
(
b′(r)

)
+ b′(r) , (65)

and, therefore, eq. (64) in terms of b′(r) becomes

1
2

B1
[
1− (n ·a)2]+ 1

2
B1(θ(r)−b′(r))2 . (66)

Finally, by using eqs. (49) and (58), the B2-term in eq. (4) can
be expressed as

B2(∇ ·n)(1−|∇Φ|−1) =

B2

(
− sinθ(r)

r
− cosθ(r)θ ′(r)

)
(1− cosδ (r)) . (67)

In May’s notation, the above term can be approximated to
the first order in θ to

B2(∇ ·n)(1−|∇Φ|−1)+

B2

(
θ(r)

r
+θ

′(r)
)(

b(r)
b∞

−1
)

. (68)

The sum of the approximated terms presented in eqs. (52),
(57), (62), (66), and (68) gives the energy density, wM , pre-
sented by May47 for a planar lipid bilayer with a cylindrical
inclusion:

wM =
1
2

Kn
1

(
θ(r)

r
+θ

′(r)+ s0

)2

−K2
θ(r)θ ′(r)

r

+
1
2

B0

(
1− b(r)

b0

)2

+
1
2

B1(θ(r)−b′(r))2

+B2

(
θ(r)

r
+θ

′(r)
)(

b(r)
b0
−1
)

. (69)

It must be noted that the material parameters are denoted dif-
ferently in the energy presented by May:47 κ = Kn

1 , k̄ =−K2,
K = B0, ρ = B2, kt = B1.

By means of eqs. (50), (51), (56), (61), (63), (67), the en-
ergy density in eq. (4) can be written as

wDS =
1
2

Ka
1

(
sinδ (r)

r
+ cosδ (r)δ ′(r)

)2

+
1
2

Kn
1

(
sinθ(r)

r
+ cosθ(r)θ ′(r)+ s0

)2

−K2
sinθ(r)cosθ(r)θ ′(r)

r
+

1
2

B0 (1− cosδ (r))2

+
1
2

B1 sin2(θ(r)−δ (r))

−B2

(
sinθ(r)

r
+ cosθ(r)θ ′(r)

)
(1− cosδ (r)) . (70)
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In the next section, we will focus on solving the boundary
value problems that are derived from the energy density (69)
used by May47 and the energy density (70) proposed here.
For the planar lipid bilayer considered hereafter, s0 = 0 in
eqs. (69)-(70).

4.1 Boundary Value Problems

The total energy, W , for the planar lipid bilayers depicted in
Fig. 3(a) is

W =
∫

V
w dV , (71)

where V is the volume of the planar lipid bi-
layer and w = wM(r,θ(r),θ ′(r),b(r),b′(r)) or w =
wDS(r,θ(r),θ ′(r),δ (r),δ ′(r)). The equilibrium equa-
tions can be determined by minimizing the above total energy
using variational methods.31 Since θ = θ(r), δ = δ (r) and
b = b(r), the minimization of eq. (71) can be reduced via
symmetry to the minimization of the total energy, W̃ , defined
as

W̃ =
∫

Ṽ
w dṼ (72)

where Ṽ is the section of lipid bilayer shown in Fig. 3(b). It
can be easily shown that

W̃ =
π

2

∫
∞

R
dr
∫ h(r)

0
r w dz . (73)

By following May’s approach,47 h(r) = hR+h∞

2 is assumed to
be constant so that the above integral can be approximated by

W̃ ≈ π(hR +h∞)

4

∫
∞

R
r w dr . (74)

It is convenient to set ŵ = r w. A necessary condition for
the total energy W̃ to have an extremum is that the Euler–
Lagrange equations are satisfied.31 Thus, for ŵ = r wM ,

∂ ŵ
∂θ
− d

dr

(
∂ ŵ
∂θ ′

)
= 0 ,

∂ ŵ
∂b
− d

dr

(
∂ ŵ
∂b′

)
= 0 , (75)

while, for ŵ = r wDS,

∂ ŵ
∂θ
− d

dr

(
∂ ŵ
∂θ ′

)
= 0 ,

∂ ŵ
∂δ
− d

dr

(
∂ ŵ
∂δ ′

)
= 0 . (76)

The Euler–Lagrange equations for the energy density w = wM
are the following:

2B1b∞r2 (
θ −b′

)
−Kn

1 b∞

(
r2

θ
′′+ rθ

′−θ
)

−B2 r2b′ = 0 , (77)

b∞B2
(
rθ
′+θ

)
+2B1b2

∞

[
θ −b′+ r

(
θ
′−b′′

)]
+B0r (b−b∞) = 0 , (78)

while, for the energy density w = wDS, they are:

Kn
1 cosθ

[(
1+ r2

θ
′2
)

sinθ − r
(
θ
′+ rθ

′′)cosθ

]
−B1r2 sin(−θ +δ )cos(−θ +δ )

+B2r2
δ
′ cosθ sinδ = 0 , (79)

Ka
1 cosδ

[(
1+δ

′2r2)sinδ − r
(
δ
′+ rδ

′′)cosδ
]

+B1r2 sin(−θ +δ )cos(−θ +δ )+B0r2 (1− cosδ )sinδ

−B2r
(
sinθ + rθ

′ cosθ
)

sinδ = 0 . (80)

We impose the following boundary conditions to solve the
system of eqs. (77)-(78):

θ(R) =
π

6
rad , (81)

θ
′(∞) = 0 , (82)

b(∞) = 2.5×10−9m , (83)

b′(∞) = 0 . (84)

The condition θ(R) = π

6 rad is typical for a smectic A liquid
crystals.27 The solution functions θ = θ(r) and b = b(r) (and
their derivatives) can thus be computed by solving eqs. (77)-
(78) with the above boundary conditions. In May’s for-
mulation, once these functions are determined, the function
h = h(r), which defines the height of the lipid bilayer, and
the function δ = δ (r), which defines the normal to the layer,
can be obtained from eqs. (36)-(37) and eq. (39), respectively.
From eq. (39) one can compute the value of δ (r) at the in-
clusion, where r = R, and the value of δ ′(r) away from the
inclusion, where r = ∞. These values are found to be

δ (R) = 0.72 rad , (85)

δ
′(∞) = 0 . (86)

The solution functions of the Euler-Lagrange equations de-
rived from wDS are determined using the boundary conditions
given in eqs. (81)-(82) and using the values of δ (R) and δ ′(∞)
in eqs. (85)-(86) computed as previously described. This pro-
cedure is employed in order to match the boundary conditions
of the two systems of differential equations, eqs. (77)-(78) and
eqs. (79)-(80), which have different sets of unknown func-
tions. In our formulation, after determining the solution func-
tions, δ (r) and θ(r), the height of the lipid bilayer is computed
using eqs. (45)-(46).
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Material Parameter Numerical Value

Ka
1 5×10−12 N

Kn
1 5×10−12 N

K2 4×10−12 N
B0 8×105 Nm−2

B1 8×105 Nm−2

B2 10−7 Nm−1

Table 1 Material Parameters: Ka
1 , Kn

1 and K2 are based on values for
a typical nematic liquid crystal.63 The value of B0 is consistent with
the estimated given by Kléman and Parodi42 for a typical smectic A
liquid crystal. The estimate for B1 is based on the assumption that it
may be comparable in magnitude to B0. 58 The constant B2 is based
on the inequalities in eq. 9.

Parameter Parameter Numerical
(De Vita and Stewart) (May) Value

u(∞) none 0 m
h∞ h∞ 5×10−9 m
R R 1×10−9 m
∞ ∞ 1×10−8 m

θ(R) θ(R) π

6 rad
θ(∞) θ(∞) 0 rad
δ (R) none 0.72 rad
δ (∞) none 0 rad
none b(∞) 2.5×10−9 m
none b′(∞) 0 rad m−1

Table 2 Parameters used for the boundary value problems. Note that
δ (R) was computed from eq. (39) after finding θ(R), θ ′(R), b(R),
b′(R) by solving the boundary value problem derived from May’s
energy density.

5 Results

The energy densities defined in eqs. (69) and (70) were com-
pared by solving the equilibrium eqs. (77)-(78) with boundary
conditions defined in eqs. (81), (82), (83), and (84), and the
equilibrium eqs. (79)-(80) with boundary conditions defined
in eqs. (81), (82), (85) and (86). These boundary value prob-
lems describe the equilibrium configurations of a planar lipid
bilayer with a cylindrical inclusion as depicted in Fig. 3(a).
The values of the parameters in the energy densities were fixed
to those listed in Table 1 while the geometrical dimensions
of the system and boundary conditions are listed in Table 2.
The coupled systems of nonlinear ordinary differential equa-
tions were solved numerically in Maple 12 (Maplesoft Inc.)
by using the solver dsolve with a midpoint algorithm midrich
method.

The solution function θ = θ(r), which defines the tilt of the
lipid molecules inside the planar lipid bilayer, is presented in

Fig. 4. As expected, the angle θ , which is set to be π

6 rad at
R = 1 nm decreases as the radius r increases and reaches zero
as r grows relatively large at around 10 nm. It can be clearly
seen in Fig. 4 that the tilt of the lipid molecules predicted using
the proposed energy density is more pronounced than the one
predicted using May’s energy density away from the inclusion.
Moreover, in May’s predictions, the tilt of the lipid molecules
becomes zero more rapidly as r goes to ∞.

0 1 2 3 4 5 6 7 8 9 10
r (nm)

0

0.1

0.2
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th
et

a(
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(ra
d)

May's model
De Vita and Stewart's model

Fig. 4 Solution function θ = θ(r) determined by solving the
boundary valued problems derived from the newly proposed energy
density in eq. (70) and the linearized energy density in eq. (69).

The solution function δ = δ (r) of the boundary value prob-
lem derived from the newly proposed energy density is shown
in Fig. 5. This function defines the normal to the lipid bi-
layer and, in our formulation, characterizes the displacement
of the lipid layer via eq. (45). Although δ (r) is not directly
computed as a solution of the boundary value problem de-
rived from May’s energy density, it can be easily computed
from eq. (39) once the solution functions, θ(r), θ ′(r), b(r),
b′(r), are obtained. The value of δ (r) decreases as the ra-
dius increases according to both models. It can be noted that,
when the radius of the bilayer becomes greater than 2 nm, the
difference between the values of δ (r) determined by the two
boundary value problems is significant. The results show that,
by considering the fully nonlinear terms in the energy density,
greater changes in the normal to the lipid layer are predicted.

The height of the lipid bilayer can also be determined via
eq. eqs. (36)-(37) in May’s model and eqs. (45)-(46) in the
proposed model (Fig. 6). As expected, the height is found to
decrease close to the inclusion where r = 1 nm. In particular,
the height of the lipid bilayer is shown to decrease more for
the boundary value problem derived from the proposed energy
density. This is expected since, in the proposed formulation,
the deformations are not assumed to be small.

The effect of various parameters or conditions on the solu-
tion of the boundary value problem derived from the proposed
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Fig. 5 Solution function δ = δ (r) determined by solving the
boundary valued problems derived from the newly proposed energy
density in eq. (70) and the linearized energy density in eq. (69).

energy density can be also analyzed. For example, in Fig. 7
the height of the lipid bilayers at the inclusion, h(R), is plotted
as a function of the angle θ(R) that determines the orienta-
tion of the lipid molecules. The relationship between h(R)
and θ(R) appears to be nonlinear and, as θ(R) increases, h(R)
decreases.

6 Discussion

A new energy density was proposed to describe the equilib-
rium configurations of lipid bilayers. The energy accounts for
the smectic A liquid crystalline structure of lipid bilayers, the
decoupling between the layer normal and director, and large
deformations. Analogies between the compression-expansion
term of liquid crystals and lipid bilayers were also presented
in detail. The proposed theoretical framework was tested by
solving the boundary value problem derived when studying
the deformation of a planar lipid bilayer induced by a cylindri-
cal inclusion. The solution was directly compared with the so-
lution of an equivalent boundary value problem obtained from
a linearized version of the energy that was used in an earlier
study by May.47 The deformations of the layer and distortions
of the molecules were larger than those found using May’s
approach.

There has been much relatively recent activity on smectics
and lipid bilayers which has attempted to deploy various ver-
sions of appropriate energy densities. The search for a rigor-
ous and detailed approach that can be quite general has been
the objective of this present article. Consideration is given
for a separation between the usual director and layer normal,
directions that are presumed coincident in the classical liter-
ature.24 The coupling between the deformations of lipid lay-
ers and lipid molecules has been considered by several au-

0 1 2 3 4 5 6 7 8 9 10
r (nm)

1.2

1.4

1.6

1.8
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2.6

h(
r) 

(n
m

)

May's model
De Vita and Stewart's model

Fig. 6 The height of the bilayer, h(r), determined by solving the
BVP derived from eq. (70) (De Vita and Stewart’s model) and
eq. (69) (May’s model) versus the radius r.

thors.30,34,44,47,48 These authors have, however, limited their
analyses to small deformations and neglected some terms in
the energy density to derive boundary value problems that
are mathematically tractable. The results presented in Sec. 5
demonstrated the applicability of the proposed energy density
and allowed comparisons with the earlier related work of oth-
ers, including that by May.47

The energy density stated in eq. (4) has been derived from
first principles in a systematic and general way. The contribu-
tion linked to Kn

1 was first considered rigorously by Frank28

in the context of ‘splay’ in the director alignment in general
liquid crystals; the Ka

1 -term is analogous to this in the con-
text of the local lamellar layer normal. The expression for the
B0-term is a development from the work initiated by Kléman
and Parodi42 and developed by Capriz,13,14 and Capriz and
Napoli16 and Napoli.53,54 The contribution of the B1-term
originates from the concept of director tilt separating from the
local layer normal, first discussed for smectic A liquid crystals
by Ribotta and Durand.58 The interplay between compression
and the separation of the director from the layer normal has
been discussed in statics by Stewart64 and the present Au-
thors,25,26 and by Stewart and Stewart65 in the context of an
applied electric field. This separation has also been investi-
gated in terms of basic flow problems by Auernhammer et
al.,3–5 Soddemann et al.62 and Stewart and Stewart.66 The B2-
term is a generalized version of that first introduced by May.47

The analogies between the compression-expansion terms
for lamellar systems and smectic A liquid crystals were pre-
sented. We remark that the results in eqs. (19) and (20) (with
their analogues in eqs. (31) and (32)) were mentioned by
Kléman and Parodi42 for the specific case of smectic A liq-
uid crystals. These authors approximated the compression-
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Fig. 7 The height of the bilayer, h(R), versus the angle, θ(R),
formed by the director with the z-axis at the inclusion where r = R
(orange line). The nonlinearities are better appreciated graphically
when compared with a line (black dotted line).

expansion energy density by assuming small deformations.
Thus, eq. (20) was replaced by ε1 ≡ 1− |∇Φ|, an approxi-
mation that was introduced by Bidaux et al.7 and widely used
throughout the literature thereafter; it is linearly equivalent in
modulus to ε ≡ 1−|∇Φ|−1 for small gradients. An alternate
strain can also be introduced as ε2 ≡ (1−|∇Φ|2)/2, as consid-
ered by Kamien and Santangelo,41 who investigated its appli-
cations in Kamien et al.40 To linear order in the lamellar dis-
placement, these three energy densities have the same modu-
lus and lead to the same results; to see this, one can simply ex-
press ε and ε2 in terms of ε1 via the substitution |∇Φ|= 1−ε1
and expand to first order in ε1.42 The differences among ε ,
ε1, ε2 are only being apparent when nonlinear terms are in-
cluded. Nevertheless, the forms in eqs. (20) and (32) that arise
from the relations (19) and (31) have a natural interpretation:
the magnitude of the gradient of Φ is largest when the level
surfaces are closest together, as should be expected of level
sets. This is perhaps the main reason why Capriz,13 Capriz
and Napoli16 and Napoli54 adopted ε .

Some comments are in order regarding the values adopted
for the material parameters in Table 1, some of which are
based on well-established experimental values for lamellar
smectic phases while others are estimates obtained via the in-
equalities in eq. (9). In the absence of specific experimental
values for the elastic constants Ka

1 and Kn
1 for lipid bilayers,

the values used here are typical for smectic materials. It is
well known from the work on biaxial smectic C phases17,21,63

that these constants, which are expected to have comparable
magnitudes,4 are similar to the Frank splay constant K1 aris-
ing in general uniaxial liquid crystals. It has been calculated
that K1 ∼ 5× 10−12 via a typical classical Helfrich-Hurault

instability,63 as quoted in Table 1. The elastic constant K2 is
the familiar saddle-splay constant that arises from the elastic
theory of nematic liquid crystals and has been selected to sat-
isfy, in conjunction with Kn

1 and Ka
1 , the a priori estimates in

eq. (9). The compression constant B0 has been estimated for
many smectic A systems to be of order 106 Nm−2,42 in line
with the adopted value in Table 1. The coupling constant B1
is relatively novel and was first introduced by Ribotta and Du-
rand58 and developed further by Oswald and Ben-Abraham,56

Auernhammer et al.3,4 and Soddemann et al.;62 it has been
estimated from energetic considerations58 that B1 should be
comparable to B0 in magnitude or smaller and this has been
taken into account for the estimate in Table 1. The value of
B2 stated in Table 1 has been chosen to satisfy the inequal-
ities in eq. (9). Both B1 and B2 have not been experimen-
tally confirmed with any great accuracy, but an experiment to
determine B1 has been suggested65 and the influence of B1
upon shear flow in smectic A has been investigated theoreti-
cally.3,62,66 The work presented in this article will hopefully
encourage the design and development of directly relevant ex-
periments for the measurement of the material parameters in
lipid bilayers and related lamellar systems. It is through exper-
imental data that the physical significance of such parameters
can be identified.

One limitation of this and other studies47 is in the assump-
tion that the height of the layer, h(r), as the limit of integra-
tion in eq. (73), has a constant average value, here set to be
hR+h∞

2 . This assumption was made to simplify the derivation
of the boundary value problems via variational methods but it
is likely that this approach introduces some error. The height
of the lipid layer, h(r), can be computed through eq. (37) in
May’s formulation and eq. (46) in our formulation only after
finding the solution functions of the corresponding boundary
value problems.

The energy density presented in eq. (4) will no doubt form
the basis for more extensive discussions and investigations
on smectics and lipid bilayers in complex geometries. It can
be applied to describe different geometrical configurations of
lipid bilayers under various loading scenarios and boundary
conditions and allow more intricate analyses of dynamics.64

Depending on the specific problem tackled, other energetic
contributions will need to be included such as, for example,
surface tension and anchoring.25,26

The validity of the developed theoretical framework needs
to be verified through experiments on lipid bilayers in which
both the distortions of the layers and the lipid molecules can
be quantified at molecular length scales. These challenging
experiments may require the development of new methods in
X-ray microscopy. Nevertheless, despite the lack of direct val-
idation with experimental data, our continuum model thus far
appears to be promising: it provides results that are, qualita-
tively, in agreements with molecular dynamics68 and coarse
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