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Abstract 
 
The ability to entrap drugs within vehicles and subsequently release them has led to 

new treatments for a number of diseases. Based on an associative phase separation 

and interfacial diffusion approach, we developed a way to prepare DNA gel particles 

without adding any kind of cross-linker or organic solvent. Among the various agents 

studied, cationic surfactants offered particularly efficient control for encapsulation and 

DNA release from these DNA gel particles. The driving force for this strong association 

is the electrostatic interaction between the two components, as induced by the entropic 

increase due to the release of the respective counter-ions. However, little is known 

about the influence of the respective counter-ions on this surfactant-DNA interaction. 

Here we examined the effect of different counter-ions on the formation and properties 

of the DNA gel particles by mixing DNA (either single- (ssDNA) or double-stranded 

(dsDNA)) with the single chain surfactant dodecyltrimethylammonium (DTA). In 

particular, we used as counter-ions of this surfactant the hydrogen sulfate and 

trifluoromethane sulfonate anions and the two halides, chloride and bromide. Effects on 

the morphology of the particles obtained, the encapsulation of DNA and its release, as 

well as the haemocompatibility of these particles, are presented, using the counter-ion 

structure and the DNA conformation as controlling parameters. Analysis of the data 

indicates that the degree of counter-ion dissociation from the surfactant micelles and 

the polar/hydrophobic character of the counter-ion are important parameters in the final 

properties of the particles. The stronger interaction with amphiphiles for ssDNA than for 

dsDNA suggests the important role of hydrophobic interactions in DNA. 
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Introduction 
 
A major research thrust in the pharmaceutical and chemical industries is the 

development of controlled release systems for drugs and bioactive agents. Many of 

these delivery systems in use and under development consist of a drug dispersed 

within a polymeric carrier. These chemicals provide the network structure and physical 

integrity, but they are usually toxic. In addition, problems encountered in reaching this 

goal are related not only to the preparation technology, but also to the intrinsic nature 

of the polymers. Indeed, encapsulation technologies imply the use of organic solvents 

and high-energy sources, thus leading to a significant degradation of the encapsulated 

molecule during the course of the polymer hydrolysis. 1 

 
A general understanding of the interactions between DNA and oppositely charged 

agents, and in particular phase behaviour, has provided a basis for developing novel 

DNA-based materials, including gels, membranes and gel particles.2 We recently 

prepared novel DNA gel particles based on associative phase separation and 

interfacial diffusion. By mixing solutions of DNA (either single-stranded (ssDNA) or 

double-stranded (dsDNA)) with solutions of different cationic agents, such as 

surfactants, proteins and polysaccharides, the possibility of the formation of DNA gel 

particles without adding any kind of cross-linker or organic solvent has been 

confirmed.3-9 The strength of association, which is tuned by varying the structure of the 

cationic agent, allows control of the spatial homogeneity of the gelation process, 

producing either a homogeneous DNA matrix or different reservoir devices. This gives 

rise to various applications for the controlled encapsulation and release of ssDNA and 

dsDNA, with clear differences in their mechanism. 

 
Of the several cationic agents studied, cationic surfactants offer particularly efficient 

control of the properties of these DNA-based particles. The formation of a physical 

network in which surfactant micelles form polyanionic-multicationic electrostatic 

complexes as cross-link points seems to play an important role in the stabilization of 

DNA particles. In addition, in the case of cationic surfactants with DNA, strong 

associative phase separation was observed. The driving force for this strong 

association is the electrostatic interaction between the two components, provided by 

the entropic increase due to the release of the respective counter-ions, which induces 

the binding of the surfactant to the polymer at low surfactant concentrations. The 

binding is cooperative due to the hydrophobic interactions between the surfactant 

molecules. Below the critical aggregation concentration (CAC) of the surfactant, no 

substantial binding takes place; above it, aggregates are formed between the polymer 
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and the surfactant self-assemblies. The precipitation of the system may occur at the 

CAC or at higher concentrations, depending on the polyelectrolyte concentration and 

other properties of the system.10 

 
The interactions of cationic surfactant with DNA have been studied extensively. 

Changes in the hydrophobic moiety of the surfactants affect their interaction with DNA. 

At a given concentration of surfactant, hexadecyltrimethylammonium bromide (HTAB) 

binds more readily to DNA, leading to the formation of a precipitate for smaller amounts 

of DNA than dodecyltrimethylammonium bromide (DTAB) does.10  

 

The interactions of surfactants with DNA can also be tuned efficiently by controlling the 

head-group structure. The chemical structure of the head group markedly influences 

the interaction: negatively charged and non-ionic surfactants will not associate directly 

with DNA, for instance. It has also been observed that when structural modifications 

induced in the head group increase the hydrophobicity of the surfactant,11 such as the 

addition of an aromatic ring between the head group and the tail, the effect is similar to 

that of an increase in the surfactant chain length. Modifications of the head group can 

lead to other, more subtle, changes in the interactions between DNA and a surfactant, 

like the introduction of hydroxyl substituent into the head group.12 

 
Little is known about the influence of the respective counter-ions on surfactant-DNA 

interaction. In general, oppositely charged macro-ions in solution attract each other, 

tending to form a bound complex. When separated, each macro-ion is surrounded by a 

diffuse layer of spatially confined counter-ions. Upon approach, the fixed macro-ion 

charges partially (sometimes fully) neutralize each other, allowing the release of mobile 

counter-ions into the bulk solution, thereby increasing their translational entropy. This 

scenario suggests that macro-ion association in solution is to a large extent an 

entropically driven process.13 The actual contribution of counter-ion entropy to free 

energy association depends on the detailed geometries and charge distributions of the 

separated and bound macro-ions.13-15 

 
Understanding the interactions of the DNA-based particles with cells is crucial for 

improving their behaviour in vitro. We examined this interaction by using erythrocytes 

as a model biological membrane system, since erythrocytes have been used as a 

suitable model for studying the interaction of amphiphiles with biological membranes. 

16-18 In addition, the potential uses of surfactant self-assemblies as drug delivery 

systems make haemolysis evaluation very important.   
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Most in vitro studies of surfactant-induced haemolysis evaluate the percentage 

haemolysis by spectrophotometrically detecting plasma-free haemoglobin derivatives 

after incubating surfactant solutions with blood and then separating undamaged cells 

by centrifugation. However, in the case of particles, interpreting the results of these 

studies is complicated due to the variability of experimental approaches and a lack of 

universally accepted criteria for determining test-result validity.   

 
In this context, the purpose of the present study was to investigate the effect of 

different counter-ions on the formation and properties of DNA gel particles, by mixing 

DNA (either single-stranded (ssDNA) or double-stranded (dsDNA)) with the single-

chain surfactant surfactant, dodecyltrimethylammonium (DTA). In particular, we 

employed, as counter-ions of this surfactant, anions of the two extremes in the 

Hofmeister series (hydrogen sulfate and trifluoromethane sulfonate) and two halides 

(chloride and bromide). The effects on morphology of the particles obtained, the 

encapsulation of DNA and its release and the haemocompatibility of these particles are 

presented, using the counter-ion structure and DNA conformation as controlling 

parameters.  

 
MATERIALS AND METHODS 
 
 
Materials 
 
The sodium salt of deoxyribonucleic acid (DNA) from salmon testes with an average 

degree of polymerization of about 2,000 base pairs was purchased from Sigma and 

used as received. DNA concentrations were determined spectrophotometrically, on the 

basis that for an absorbance of 1, at 260 nm, a solution of dsDNA has a concentration 

of 50 µg/mL.19 All DNA concentrations are given in molarity per phosphate group, i.e. 

molarity per negative charge. The ratios in absorbance at 260 and 280 nm of the stock 

solutions were found to be between 1.8 and 1.9, which suggested the absence of 

proteins.20 Dodecyltrimethylammonium chloride (DTAC) and 

dodecyltrimethylammonium bromide (DTAB) were purchased from Fluka and 

dodecyltrimethylammonium hydrogen sulphate (DTAHs) was from Aldrich. All three 

were used as received. Dodecyltrimethylammonium trifluoromethane sulphonate 

(DTATf) was prepared in our lab.21 In short, starting from the DTAC derivative, triflate 

substitution was achieved by using a Dowex 21K exchange resin equilibrated with 

NaOH. The resin loaded with DTAC was then gravity-eluted though the column. Thus, 

the DTAOH derivative was obtained and titration was immediately performed with triflic 

acid, until pH reached the value of 6. The solution containing the DTATf derivative was 
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dried and the powder was recrystallized in methanol/ether (10:90). The melting point of 

the powder (168ºC) was used to ascertain its purity. The Krafft temperature for the 

DTATf system was determined through conductance measurements at 37ºC. 

 

N,N,N',N'-tetramethylacridine-3,6-diamine (acridine orange (AO)) was supplied by 

Molecular Probes (Invitrogen). 9-(diethylamino)benzo[a]phenoxazin-5(5H)-one (Nile 

red, NR) was supplied by Fluka. All experiments employed Millipore Milli-Q de-ionized 

water (18.2 MΩcm resistivity). 

 

 
Particle preparation 
 
The dsDNA stock solutions were prepared in NaBr 10 mM in order to stabilize the DNA 

secondary structure in its native B-form conformation. ssDNA stock solutions were 

prepared by thermal denaturation of dsDNA stock solutions at 80°C for 15 min and 

then immediate dipping into ice for fast cooling to prevent renaturation. Surfactants 

were dissolved in Millipore Milli-Q de-ionized water and equilibrated at 25 ºC or 45ºC, in 

order to reach the Krafft temperature of the entire surfactant. DNA solutions were 

added dropwise via a 22-gauge needle into gently agitated surfactant solutions (2 ml). 

Under optimal conditions, droplets from DNA solutions instantaneously gelled into 

discrete particles on contact with the surfactant solution. Thereafter, the particles were 

equilibrated in the solutions for a period of 2 hours. After this period the particles 

formed were separated by filtration through a G2 filter and washed with 5 x 8 ml 

volumes of Milli-Q water to remove the excess of salt. 

 
 
Determination of degree of DNA entrapment 

 
The degree of entrapment was determined by quantifying both the non-bound DNA in 

the supernatant solution and the bound DNA in the gel particles. The entire quantity of 

supernatant surfactant solution containing the non-bound DNA was removed for 

quantification by spectrophotometry. Thereafter, the particles were washed with Milli-Q 

water, as described in the previous section. The particles were magnetically stirred in 

pH 7.6 10 mM Tris HCl buffer to promote swelling and break-up of the structure. The 

resulting mixture, containing skins of the particles, was filtered; then the filtrates were 

quantified by a spectrophotometer. The amount of DNA present in the skins obtained 

was calculated from the initial amount of DNA added. Loading capacity (LC) and 

loading efficiency (LE) were determined by the following equations: 

 

http://en.wiktionary.org/wiki/Purity
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LC (%)= [(total amount of DNA- non-bound DNA)/weight of particles] x 100            (1) 

LE (%)= [(total amount of DNA- non-bound DNA)/total amount of DNA] x100          (2) 

 
Three batches of particles of each system were prepared and results are given as 

average and standard deviations. 

 
 
Fluorescence microscopy imaging 
 
Particle integrity and the DNA conformational state were determined by the acridine 

orange (AO) fluorescent assay. Thus, freshly prepared particles were stained for 10 

min with AO (0.3 mg/ml) and washed in distilled water.  

 

In addition, changes in local polarity of the particles obtained were determined by the 

Nile red (NR) staining assay. Thus, a stock solution of NR (0.5 mg/ml in acetone) was 

prepared. A working solution was prepared by adding 0.05 ml of stock solution to 50 ml 

of a 75:25 glycerol-water mixture. A drop of working solution was added to the particles. 

 

The stained samples were immediately examined with an Olympus BX51M microscope 

equipped with a UV-mercury lamp (100W Ushio Olympus) and a MNIBA3-type filter set 

(470-495 nm excitation and 505 nm dichromatic mirror). Images were digitized on a 

computer through a video camera (Olympus digital camera DP70) and were analyzed 

with an image processor (Olympus DP Controller 2.1.1.176, Olympus DP Manager 

2.1.1.158). All observations were carried out at 25ºC. 

 

 
Swelling and dissolution behaviour of the particles  
 
Studies were conducted in pH 7.6 10 mM Tris HCl buffer. Particles (around 100 mg) 

were exposed to dissolution media at an agitation rate of 40 rpm and at room 

temperature, using the ST 5 CAT shaking platform. At specific time intervals, the entire 

quantity of dissolution medium was removed and particles remaining in the container 

were weighed. Then, fresh solution was added in order to maintain a clean 

environment. This procedure was repeated until the particles were completely 

dissolved. The data were then transformed to relative weight loss by the following 

equation: 

 

Relative weight ratio (RW)= Wt / Wi                           (3) 
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Where Wi stands for the initial weight of the particles and Wt for the weight of the 

particles at time t.  

 
 
DNA release from the particles 
 
Simultaneously to the studies of swelling/dissolution behaviour, DNA release studies 

were carried out. Hence, at defined time intervals, the supernatant was collected and 

particles were re-suspended in fresh solution. DNA released into the supernatant 

solutions was quantified by measuring the absorbance at 260 nm with a 

spectrophotometer (UV/VIS UV-2450 Spectrophotometer, Shimadzu). 

 
 
Interaction with erythrocytes 

 

Blood was obtained from anaesthetized rats by cardiac puncture and drawn into tubes 

containing EDTA. The procedure was approved by the institution’s Ethics Committee 

on Animal Experiments. The serum was removed from the blood by centrifugation at 

3,000 rpm (Megafuge 2.0 R Heraeus Instruments) at 4ºC for 10 min and by subsequent 

suction. The red blood cells were then washed three times at 4ºC by centrifugation at 

3,000 rpm with isotonic saline PBS solution, containing 22.2 mmol/L Na2HPO4, 5.6 

mmol/L KH2PO4 and 123.3 mmol/L NaCl in distilled water (pH 7.4). Following the last 

wash, the cells were diluted to ½ their volume with isotonic PBS solution (cell density of 

8 x 109 cell/mL). 

 
For the haemolytic study, haemolysis assay experiments were performed. First, the 

haemolytic response of the different surfactants in solution was tested. Thus, a series 

of different volumes of surfactant solution (10 mg/mL), ranging from 10 to 80 μL, were 

placed in polystyrene tubes and an aliquot of 25 μL of erythrocyte suspension was 

added to each tube. The final volume was 1 mL. The tubes were incubated at room 

temperature for 10 min under shaking conditions. Following incubation, the tubes were 

centrifuged (5 min at 10,000 rpm). The degree of haemolysis was determined by 

comparing the absorbance (540 nm) (Shimadzu UV-160A) of the supernatant with that 

of the control samples totally haemolysed with distilled water. Positive and negative 

controls were obtained by adding an aliquot of 25 µL of erythrocyte suspension to bi-

distilled water and isotonic PBS solution, respectively. 

 
In the case of DNA particles, individual DNA gel particles were placed in the tubes and 

an aliquot of 25 μL erythrocyte suspension was added to each tube. The final volume 
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was 1 mL. The tubes were incubated at room temperature for different times under 

shaking conditions. At defined times, the incubated samples were centrifuged (5 min at 

10,000 rpm). The degree of haemolysis was determined as described above.  

 
At the same time as the haemolysis assay experiments with the DNA particles, the 

DNA release from the DNA gel particles was determined. For this, individual DNA gel 

particles were placed in the tubes and isotonic PBS solution was added till reaching a 

final volume of 1 mL. The tubes were incubated at room temperature for the same 

defined times as in the haemolysis assay experiments, under shaking conditions. 

Following incubation, the tubes were centrifuged (5 min at 10,000 rpm). The 

concentration of dsDNA or ssDNA released on the supernatants was determined by 

using the NanoPhotometerTM (Implen.) 

 

The correlation between the erythrocyte population and the haemolytic response in the 

presence of the particles was established by counting the number of erythrocytes at 

defined times, using a Bürker-Türk counting chamber coupled to a microscope. 

 
 

 
RESULTS  
 
 
Particle preparation 
 
Particles were prepared at a charge ratio between DNA and cationic agent equal to 1, 

R= [DNA]/ [S+], where [S+] is the concentration of the corresponding surfactant 

(concentrations determined per charge). In all cases, the DNA concentration was set to 

60 mM. This DNA concentration was chosen because it produces high-viscosity 

solutions, which makes it an appropriate system for the preparation of stable DNA gel 

particles.3-9 

 

Particles were prepared by dropwise addition of DNA solutions to the surfactant 

solutions, equilibrated at 25 or 45ºC.  Because of the relatively high viscosity of the 

DNA solution, mixing of the two solutions is not instantaneous. Therefore, before the 

two solutions can mix, the surfactant diffuses into the polyelectrolyte phase and forms a 

gel shell at the interface, stabilizing the particles. This is the general behaviour 

observed for DNA placed in DTAB, DTAC and DTATf solutions. However, in the case 

of DTAHs, DNA drops disrupted quickly on contact with the DTAHs solution, and the 

formation of the corresponding DNA gel particles did not take place. Similar behaviour 

was observed in the case of particles prepared with denatured DNA. Changes in the 
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pH values of the corresponding surfactant solutions could explain the performance 

observed. Whereas the pH of the solutions containing DTAB, DTAC and DTATf is in 

the 5.9 to 6.5 range, very low pH (≈ 1.8) was determined in the case of DTAHs. In this 

case, acidic conditions may play a role in the protonation of the DNA bases, 22 

contributing negatively to the opposite polymer-surfactant interaction.  

 
 
Determination of the degree of DNA entrapment  

The degree of DNA entrapment is expressed through the loading efficiency and loading 

capacity values. Loading efficiency (LE) is calculated by comparing the amount of DNA 

included in the particles with the total amount during particle formation. Loading 

capacity (LC) takes the amount of DNA entrapped in the particles as a function of their 

weight. The loading efficiency (LE) and the loading capacity (LC) for the different 

formulations depend on the surfactant used. The characteristics of the different 

systems are summarized in Figure 1.  
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Figure 1. Characterization of the DNA gel particles with respect to DNA loading 
efficiency (LE), loading capacity (LC) and DNA complexed as a function of the 
surfactant counter-ion, temperature and secondary structure of the DNA. Complexed 
DNA is related to the amounts of DNA in the supernatant solutions and the skins 
derived from the particles, after particles were magnetically stirred overnight. All values 
were measured in triplicate and are given as average and standard deviation.  
 

 
Using DTAC and DTAB, the LE values found were higher than 99% for the two 

temperatures studied. In the case of DTATf, experiments carried out at 25ºC showed 

LE values ranging between 97-98%. However, increasing the temperature to 45ºC 

raises LE for the DTATf-ssDNA systems (> 99%).  

 
The determination of the entrapped DNA as a function of the weight of the particles 

showed LC values ranging from 1.2-2.9% for experiments carried out at 25ºC. The 

lowest LC values were obtained for the DTATf-ssDNA system. Surfactants containing 
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chloride or bromide as the corresponding counter-ions produce similar LC values.  

When particle formation takes place at 45ºC, LC values are double those obtained at 

the lower temperature.  

 
An indication of the structural characteristics of these DNA particles can be gleaned 

from the amount of DNA that was released when the break-up of the particles was 

induced mechanically. The percentages of DNA complexed are summarized in Figure 

1. These values suggest that, by using these three surfactants, most of the DNA is 

complexed during the particle formation. The formation of these fully collapsed particles 

is consistent with the formation when using other surfactants with an identical 

hydrophobic contribution.6 

 
 

Morphological characterization of the DNA gel particles  
 
Fluorescence microscopy using the fluorescence dye, acridine orange (AO), was used 

to confirm the presence of DNA and to assess the secondary structure of the nucleic 

acid in the particles. AO (excitation: 500 nm/ emission: 526 nm) intercalates into 

double-stranded DNA as a monomer, whereas it binds to single-stranded DNA as an 

aggregate. On excitation, the monomeric acridine orange bound to double-stranded 

DNA fluoresces green, with an emission maximum at 530 nm. The aggregated acridine 

orange on single-stranded DNA fluoresces red, with an emission at about 640 nm. 23,24 

 
Figure 2 shows fluorescence micrographs of individual particles. FM images of freshly 

prepared particles using AO as staining (left panels) showed green emission, 

independently of the initial secondary structure of the DNA. The absence of red 

emission in the particles containing denatured DNA suggests that the accessibility of 

free DNA to the dye is hindered. The morphologies seen are consistent with the data 

on DNA distribution described above (Figure 1).  

 
Similar studies were carried out using Nile red (NR) as staining. This test showed 

solvatochromic behaviour. In polar media a red shift in the emission maximum was 

observed, together with fluorescence quenching, due to the capacity of NR to establish 

hydrogen bonds with protic solvents.25 In consequence, the NR emission in water was 

very weak, with an emission maximum at 660 nm.26 

 
In the case of particles formed with DTATf, emission intensity increases (Figure 2, right 

panels), indicating that NR becomes less exposed to water in this system. The 

difference in emission in Figure 2 provides strong evidence that the triflate ions of 
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DTATf-DNA complexes provide a hydrophobic “environment” for NR, but not in the 

case of the two halide ions studied. 

 
Some features about water distribution in these systems can be deduced from the FM 

studies, using NR for staining (Figure 2). Particles formed with surfactants containing 

the two halogens as counter-ions showed almost no emission of the dye. However, 

particles formed with the surfactant DTATf revealed an increase in its emission. These 

results suggest that, in the latter case, the dye NR remains less exposed to water in 

this system. It has been found that the dye NR is very sensitive to local polarity 

(dielectric constant of the microenvironment) and can be used as a probe for 

hydrophobic surfaces in proteins. In a polar environment NR has a low fluorescence 

quantum yield, whereas in more hydrophobic environments its quantum yield increases 

and its emission maximum becomes progressively blue-shifted. This property has been 

used for probing non-polar sites in biomolecules (proteins and lipids).27 
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     25 º C           45 ºC 

       

       

      

 
Figure 2. Fluorescence micrographs of the different DNA gel particles in the presence of the fluorescent dyes, AO (left, green emission) and NR (right, red 
emission), at 25ºC and 45ºC.  
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Swelling kinetics 
 
 
Gels are thought to have great potential as drug reservoirs. Loaded drugs are released by 

diffusion from the gels or by erosion. Hence, the release mechanism can be controlled by 

swelling or dissolution of the gels. Figure 3 shows the relative weight ratio of the different gel 

particles after exposure to a Tris.HCl pH 7.4 buffer solution. 

 

Swelling experiments carried out with the different DTA-DNA particles demonstrated that the 

relative weight depends on both the counter-ion on the surfactant structure and on the 

secondary structure of the nucleic acid.  Although the degree of swelling seems to be higher 

when particles are prepared at 45ºC for both temperatures, the degree of swelling for DTA-

ssDNA systems (relative weight ratio, RW 3-13, using the maximum points as estimate) is 

higher than that using native DNA (RW: 3-5). In addition, in the case of particles prepared 

with denatured DNA, it was found that the degree of swelling increased in the sequence 

DTATf < DTAB < DTAC.   

 
 

      

       
 
Figure 3. Time-dependent changes of the relative weight of DNA gel particles studied. 

 
 
DNA release 
 
Generally, the release pattern resembles that observed in the swelling/dissolution profiles 

(see Figure 3). Thus, particles prepared using the native nucleic acid had a faster release in 

the sequence DTATf > DTAB > DTAC as a consequence of the dissolution profile. In the 

case of particles formed with denatured DNA, slower kinetics were observed, which is 

congruent with that observed for the swelling/dissolution profiles.  
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Figure 4. Time-dependent changes in DNA release profiles for the DNA gel particles studied. 

 
 
Haemolytic assessments 
 
Haemolysis by surfactants is a process of great fundamental and practical importance. 

Erythrocytes lack internal organelles and, since they are the simplest cellular model 

obtainable, they are the cell membrane systems most commonly used for study of the 

surfactant-membrane interaction. In addition, the potential uses of surfactant self-assemblies 

as drug delivery systems make the evaluation of haemolysis very important.   

 

The haemolytic potency of the different components was determined separately. The 

dependence of haemolysis on the concentration of the surfactant structure is shown in Figure 

5. In this experiment, haemolysis was determined at a fixed time, after 10 min incubation in 

the presence of various surfactant concentrations. Haemolysis varied with the surfactant 

concentration in a sigmoidal manner. At concentrations below 300 ug/mL, for DTAB and 

DTATf surfactants, the percentage of haemolysis was not significant (below <5 %), which 

can be regarded as a non-toxic effect level. However, it increased sharply between 400 and 

600 (or 700 ug/mL, depending on the surfactant structure) to reach essentially 100% 

haemolysis at that concentration. The concentrations assayed were well below 4,000-4,500 

ug/mL, which corresponds to the CMC (Critical Micelle Concentration) value of the 

surfactants, as previously determined (5. 0 mM DTATf,21 15.0 mM DTAB,28 20.0 mM DTAC29). 

The sigmoidal pattern of this DTA–induced haemolysis (Figure 5) is indicative of a complex 

process in which sufficient surfactant needs to accumulate in the target membrane to induce 

the osmotic lysis of erythrocytes. 

 
The HC50 values for the different surfactant structures are 443, 468 and 510 µg/mL for DTAC, 

DTATf and DTAB, respectively. The haemolytic potency of the DNA was also determined. As 

expected, DNA showed no haemolytic activity (results not shown).  
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Figure 5. Dependence of rat erythrocyte haemolysis on DTA-based surfactant concentration. 
Erythrocytes were incubated for 10 min at room temperature at different surfactant 
concentrations, and the amount of haemoglobin released was determined. The data 
correspond to the average of three independent experiments ± standard deviation.  

 

 
Although the HC50 values for these three surfactants are very close (see Figure 5), strong 

differences were found when the kinetics of haemolysis of the corresponding surfactant-

dsDNA particles were determined. Figure 6 shows the surfactant-induced haemolysis of rat 

erythrocytes from surfactant-DNA gel particles as a function of time. In the case of 

surfactant-dsDNA particles, haemolysis is a relatively slow process, including the presence 

of an initial lag period in all curves. This lag period varies between 30 min in the case of 

systems containing DTAB and 90 min for the systems containing the surfactants DTAC and 

DTATf. Both the maximum percentage of haemolysis and the corresponding time are 

dependent on the surfactant structure. After 120 min, 75 and 85% haemolysis was achieved 

for the systems containing DTAB and DTAC as surfactants, respectively. The subsequent 

decrease from the maximum haemolysis values for longer incubation times (150 and 180 min) 

may correlate with differences in particle size. There was a more limited haemolytic effect 

when particles were prepared with DTATf. At the end of the experiment (180 min), only 70% 

haemolysis had been achieved.  
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Figure 6. DTA-DNA particle-induced haemoglobin release from rat erythrocytes as a function 
of time. Erythrocytes were incubated at room temperature in the presence of individual DTA-
DNA particles.   

 
 
Similar experiments were carried out with particles prepared with denatured DNA. In this 

case, the initial lag extended to 90 min for all three surfactant-ssDNA systems. The 

maximum haemolysis values are 53, 65 and 85% for the systems containing DTATf, DTAC 

and DTAB as surfactants, respectively.  

 

Since the haemolytic character of these surfactants in solution is almost identical, the 

differences found in the kinetics of the haemolysis responses induced by the different 

surfactants are related to their capacity to form weaker or stronger surfactant-DNA 

complexes. It is expected that, for a higher degree of complexation, a smaller amount of 

surfactant would be released in solution, an amount able to interact with the erythrocyte 

membrane and promote haemoglobin release into the media.  

 

 

Relationship between the degree of haemolysis and the number of 

erythrocytes  

 

Determination of haemolytic properties is one of the most common tests in studies of particle 

interaction with blood components. Interpreting the results of these studies is complicated 

due to variability in experimental approaches and a lack of universally accepted criteria for 

determining the test-result validity. Most in vitro studies of particle-induced haemolysis 

evaluate the percentage of haemolysis by spectrophotometrically detecting plasma-free 

haemoglobin derivatives after incubating the particles with blood and then separating 

undamaged cells by centrifugation. However, some particle interference due to haemoglobin 

precipitates adsorbed with the particles on centrifugation has been reported, yielding a false 

negative result.30 
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To avoid these false negative results in the haemolytic response of these surfactant-DNA 

particles, the evolution of both haemolytic activity and the number of erythrocytes in the 

dispersions for each time were determined simultaneously. Figure 7 shows the results. There 

is a good relationship between the degree of haemolysis found and the number of 

erythrocytes. In all cases, low values of haemolytic responses correspond to a high number 

of erythrocytes in the corresponding dispersion; and an increase in haemolysis corresponds 

to a decrease in the number of erythrocytes. Thus, the effect of adsorbed haemoglobin on 

the particles can be considered negligible. 

 

     

     

     

 
Figure 7. Time-course of the haemolytic response and the number of erythrocytes in the 
dispersions. 

 

 

 

 



19 

 

Relationship between the DNA released and the degree of haemolysis 

 

Previous studies have demonstrated the possible use of these DNA gel particles in the 

controlled encapsulation and release of dsDNA and ssDNA (see Figure 4). However, in this 

study, the main interest was to characterize these DNA gel particles by considering 

simultaneously their kinetics of DNA release and their haemolytic response. Thus, DNA 

released from the different DTA-DNA particles was continuously monitored in a separate 

assay under the same conditions described above for haemolysis. Figure 8 shows the 

relative kinetics of DNA and haemoglobin release. In all cases, there was close correlation 

between the haemolytic activity found and the amount of DNA released. Both parameters 

increased with time. Although the haemolytic response was not directly associated with the 

DNA released, which showed no haemolytic activity, both parameters were a consequence 

of the dissociation of the surfactant-DNA complex.  

 

The amount of DNA that is released and the haemolytic response are strongly dependent on 

both the structure of the counter-ion in the surfactant and the secondary structure of the 

DNA. In the case of particles prepared with native DNA, the amount of dsDNA that is 

released at the end of the experiment (180 min) reaches 100 µg/mL. However, with particles 

prepared with denatured DNA, only 10% of this amount is released into the media. This 

behaviour, which can be correlated with the degree of complexation, is higher in the case of 

ssDNA, thus decreasing the amount of non-complexed DNA that could be detected in 

solution. These differences are also supported by visual inspection: surfactant-dsDNA 

particles are completely dissolved at the end of the experiment, whereas surfactant-ssDNA 

particles are still present after 180 min.    

 

At this point, it is possible to establish which of these systems is the most haemocompatible. 

For this, the haemolysis values for a defined amount of released DNA are compared. In the 

case of the surfactant-dsDNA particles, for a concentration of dsDNA equal to 100g/mL, the 

degree of haemolysis is 30%, 60% and 80%, when DTATf, DTAC and DTAB are used as 

cationic agents, respectively. In the case of surfactant-ssDNA particles, and for a 

concentration of ssDNA equal to 5 µg/mL, the degree of haemolysis is 20%, 50% and 70%, 

when DTATf, DTAC and DTAB are used as surfactants, respectively. It is interesting to note 

that the haemolytic response follows the sequence DTATf <DTAC< DTAB, independently of 

the secondary structure of the DNA.  
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Figure 8. Relative kinetics of DTA-DNA particle-induced haemoglobin release from rat 
erythrocytes and DNA release.  
 

 

Calculation of the surfactant content and complexation stoichiometry 

 

The fitting of the haemolysis activity profiles of both the surfactants in solution and those of 

the corresponding surfactant-DNA particles enabled us to calculate the surfactant release 

from the particles as a function of time. The surfactant concentration in the different systems 

is shown in Figure 9.  
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Figure 9. Surfactant released from DTA-DNA particles as a function of time.  

 

The evolution of the surfactant release is strongly dependent on both the counter-ions 

present in the surfactant structure and the secondary structure of the DNA. In the case of 

DTA-dsDNA particles, the surfactant released increased continuously over time as a 

consequence of particle dissolution. As noted above, at the end of the experiment, the 

particles dissolved totally. The surfactant concentration at this point provided us with 

information about the total concentration of surfactant in the particles. It is worth noting that a 

simple modification of the surfactant structure, i.e. the corresponding counter-ion, can 

strongly modulate surfactant concentration in the particles. The concentration of surfactant 

included on the DTA-dsDNA particles ranges from 500 µg/mL, in the case of DTATf-dsDNA 

particles, to 1,000 µg/mL in the case of DTAB-dsDNA particles.  

 

When denatured DNA is used in the formation of the DTA-DNA particles, the evolution of the 

surfactant release is less dependent on time. The surfactant concentrations remained 

constant over time or showed small changes in their profiles. At the end of the experiment, 

as particles remained still visible on the dispersions, the total amount of the surfactant 

included in the particles could not be estimated. The concentration of surfactant released into 

the media after 180 min ranges from 480 µg/mL in the case of DTAC-ssDNA and DTATf-

ssDNA particles to around 600 µg/mL in the case of DTAB-ssDNA particles.  

 

From the surfactant concentration on the particles and by including the amount of DNA 

released into the media (see Figure 8, line plots), the kinetics of the surfactant:DNA ratio on 

the particles were determined. Figure 10 shows the evolution of the surfactant:DNA ratio as a 

function of time.  
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Figure 10.  Time course of the ratio of surfactant:DNA release from the DTA-DNA particles.  

 
The R values were at their maximum at initial times, decreasing rapidly after 60-90 min and 

then reaching a plateau until the end of the experiment. The results obtained suggest that, 

during the initial stage, the surfactant that is in excess or less attached to the DNA is 

released. Then, the release of DNA increases as a consequence of the dissolution of the 

surfactant-DNA complex, remaining almost constant until the end of the experiment. 

 

From these plateau values, information about the stoichiometry of the surfactant-DNA 

complexes can be deduced. In the case of surfactant-dsDNA particles, the observed ratios in 

the plateau were around 6, 10 and 11 for the DTATf-dsDNA, DTAC-dsDNA and DTAB-

dsDNA systems, respectively. In the case of particles formed with denatured DNA, the 

calculated ratios in the plateau were above 100. This value has no real meaning, given the 

presence of DTA-ssDNA particles in the dispersions at the end of the experiment.  

 

The ratios found, always higher than one, are consistent with the protocol of preparation of 

these surfactant-DNA particles, in which DNA solutions were added dropwise to an excess of 

gently agitated surfactant solutions. 

 

 

DISCUSSION  

 

For an oppositely charged polyelectrolyte–surfactant pair, the simplest type of phase 

separation in such systems involves the formation of two phases. If there are strong 

attractive interactions between the two components, the formation of one phase 

concentrated in both polymer and surfactant and the other diluted in the two components, i.e. 

an associative phase separation, would be expected. The driving force for this strong 

association is the electrostatic interaction between the two components, as given by the 

entropic increase due to the release of the respective counter-ions. A general understanding 
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of the interactions between DNA and oppositely charged agents has provided a basis for 

developing novel DNA gel particles. However, to date, little is known about the influence of 

the respective counter-ions on this oppositely charged polyelectrolyte–surfactant pair.  

 

The contribution of the counter-ion entropy to free energy association depends on the 

detailed geometries and charge distributions of the separated and bound macro-ions. The 

apparent degree of counter-ion dissociation, α, also called the degree of micelle ionization, is 

an important parameter in the physical description of aqueous surfactant solutions.31,32 

Although ionic surfactants are strong electrolytes below the CMC, i.e. fully ionized, the 

charge density on the micellar surface is so high that a fraction, 1 - α, of the counter-ions 

condense onto the surface and reduce the net charge, so α is often only 0.2-0.5. This 

parameter significantly affects the surface properties of surfactants, such as the CMC, 

micellar size, reduction of interfacial (or surface) tension, etc.32 Colloidal properties, such as 

substrate binding efficiencies, transport properties and phase transitions (e.g. from spheres 

to rod-like structures), may also show significant dependencies on α.33 

 

The characterization of micelles of DTAC and DTAB surfactants as reaction media showed 

significant differences in their degree of dissociation from the micelle: about 26% for bromide 

and about 37% for chloride in experiments performed at 25ºC.28, 29 Recent studies showed 

values of triflate dissociation ranging from 0.13 to 0.15 for temperatures between 38 and 

47ºC.21 

 

On the basis of these values, a clear correlation between the degree of counter-ion 

dissociation for these three surfactants and the corresponding LE values (Figure 1) can be 

established. Although there are no differences between the LE values of the DTAC and 

DTAB systems, the most limited dissociation for the triflate counter-ion could explain the 

lower efficiency observed in the DTATf systems.  

 

Also based on the α values, as well as the character of the triflate anion, which is more 

hydrophobic than the anions bromide and chloride, the triflate ions on DTATf-DNA 

complexes could be expected to provide a more hydrophobic environment for the dye NR 

than halogen counter-ions. Triflate ions, as they have three resonance forms, promote 

significant water structuring. The extent of water organization has been shown to be 

responsible for lipid head group dehydration.34,35 The observed changes in NR emission 

argue in favour of these conclusions. 
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When used as DNA carriers, understanding the interactions of these DNA gel particles with 

blood components is crucial for improving their behaviour in vitro. First of all, the haemolytic 

activity of this DTA-based surfactant was studied as a function of its concentration and the 

concentration-dependent curves were determined (Figure 5). In these experiments, 

haemolysis was determined in the presence of a range of surfactant concentrations, which 

allows us to define the haemolytic potency (HC50) of each surfactant.  

 

One drawback of these surfactant-DNA gel particles, in toxicological terms, is the need for a 

cationic surfactant, which may cause irritation. Our results indicate, however, that the effect 

of the surfactant can be modulated when administered in the DNA system, unlike an 

aqueous solution. This modulation is due to the strong interaction between the surfactant and 

the biopolymer, which leads to a very slow release of the surfactant from the vehicle.36-39 

Accordingly, although the HC50 values for these three surfactants in an aqueous solution are 

very close, strong differences were found when the haemolysis kinetics of the corresponding 

surfactant-DNA gel particles were determined (Figure 6). As the haemolytic character of 

these surfactants in solution is almost identical, the differences found in the haemolysis 

responses induced by the different surfactants are related to the capacity to form weaker or 

stronger surfactant-DNA complexes. It is expected that, for a higher degree of complexation, 

less surfactant would be released in solution, which could interact with the erythrocytes’ 

membrane. 

 

The differences found between particles prepared with ds- and ss-DNA can be attributed to 

differences between the two secondary structures. Previous studies of polyelectrolyte-

surfactant systems, both experimental and theoretical, showed that  the linear charge density 

of the polyelectrolyte, its flexibility and any amphiphilic character will play a significant role for 

the corresponding interactions.40-46 We note that, since the linear charge density of dsDNA 

(0.59 negative charges/Å) is considerably higher than for ssDNA (0.29 negative charges/Å) 

and comes from a simple electrostatic mechanism, dsDNA should interact more strongly with 

oppositely charged polyelectrolytes. ssDNA is much more flexible than dsDNA, which is quite 

rigid and characterized by a large persistence length (500 Å).42, 43 In molecular simulations, 

the role of the flexibility of the polyelectrolyte has been documented in some detail, and it 

was found that a flexible chain tends to interact more strongly with an oppositely charged 

macro-ion than a rigid one. 

 

This trend in surfactant-DNA interaction reflects both the release of haemoglobin (degree of 

haemolysis) and the release of DNA into the media, as a consequence of different 

dissolution kinetics of the polyelectrolyte-surfactant complexes. Under the experimental 
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conditions in which the haemolysis studies took place; dsDNA-surfactant particles were fully 

dissolved by the end of the experiments. However, ssDNA-surfactant particles remained 

visible in the dispersion. Here, for the first time, both parameters were determined 

simultaneously (Figure 8), giving us information about the effectiveness of the two release 

processes.  

 

The surfactant content on the corresponding surfactant-DNA gel particles was calculated 

from the haemolysis responses (Figure 9). The surfactant content of these DNA gel particles 

mostly follows the sequence DTATf < DTAC < DTATB. As mentioned above, the formation of 

these DNA gel particles is based on associative phase separation, which is entropically 

driven, determined by the translational entropy of the counter-ions. Accordingly, the 

differences in surfactant content found in these DNA gel particles can be correlated with 

differences in the apparent degree of counter-ion dissociation in these surfactants from the 

corresponding micelles.   

 

 

CONCLUDING REMARKS 

 

Dodecyl trimethyl ammonium-based surfactants were used to prepare surfactant-DNA gel 

particles based on associative phase separation and interfacial diffusion. Here we examined 

the formation of DNA gel particles by mixing DNA (either single- (ssDNA) or double-stranded 

(dsDNA)) with different single-chain surfactants whose structure differs only in the 

corresponding counter-ion. We employed as counter-ions of these surfactants hydrogen 

sulfate and trifluoromethane sulfonate anions and the two halides, chloride and bromide. The 

degree of DNA entrapment, swelling/shrinking behaviour, DNA release kinetics and the 

morphology of the DNA gel particles were studied as a function of both the structure of the 

counter-ion on the polar head of the surfactant and the secondary structure of the nucleic 

acid. Analysis of the data indicates that the degree of counter-ion dissociation from the 

surfactant micelles and the polar/hydrophobic character of the counter-ion are important 

parameters in the final properties of the particles obtained. The stronger interaction of ssDNA 

than of dsDNA with amphiphiles suggests the important role of hydrophobic interactions in 

DNA. For the first time, these DNA gel particles were assessed for haemolysis. Although the 

haemolytic potency of the various surfactants in solution is very similar, strong differences 

were found when the haemolysis kinetics of the corresponding surfactant-DNA gel particles 

were determined. It was found that the stronger the surfactant-DNA interaction, the slower 

the haemolysis and DNA release kinetics. The surfactant content of the DNA gel particles 

was calculated from the haemolytic responses, following the degree of counter-ion 
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dissociation from the micelle for the different surfactants. By control of the physicochemistry 

of the components on the DNA gel particles a better assessment on the final properties of 

these particles can be achieved. In this context, the reduction in the amount of surfactant 

needed to form surfactant-DNA gel particles will most probably increase the potential of 

these systems in drug delivery. Recent studies point out why plasmid DNA is much more 

efficiently transfected than linear DNA using cationic lipids as vectors in gene therapy.47 It 

has been shown that, plasmid DNA, in contrast to linear DNA, is compacted retaining a 

significant number of counter-ions in its vicinity. This in turn drives to a lower effective 

negative charge, and therefore a lower amount of cationic lipid is needed. For an effective 

DNA transfection, the lower the amount of the cationic lipid, the lower is the cytotoxicity. 

Current research is focused on characterizing the in vitro cytotoxicity of these surfactant-DNA 

particles. 
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Graphical abstract content 
 
 

 
We examined the effect of different counter-ions on the physicochemical and 

haemocompatible properties of DNA gel particles as controlled DNA delivery systems.  


