
Optical antennas as nanoscale resonators

Mario Agio,∗a

Recent progress in nanotechnology has enabled us to fabricate subwavelength architectures that function as antennas for im-
proving the exchange of optical energy with nanoscale matter. We describe the main features of optical antennas for enhancing
quantum emitters and review designs that increase the spontaneous emission rate by orders of magnitude from the ultraviolet up
to the near-infrared spectral range. To further explore how optical antennas may lead to unprecedented regimes of light-matter
interaction, we draw a relationship between metal nanoparticles, radio-wave antennas and optical resonators. Our analysis points
out how optical antennas may function as nanoscale resonators and how these may offer unique opportunities with respect to
state-of-the-art microcavities.

1 Introduction

The dramatic advances of nanotechnology experienced in re-
cent years have fueled much interest in optical antennas as
devices for managing the concentration, absorption and radia-
tion of light at the nanometer scale.1–4 In fact, the amount of
activities on this topic has grown very rapidly in various fields
of research, spanning physics, chemistry, electrical engineer-
ing, biology, and medicine to cite a few.5–11 At a more funda-
mental level, these systems may enhance the radiation proper-
ties of quantum emitters, such as atoms and molecules,12 an
endeavor that dates back to the onset of field-enhanced spec-
troscopy.13–16

Somewhat in parallel, the past decades have witnessed great
progress in the fundamentals and applications of optical res-
onators.17–19 In particular, recent developments in photonic
crystals have enabled the realization of miniaturized cavities
with mode volumes of the order of one cubic wavelength
and huge quality factors.20,21 Obtaining resonators with even
smaller dimensions is a current research challenge, which
pushes optical physics and nanofabrication into new path-
ways.

A promising strategy relies on metal nanocavities, which
use metal mirrors to confine light into tight volumes. They are
being explored, for instance, to realize ultrasmall lasers,22–24

and to enhance the spontaneous emission (SE) rate of quan-
tum emitters.25–27 As resonators are pushed towards deep sub-
wavelength dimensions, it becomes apparent that their differ-
ences with respect to optical antennas begin to vanish. In fact,
several phenomena and functionalities are investigated using
antenna architectures treated as nanoscale cavities.28–33

To gain insight on this exciting scenario for light-matter in-
teraction, we attempt to uncover the relationship between opti-
cal antennas and resonators. First, we review a number of em-
pirical rules to engineer optical antennas that lead to a strong
enhancement of the SE rate with minimal losses caused by
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absorption in real metals.34 Moreover, we describe designs
that are fully compatible with state-of-the-art nanofabrication
and highlight effects related to the antenna composition and
shape.34–38

Next, we consider a simplified antenna model and discuss
basic properties starting from analytical expressions. Since
the physical dimensions are smaller than the operating wave-
length, we base our analysis on the fundamental limitations
of electrically small antennas.39 We thus select a few popular
resonator designs18,21 and compare their figures of merit with
those of optical antennas.36 We show that the enhancement of
light-matter interaction is comparable to that achievable with
state-of-the-art cavities. Therefore, despite absorption by real
metals, there is a window of opportunity where optical anten-
nas may function as nanoscale resonators with a tiny device
footprint and manageable losses.

There is another important advantage. Having a low quality
factor, optical antennas are fully compatible with methods and
techniques of ultrafast spectroscopy40 and coherent control.41

We will return to these aspects in the conclusions.

2 Optical antennas

Optical antennas are metal nanostructures that convert
strongly localized energy into radiation and vice versa with a
high throughput.1 They share several concepts of radio-wave
antennas, but they also have distinctive features, which are il-
lustrated in Fig. 1. First, the coupling between the antenna and
its load is not via wired electric currents, but via displacement
currents proportional to the near field, which makes the in-
teraction strongly position and polarization dependent.42 Sec-
ond, the load is typically a quantum system, like an atom or
a molecule, and as such it is affected by quantum electrody-
namics (QED) phenomena associated with the modification
of the local electromagnetic environment.43,44 Third, metals
at optical frequencies are not perfect conductors and their op-
tical properties are strongly affected by the existence of sur-
face plasmon-polariton (SPP) resonances.42,45 These modes
are tightly confined and can be controlled at the nanoscale by
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shaping metals using state-of-the-art nanofabrication.46 Fur-
thermore, they also depend on intrinsic material properties
such as the optical constants47 and the electron mean free
path.48 Fourth, in optics we often work with focused beams
and guided waves. These should be considered as relevant
degrees of freedom for interfacing light with optical anten-
nas.49–52 In summary, optical antennas represent a truly inter-
disciplinary effort that involves electrical engineering, phys-
ical chemistry, quantum optics, materials science as well as
optics and photonics. In this respect, there are ongoing ef-
forts aimed at their understanding and modeling within the
established and powerful formalism developed for radio-wave
antennas. These include the definition of antenna resonance
wavelength53 and impedance.54,55

In Sec. 2.1-2.3 we explain how optical antennas may en-
hance light-matter interaction at the level of a single quantum
emitter and how this can be optimized by design. In Sec. 2.4
we analyze the main effects associated with the antenna com-
position and background medium. Moreover, in Sec. 3 we
make use of radio-wave antenna theory to formulate a link
with nanoscale resonators. We thus plan to cover most of the
aspects illustrated in Fig. 1, hoping to show how an interdis-
ciplinary approach may facilitate our understanding and also
reveal the exciting opportunities of this vibrant research field.
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Fig. 1 Optical antennas: a truly interdisciplinary research field that
involves diverse areas like electrical engineering, physical chemistry,
quantum optics, materials science, as well as optics and photonics.

2.1 Enhancement and quenching of fluorescence

We review the basic phenomena that take place when a quan-
tum emitter interacts with a metal nanostructure and try to
make a connection with concepts familiar to radio-wave an-
tennas. We limit our analysis to the weak excitation limit,
where the semi-classical theory of light-matter interaction is
greatly simplified.56 The relevant quantities that need to be
considered when an emitter is coupled to an optical antenna
are the field enhancement, the SE rate, the quantum yield and

the radiation pattern. The last topic does not fall in the focus
of this work and will not be addressed.57–62

Under weak resonant excitation the fluorescence signal can
be approximated by the formula

So = ξoηo|Eo ·d|2. (1)

The parameter ξo represents the collection efficiency, d is the
transition electric dipole moment, and Eo is the electric field
at the emitter position. ηo = Γo

r /Γo
t is the quantum yield and it

corresponds to the ratio between the radiative and total decay
rates. The latter takes into account the fact that the excited
state can also lose energy via non-radiative channels, i.e. Γo

t =
Γo

r +Γo
nr. The label o indicates that these quantities refer to an

isolated emitter.

2.1.1 Field enhancement. Away from saturation the ex-
citation rate may be increased by placing the emitter near
a nanostructure that modifies the electric field. Engineering
textbooks do not discuss the intensity enhancement K, because
it is not an important design parameter for radio-wave anten-
nas,63 while in optical domain the phenomenon has been thor-
oughly investigated in the context of surface-enhanced Raman
spectroscopy.15,16 Pioneering works based on polarizability
models indicated the SPP resonance and the lighting rod ef-
fect as the two most important electromagnetic enhancement
mechanisms.42 The latter can be intuitively explained by con-
sidering the increase in the surface charge density σ with the
curvature of a metal surface.64 Since the near field is directly
proportional to σ , nanoparticles with sharp tips tend to exhibit
larger enhancements than nanospheres. Other strategies to im-
prove the strength of the near field include the exploitation
of nanoscale gaps between two nanoparticles,65 the suppres-
sion of radiative broadening66 and the choice of different met-
als.67,68 These basic design concepts have been applied with
more breadth and detail in the subsequent years, when com-
putational methods for nano-optics have become available.69

2.1.2 Decay rates. It is well known that the SE rate is
not an intrinsic property of an atom or a molecule, but it also
depends on the local electromagnetic environment.70 Its mod-
ification can be obtained by computing the power emitted by
a classical dipole placed in proximity of the optical antenna.
The correspondence between quantum and classical theory is
valid if the normalized quantities are used,14,71,72

Γr

Γo
r
=

Pr

Po
, (2)

where Po and Pr are the power radiated by a classical dipole in
free space and near an optical antenna, respectively.

We take advantage of the reciprocity argument63 to state
that a strong K is associated with a strong modification of the
radiative decay rate. Indeed, it can be shown that for an an-
tenna that does not modify the radiation pattern of the emitter
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these two quantities are exactly equal.73 Therefore, one could
simply refer to the design strategies discussed in the previous
section to obtain a large modification of the SE rate.74

Because part of the emitted power is absorbed by metal
losses, a full characterization of the system requires the cal-
culation of both radiative Γr and non-radiative Γnr decay
rates.14,75 The total decay rate Γt is thus Γr + Γnr + Γo

nr.
The corresponding classical quantities are easily derived from
Poynting theorem,64 which leads to

Γr +Γnr

Γo
r

=
Pt

Po
, (3)

where Pt is the total power dissipated by the dipole.

2.1.3 Antenna efficiency. The enhancement of Γnr re-
quires some attention. We follow an approach borrowed from
antenna theory,63 where the antenna efficiency ηa is defined as
the ratio between the radiated power and the total power trans-
ferred from the load to the antenna. For the case of a quantum
load, i.e. an atom or a molecule, it reads ηa = Γr/(Γr +Γnr)
and the modified quantum yield η takes the expression76

η =
ηo

(1−ηo)Γo
r /Γr +ηo/ηa

. (4)

In comparison with the field enhancement, in the past years
less attention has been dedicated to the improvement of ηa.
It turns out that the latter is mostly affected by higher-order
SPP modes, which are strongly damped by absorption.43,44,77

In fact, Γnr takes over Γr as the emitter approaches the metal
surface, because the source field becomes so inhomogeneous
across the antenna that multipoles are excited more efficiently.
Moreover, there is a contrast between K and ηa. For example,
while radiative effects reduce the near-field strength,66 they
tend to increase ηa.78

Obtaining a large increase of the SE rate without compro-
mising ηa is thus a non trivial task. In what follows we show
that this is not a fundamental limitation and discuss situations
where the SE rate is enhanced by more than three orders of
magnitude without quenching.

2.2 Design rules

The key design principles for achieving a strong modification
of the SE rate with minimal suffering from Γnr can be summa-
rized as follows. First, tailor the geometry such that the SPP
resonance of the antenna lies in a spectral region that mini-
mizes dissipation in the metal. Second, choose elongated ob-
jects to benefit from strong near fields at sharp corners. Third,
adjust the emitter orientation such that its electric dipole mo-
ment is aligned with that of the antenna. Fourth, ensure that in
the antenna higher order SPP modes are spectrally separated
from the dipolar one.34 Fifth, choose the antenna volume such
that radiation is stronger than absorption.78,79

To exemplify these rules we consider the emission of a
dipole close to an elliptical gold nanoparticle. Its SPP reso-
nance is located in the near-infrared region, where the imagi-
nary part of the dielectric function of gold is smaller.80 More-
over, K is expected to be stronger at the nanoparticle apex. As
shown in Fig. 2a, we see that, although both Γr and Γnr expe-
rience a considerable enhancement, Γr is larger than Γnr at the
SPP resonance of the long axis. Figure 2b plots the distance
dependence of the decay rates at the long-axis SPP resonance,
illustrating that Γr dominates for all separations larger than 3
nm. The strong quenching observed at shorter wavelengths is
attributed to the excitation of higher-order multipoles, which
are spectrally separated from the SPP dipole mode.34

2.3 Shape dependence

In Fig. 2 we have shown that changing the shape of the optical
antenna can have a huge impact on its performances. In this
section we analyze this in more detail, with emphasis on the
modification of the SE rate and ηa. In particular, we pay at-
tention to systems and parameters that are within the reach of
standard nanofabrication methods and of the common experi-
mental techniques used in nano-optics.9

2.3.1 Adding a second nanoparticle. A better com-
parison with the single nanoparticle case can be seen if the
molecule is at a fixed distance from one of the two nano-
objects, while the other one is approached from far away.35

The inset of Fig. 3 schematically shows how the coupling be-
tween emitter and antenna is modified by changing the dis-
tance d.
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Fig. 3 Emitter coupled to one or two 100 nm gold nanospheres in
air. Enhancement of the SE rate (a) and ηa (b) at λ = 580 nm. The
inset describes the coupling scheme. Figure adapted with
permission from Ref.35. Copyright (2007) by SPIE.

3



500 600 700 800 900
Vacuum Wavelength (nm) 

0

50

100

150

200

250

x100
short axis

long axis

10 20 30 40 50 60 70 80 90 100
Distance (nm) 

0

20

40

60

80

100

120

N
or

m
al

iz
ed

 D
ec

ay
 R

at
es

N
or

m
al

iz
ed

 D
ec

ay
 R

at
es

Sc
at

te
rin

g 
C

ro
ss

 S
ec

tio
n 

(a
.u

.)

(a) (b)

Cross section
Radiative
Non-radiative

Fig. 2 Normalized decay rates for an emitter coupled to a gold ellipse (long axis = 60 nm, short axis = 10 nm, backround refractive index
nb=1.7, two-dimensional model). (a) Wavelength dependence for a particle-emitter distance of 3 nm. The scattering cross section of the
antenna is also plotted. (b) Distance dependence for the wavelength λ = 770 nm. The emitter is oriented as shown in the inset. Figure adapted
with permission from Ref.34. Copyright (2007) by the Optical Society of America.

The enhancement of the SE rate is plotted in Fig. 3a as a
function of d. When both nanoparticles are close to the emit-
ter, the increase is clearly larger than for a single one. Fig-
ure 3b shows that for one nanoparticle ηa rapidly drops to
zero when the distance becomes smaller than 20 nm,44,81–83

whereas for two nanoparticles it slightly increases and then de-
creases until quenching (not shown), but at shorter distances
than for the previous case. Thus, the data from Fig. 3a and
b highlight the competition between the SE rate enhancement
and ηa. Note that the balance between them is clearly different
for one and two nanoparticles.

2.3.2 Changing the nanoparticle apex. To further dis-
cuss how the nanoparticle shape affects the antenna perfor-
mances, we focus on the wavelength range between 600 nm
and 1100 nm, which covers the emission spectrum of rele-
vant nanoscale light emitters.84–87 Because the enhancement
is maximum when the emitter is placed at and oriented along
the nanoparticle long axis, we only consider this situation.
Furthermore, to treat a more experimentally feasible situation,
we set the distance between emitter and nanoparticle to 10 nm.

We compare nanospheroids43,88 with gold nanorods.3,89

Figure 4a shows that the SPP resonance peak red shifts when
the nanorod short axis b decreases. Therefore, by tuning the
aspect ratio a/b one can easily place the SPP resonance at the
desired spectral location.89 The increase of the radiative decay
rate is close to 3000 for wavelengths around 1100 nm. How-
ever, when the resonance moves towards the visible spectrum,
the enhancement drops very rapidly. As shown in Fig. 4a, ηa
increases with the nanorod volume, i.e. as b becomes larger.
Unfortunately, the largest improvement correspond to the low-
est efficiency because a higher aspect ratio implies a reduced
volume.79

The steep decrease of the enhancement upon reduction of
the aspect ratio stems from the fact that the nanorods ends

are flat. In replacing nanorods with nanospheroids we iden-
tify three important aspects. First, for high aspect ratios the
nanospheroids exhibit smaller enhancements. Second, for low
aspect ratios the enhancement decreases more slowly and the
SPP resonance is less red-shifted, as shown in Fig. 4b. Third,
ηa reaches its plateau already at wavelengths close to 650 nm
if the aspect ratio is less than 2. Compared to nanorods the en-
hancement is larger at shorter wavelengths because a smaller
aspect ratio is partially compensated by a sharper nanoparticle
apex. A more detailed comparison of the two antenna systems
can be found in Ref.36. These results highlight the fact that
experiments require great control over the nanoparticle shape,
especially if large enhancements are desired.

2.3.3 The conical antenna. An important issue is that ηa
and the enhancement of SE are maximal for different antenna
parameters. Can we improve the antenna design to increase Γt
without decreasing ηa and losing control on the spectral posi-
tion of the resonance? A simple solution is to use a nanocone,
where one end can be sharp to increase K and the SE rate,
whereas the other end can be larger for increasing the volume,
hence ηa.38

Figure 5 displays the radiative decay enhancement and ηa
for single nanocones as a function of the base diameter b.
The rate increases slightly and then decreases, confirming that
there exists an optimal value for b.90,91 On the other hand, ηa
grows with b because the antenna volume increases. An im-
portant advantage with respect to nanorods and nanospheroids
is that here the resonance can be spectrally tuned by changing
the nanocone angle, without a significant loss of enhancement.
Note that the enhancement factor is as high as 2000 for a con-
ical and 8000 for a bi-conical antenna (not shown).38
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Fig. 4 Antenna efficiency (dashed curves) and radiative decay enhancement (solid curves) for an emitter coupled to two gold nanorods (a)
and nanospheroids (b) in glass as a function of the aspect ratio for a=80 nm. Figure adapted with permission from Ref.36. Copyright (2008)
by IOP Publishing.
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2.4 Materials dependence

We have discussed examples where the antenna properties
are tuned by changing its shape and size. While these de-
grees of freedom offer a wide range of performances, there
are situations where other parameters may be adjusted. For
instance, recent works have investigated the optical response
of copper,92 aluminum37,93–96 and palladium97 nanoparticles.
While previous theoretical studies focused on K,67,68 here
we discuss the modification of the SE rate and ηa. We
choose nanospheroids as a model system and review designs
that cover the spectral range from the ultraviolet to the near-
infrared.37,79

2.4.1 Background medium. First, we wish to illustrate
how the enhancement of the radiative decay rate and ηa de-
pend on the background index. Figure 6a shows that for an

emitter coupled to a gold nanospheroid even a small change
in the refractive index shifts the SPP resonance by more than
hundred nanometers. At the same time, the resonance gets
wider because radiative broadening increases with the refrac-
tive index.66 That also explains the small decrease in the en-
hancement. Note that the shift of the SPP resonance towards
shorter wavelengths improves ηa. For instance, it is larger than
70% around 650 nm if the antenna is in air.

2.4.2 Gold and copper. The real part of the dielectric
function of the two materials is quite similar, whereas the
imaginary part is larger for copper.47,80 Figure 7 shows the
radiative decay enhancement and ηa for an emitter coupled to
a copper nanospheroid. Compared to gold antennas the en-
hancement is smaller and the resonances are broader, as ex-
pected from the larger imaginary part. Moreover, ηa is lower,
but it shows the same trend as gold antennas.
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Fig. 7 Radiative decay enhancement (solid curves) and antenna
efficiency (dashed curves) for an emitter coupled to a copper
nanospheroid in glass. Figure adapted with permission from Ref.37.
Copyright (2009) by the American Scientific Publishers.

2.4.3 Silver and aluminum. Silver has a higher plasma
frequency than gold so that the antenna resonance is shifted
towards shorter wavelengths. On the other hand the imagi-
nary part of the dielectric function drops to lower values, with
immediate benefits for ηa.47

Aluminum has an even higher plasma frequency than sil-
ver.98 Even if the imaginary part is significantly larger than
in the noble metals, in the region below 600 nm the large and
negative real part ensures that the skin depth is sufficiently
small to prevent significant absorption losses.

The antenna efficiency and the radiative decay enhancement
for an emitter coupled to two aluminum nanospheroids is pro-
vided in Fig. 8. The performances are not as high as for the
same geometry made from other materials.37 Since ηa is large
the reason for that should be attributed to radiative broadening
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Fig. 8 Radiative decay enhancement (solid curves) and antenna
efficiency (dashed curves) for an emitter coupled to two aluminum
nanospheroids in air. Figure adapted with permission from Ref.37.
Copyright (2009) by the American Scientific Publishers.

rather than to losses.66 Indeed, optimizations of K have shown
that the SPP resonance should be tuned around 200-300 nm.68

Aluminum is thus more suitable for applications in the ultra-
violet spectral region.95,99

3 Towards nanoscale cavities

We have shown how optical antennas may increase the SE rate
by orders of magnitude with minimal suffering from absorp-
tion losses. These settings are very promising for implement-
ing the functionalities of microresonators at the nanoscale. It
is therefore instructive to translate the antenna performances
into the common parameters of an optical cavity, i.e. quality
factor, mode volume, Purcell factor and device footprint.

Recent works have discussed the enhancement of light-
matter interaction by optical antennas and metal nanocavities
using the mode-volume picture and the Purcell factor.100–103

Here we combine field-enhanced spectroscopy, antenna theory
and cavity QED to express figures of merit and scaling laws
that may provide useful insight on the opportunities offered by
optical antennas seen as nanoscale resonators. Furthermore,
we pay attention to the antenna efficiency and study how it
constrains the other performances.

3.1 From antenna theory to nanoscale resonators

First, we briefly review the formulation of cavity QED in the
perturbative regime, which is the same level of theory used in
the previous sections for optical antennas. For convenience we
set Γo

nr = 0, and write Γo
r =Γo and Γt =Γ. Next, we discuss the

relationship between the Purcell factor and the modification
of the SE rate by optical antennas, with emphasis on the lo-
cal density of photonic states. We then establish a connection
between K and the near-field zone of a radio-wave antenna.
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3.1.1 Cavity quantum electrodynamics. In free space
the quantized electromagnetic field is expressed by

E(r) = i∑
µ

√
h̄ωµ

2ε0V
eµ

(
âµ eik·r−h.c.

)
, (5)

where h.c. means Hermitian conjugation of the preceding
term. V is the quantization volume, eµ is the polarization ver-
sor and âµ is the destruction operator for one photon in the
mode µ of energy h̄ωµ .56 Using Eq. (5) in Fermi golden rule
we obtain

Γo =
2π

h̄ ∑
µ

h̄ωµ

2ε0V
|d · eµ |2δ (h̄ω− h̄ωµ) =

2π

3ε0
ωd2go(ω).

(6)
go(ω) is the density of photonic states (DOS) in vacuo for one
polarization and it is given by go(ω) = ω2/(2π2h̄c3).

When the emitter is inside a resonator at ro, Eq. (5) needs
to be replaced by56

E(r) = i∑
µ

√
h̄ωµ

2ε0

(
âµ αµ(r)−h.c.

)
, (7)

where αµ(r) is the cavity mode profile. It is normalized to
one and its dimensions correspond to V−1/2. Hence |αµ(r)|2
may be viewed as the probability density of having a photon at
r. This intepretation will become apparent when we introduce
the concept of a mode volume to parametrize the enhancement
of light-matter interaction (see Eq. (11)). With Eq. (7) the SE
rate becomes

Γ =
2π

h̄ ∑
µ

h̄ωµ

2ε0
|d ·αµ(ro)|2δ (h̄ω− h̄ωµ). (8)

We now assume that the transition frequency ω is resonant
with only one mode α(r) and that d is parallel to the electric
field. Next, the atomic line is much narrower than the cavity
mode and the latter has a Lorentzian profile of width γ . Under
these circumstances the DOS reads

g(ω) =
2

π h̄γ
=

2Q
π h̄ω

, (9)

where Q = ω/γ is the quality (Q) factor. The mode volume
for the position ro is defined as Vµ = |α(ro)|−2 and Eq. (8)
can be expressed in the form

Γ =
2d2Q
ε0h̄Vµ

= FΓo, (10)

where F is the Purcell factor

F =
3

4π2 λ
3 Q
Vµ

. (11)

The condition for having a strong enhancement of the SE rate
is thus a high Q factor and a small Vµ . In place of F one defines
the local DOS (LDOS) ρ(ro,ω)= g(ω)|α(ro)|2 to express the
SE rate as

Γ =
πd2ω

ε0
ρ(ro,ω) =

ρ(ro,ω)

ρo(ro,ω)
Γo, (12)

where ρo(ro,ω) is the LDOS in vacuo. Note that Vµ is of-
ten expressed in units of the cubic wavelength. We do so in
the following sections and write Vm = (λ/nb)

3Vµ , where the
refractive index nb is added to generalize the formula to di-
electric media.

3.1.2 Field-enhanced spectroscopy. The theoretical
models used for field-enhanced spectroscopy are based on the
semi-classical theory of light-matter interaction.15,16 More-
over, optical resonators are replaced by interfaces and metal
nanoparticles, which cannot be easily described with the stan-
dard toolbox of cavity QED.32,104–106

The SE rate is thus computed from the expression

Pt =−
1
2

∫
V

Re{j∗(r,ω) ·E(r,ω)}dV, (13)

where Pt is the total power dissipated by the current density
j(r,ω).64 For an infinitesimal oscillating dipole p located at ro
one writes j(r,ω) =−iωpδ (r− ro) and the previous equation
takes the form

Pt =
ω

2
Im{p∗ ·E(ro)} . (14)

To make the connection with the modification of the LDOS
we recall that the electric field radiated by p at ro is related to
the Green tensor G by64

E(r) =
1
ε0

ω2

c2 G(r,ro;ω) ·p (15)

and that14

ρ(ro,ω) =
6ω

πc2

[
np · Im{G(ro,ro;ω)} ·np

]
, (16)

where np represents the dipole orientation. By comparing
Eqs. (14) and (16) we obtain

Pt =
πω2

12ε0
|p|2ρ(ro,ω), and

Pt

Po
=

ρ(ro,ω)

ρo(ro,ω)
. (17)

Note that the change in the LDOS affects the total decay rate.
For an antenna that preserves the dipolar radiation pattern of

the emitter the modification of the radiative decay rate can be
related to K.73 To facilitate the derivation of analytical expres-
sions (see Sec. 3.2) and gain insight on the various contribu-
tions to K, we adopt a formalism based on polarizability mod-
els. These have been extensively applied in the 1980s,15,16
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when it was difficult to perform electrodynamic analyses on
metal nanoparticles of arbitrary shape. For a free-space am-
plitude Eo, the electric field near the antenna apex reads66

Etip = ξ Edip +Eo ' (1−L)χEo, (18)

where ξ represents the so-called lighting rod effect and Edip
is the near field due to the electric dipole induced in the an-
tenna.16 Equation (18) contains χ , the antenna susceptibility,
and L, a geometrical factor related to antenna shape. Because
Γr = ηaΓt, the change in the SE rate reads

Γt

Γo
'
∣∣∣∣Etip

Eo

∣∣∣∣2 1
ηa

. (19)

3.1.3 Antenna theory. Having established a relationship
between the perturbative regime of cavity QED and the modi-
fication of the SE rate by optical antennas, we wish to investi-
gate the connection between K and antenna theory. We do so
by considering the complex Poynting vector63

S =
1
2

E×H∗, (20)

where H is the magnetic field. If we compute the power flow
through a spherical surface of radius r,

P =
1
2

∫
4π

S ·nr2 dΩ = Pr + iPi, (21)

we identify two terms. Pr is the power radiated by the antenna,
whereas iPi is purely imaginary and there is no time-average
power flow associated with it. It is in fact called reactive power
and it stands for the electromagnetic energy stored near the
antenna. From Poynting theorem one can write

Pi = 2ω(W r
e −W r

m), (22)

where W r
e and W r

m are the electric and magnetic energies in the
radial direction, respectively.

The relationship between Pi and K near an optical an-
tenna can be understood by considering the two quantities in
Eq. (21) for an infinitesimal dipole antenna, which read63

Pr = Z
π

3

∣∣∣∣ Iol
λ

∣∣∣∣2 , Pi = Z
π

3

∣∣∣∣ Iol
λ

∣∣∣∣2 1
(kr)3 . (23)

l� λ is the dipole length, Io is the driving current, k = 2π/λ

and Z is the vacuum impedance.
Note that Pi decreases with kr and vanishes in the far field,

whereas Pr is constant. Therefore, the reactive part of the an-
tenna radiation field can be associated with the field enhance-
ment exhibited by metal nanoparticles. Since these have di-
mensions smaller than the wavelength, it turns out that near
the metal surface Pi � Pr. By reciprocity, we can argue that
the incoming radiation becomes reactive in the proximity of
the nanoparticle and it gives rise to a sizeable concentration of
electromagnetic energy.

3.1.4 Fundamental limitations. We now discuss some
features starting from electrically small antennas. Their name
stems from the fact that the characteristic dimensions are
much smaller than the wavelength of the field they radiate.
Since antennas are devices conceived to couple to free space
waves, one expects limitations upon size reduction.

The theory of electrically small antennas has been devel-
oped by several authors. Here we go after the works of Chu,
Hansen and McLean and focus on the relationship between
the Q factor and the reactive energy as a function of the an-
tenna dimensions.39,107,108

The Q factor can also be formulated as

Q = 2ω
max{We,Wm}

Pr
, (24)

where We and Wm are the time-averaged electric and magnetic
energies associated with the non-propagating part of the elec-
tromagnetic field generated by the antenna. For electrically
small antennas it turns out that We is much larger than Wm, as
expected for an oscillating electric dipole.64

Chu considered an antenna enclosed in a virtual sphere of
radius kr and computed the minimum Q factor that it could
have. The calculation can be conveniently carried out by a
multipole expansion of the electromagnetic field, where We
refers to the non-propagating power external to the sphere. For
a linearly polarized antenna the theoretical minimum is given
by108

Q' ηa

(
1

(kr)3 +
1
kr

)
, (25)

where we have added ηa to facilitate the comparison with op-
tical antennas.

The Q factor goes to infinity when kr tends to zero, mean-
ing that an antenna cannot be made indefinitely small with-
out compromising its radiation and bandwidth performances.
Note that for an infinitesimal dipole antenna with length l = 2r
much larger than its cross section 2a the Q factor,

Q' 6log(r/a)−1
(kr)2 tan(kr)

, (26)

is larger than that of Eq. (25). The dipole antenna exhibits
worse performances because it does not fully exploit the vol-
ume of the virtual sphere.39

When an electrically small antenna approaches dimensions
where kr � 1, the Q factor gets very large and the system
behaves as a subwavelength resonator. It is worth pointing
out that in a microcavity the electromagnetic energy is pre-
vented from escaping into free space by high-reflectivity mir-
rors, while here it is stored because the antenna becomes a
very inefficient radiator.

Interestingly, the increase in the Q factor corresponds to
a decrease in the antenna volume, which is also associated
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with K, as discussed in Sec. 3.1.3. We therefore anticipate
that the limitations of electrically small antennas become ad-
vantageous for enhancing the radiation properties of nearby
quantum emitters.

3.2 Figures of merit for optical antennas

In Sec. 2 we have presented antenna designs that could signif-
icantly improve light-matter interaction. In place of rigorous
electrodynamic calculations, it is useful to present an approx-
imate but sufficiently general model that can be used to gain
insight on these concepts and to make the connection with an-
tenna theory and cavity QED in the perturbative regime.

3.2.1 The model. We consider a prolate nanospheroid
with long a and short b semi-axes, whose physical volume
is given by Vph = 4πab2/3. The antenna is made of a Drude
metal with dielectric function

ε(ω) = εb−
ω2

p

ω(ω + iγ)
, (27)

where it is convenient to choose εb equal to that of the sur-
rounding medium. ωp and γ are the plasma and damping
frequencies, respectively.109 The optical properties of the an-
tenna can be worked out starting from a polarizability model
with radiative corrections,66

α ' 2πab2

3L
ωo

ωo−ω− iΓa/2
, (28)

where ωo = ωp
√

L/εb and Γa = γ +2k3ab2ωo/9L are the an-
tenna resonance frequency and linewidth, respectively. Note
that Γa has two contributions. The first term represents ab-
sorption and the second one radiation. In Eq. (28) we have
introduced the geometrical factor L, which is related to the as-
pect ratio AR=a/b.45 For a sphere AR=1 and L = 1/3, while
for a prolate spheroid L tends to 0 when AR� 1.

Figure 9 illustrates the antenna model and the coupling to a
quantum emitter. The latter has the resonance frequency equal
to that of the antenna, but the emitter linewidth Γm is assumed
to be much smaller than Γa. Furthermore, the interaction be-
tween the optical antenna and the emitter is formulated using
the vacuum Rabi frequency Ω.56

3.2.2 Antenna efficiency. We now derive the relevant an-
tenna parameters starting from ηa. As discussed in Section 2,
ηa depends on the antenna as well as on the position and ori-
entation of the emitter. To avoid details a good approximation
for ηa is the ratio between the scattering and the extinction
cross sections of the antenna. This definition should not be
considered a crude approximation, but rather an upper bound

Ω

Γa Γm

Fig. 9 A quantum emitter (black arrow) coupled to an optical
antenna (gold spheroid) in the cavity QED picture. Γa and Γm
respectively represent the antenna and the emitter resonance
linewidths, with Γa� Γm. The interaction strength between the two
systems is parametrized by the Rabi frequency Ω.

that is very close to the realistic values obtained for high-
performance antennas.79 Using Eq. (28) we arrive at

ηa =
1

1+
γ

ωp

9
√

εbLAR2

2(ka)3

. (29)

Equation (29) shows that ηa decreases quite rapidly with the
antenna volume, whereas the dependence on material losses
enters through the quantity γ/ωp.109 Table 1 displays this pa-
rameter for selected metals. Note, however, that these values
are for a static electric field.

Table 1 Tabulated values of γ/ωp for selected metals.109 Lowering
the temperature T reduces the absorption losses by an amount that is
different for each metal.
Material T = 273K T = 77K
Au 0.0024 0.0006
Ag 0.0018 0.00036
Al 0.0051 0.00063
Cu 0.0022 0.00029
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Fig. 10 Antenna efficiency as a function of AR plotted for three
different values of ka: 0.5 (black), 0.4 (red), 0.3 (blue).
γ/ωp = 0.005 for all curves.

Figure 10 plots ηa as a function AR for different values of
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ka. For a resonance wavelength of 600 nm, ka = 0.5 corre-
sponds to an optical antenna with linear dimensions of the
order of 100 nm. Moreover, we choose γ/ωp = 0.005 and
εb = 1 to reproduce the performances presented in Ref.36. As
expected, ηa decreases with AR and with ka. Nonetheless, for
ka' 0.5 ηa is large in a wide range of aspect ratios.

3.2.3 Q factor. The Q factor can be easily obtained from
the formula Q = ωo/Γa.64 Adding ηa leads to

Q = ηa
9LAR2

2(ka)3 . (30)

Figure 11 displays the Q factor as a function of AR and ka.
Note the competition between the decrease of ηa in Fig. 10 and
the increase of the Q factor with AR. For ka� 1 absorption
losses dominate and the Q factor saturates to the value Q =
(ωp/γ)

√
L/εb.
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Fig. 11 Q factor as a function of AR plotted for three different
values of ka: 0.5 (black), 0.4 (red), 0.3 (blue). γ/ωp = 0.005 for all
curves.

3.2.4 Field enhancement. For the calculation of K we
consider the antenna apex. We start from Eq. (18) and re-
place ξ and Edip with the values obtained from Eq. (28).
The lighting-rod effect reads ξ = 3AR2(1−L)/2 and Edip =
2αEo/a3. A few algebraic operations lead to

K =

(
9
2

ηa
AR2

(ka)3

)2

(1−L)2. (31)

Note that the (ka)−6 dependence is compensated by a drop in
ηa. In fact, when ka approaches zero, K saturates to the value

lim
ka→0

K =

(
ωp

γ

)2 (1−L)2

εbL
, (32)

which depends on the material losses and the antenna geom-
etry. Indeed, Fig. 12 indicates that K falls off when γ/ωp in-
creases.
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Fig. 12 Intensity enhancement as a function of AR plotted for
different values of ka and γ/ωp: ka = 0.5 and γ/ωp = 0.005 (black),
ka = 0.4 and γ/ωp = 0.005 (red), ka = 0.4 and γ/ωp = 0.05 (blue).

3.2.5 Optical antennas are electrically small. The inset
in Fig. 13 depicts a nanospheroid and an infinitesimal dipole
antenna enclosed in the Chu virtual sphere of radius r. We also
consider a nanosphere and an ideal electrically small antenna.
The Q factor for these radiating systems is plotted in Fig. 13
as a function of kr. According to the Chu theory, a metal
nanosphere should be an efficient electrically small antenna,
because it can fill the virtual sphere. Indeed the Q factor of a
nanosphere agrees very well with the result of Eq. (25) when
kr < 1. However, for kr� 1 the curve saturates to ωp/(

√
3γ).

When the nanosphere is replaced by a nanospheroid the Q fac-
tor increases, because the available radiating volume is not
fully exploited.

In summary, metal nanoparticles are electrically small an-
tennas, agree with the Chu theory and share the resulting lim-
itations. These turn out to be very important for optical anten-
nas, because the fact that the Q factor and the reactive energy
increase when the antenna volume decreases may be exploited
to enhance light-matter interactions.

3.3 Comparison with optical resonators

We are ready to compare the figures of merit of optical anten-
nas with those of optical microcavities. For our purpose we
choose the following cavity parameters: radiation efficiency,
Q factor, mode volume and footprint. The latter represents the
actual device volume Vph. Literature values for these quanti-
ties are indicated in Fig. 14 with the corresponding resonator
models.18,21

3.3.1 Antenna efficiency. For a more direct comparison
with optical resonators, we use Vph in units of (λ/nb)

3 to ob-
tain

ηa =
1

1+
γ

ωp

3
4π2

√
εbL

Vph

. (33)
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Fig. 14 Figures of merit for optical resonators: Q factor, mode volume Vm and physical volume Vph. Vm and Vph are both in units of the cubic
wavelength. Figure adapted with permission from Macmillan Publishers Ltd: Nature (Ref.18), copyright (2003) and Nat. Mater (Ref.21),
copyright (2005).
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Fig. 13 Q factor as a function of kr for an ideal electrically small
antenna (black solid curve), an infinitesimal dipole (red solid curve),
and optical antennas (dashed curves): a nanosphere (black) and a
nanospheroid (red). We choose γ/ωp = 0.003 for the nanosphere,
AR=3 and γ/ωp = 0.05 for the nanospheroid, and r/a = 50 for the
infinitesimal dipole. The inset shows an infinitesimal dipole (brown)
and a nanospheroid (yellow) enclosed in the radiating sphere.

The curves plotted in Fig. 15 correspond to different val-
ues of γ/ωp and AR (see the figure caption for details). It is
shown that ηa drops when Vph is smaller than about 10−4 cu-
bic wavelengths, a value that strongly depends on γ/ωp. On
top of these curves the filled circles refer to antenna designs
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Fig. 15 Antenna efficiency as a function of Vph. The curves
represent the antenna model: AR=1, γ/ωp = 0.005 (black), AR=10,
γ/ωp = 0.005 (blue), AR=1, γ/ωp = 0.0005 (red). The circles refer
to resonators, a molecule and optical antennas:36 nanospheroids
(green), nanorods (red), and nanorod pairs (blue).

discussed in Ref.36, namely nanospheroids (green), nanorods
(red) and nanorod pairs (blue). The data agree well with our
model. The dependence of ηa on Vph illustrates the com-
petition between absorption and radiation losses and recalls
the conflict with the enhancement of light-matter interaction,
which requires an optical antenna with a strong reactive be-
havior. For the sake of comparison, we also indicate Vph and
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ηa for optical resonators and a molecule with ηo ' 1.

3.3.2 Q factor. The Q factor is inversely proportional to
Vph and Eq. (30) can be rewritten as

Q = ηa
3

4π2
L

Vph
(34)
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Fig. 16 Q factor as a function of Vph. The curves represent the
antenna model: AR=1, γ/ωp = 0.005 (black), AR=10,
γ/ωp = 0.005 (blue), AR=1, γ/ωp = 0.0005 (red). The filled circles
refer to resonators, a molecule and optical antennas:36

nanospheroids (green), nanorods (red), and nanorod pairs (blue).

Figure 16 compares Eq. (34) with the antenna designs of
Ref.36, as well as with selected optical resonators and a single
molecule. The Q factor of optical antennas is much smaller
than in the other systems and for very small values of Vph it
is determined by the absorption losses and the antenna geom-
etry. Since the response time is proportional to the Q factor,
optical antennas might represent a unique opportunity for en-
hancing light-matter interaction and, at the same time, meet
the requirements of ultrafast optics. For example, a single
molecule or ultrahigh-Q cavities have response times of the or-
der of nanoseconds. Resonators with a high Q factor can cope
with picosecond pulses. Optical antennas may offer the possi-
bility of working with femtosecond pulses. In this respect, an
important point of concern is whether antennas could increase
light-matter interaction as much as optical resonators.

3.3.3 Spontaneous emission rate. The enhancement of
the SE rate is obtained from Eq. (19) upon replacing K with
the expression given in Eq. (31). A few more algebraic steps
lead to

Γt

Γo
= ηa

9
16π4

(1−L)2

V 2
ph

. (35)
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Fig. 17 Enhancement of the SE rate as a function of Vph. The
curves represent the antenna model: AR=1, γ/ωp = 0.005 (black),
AR=10, γ/ωp = 0.005 (blue), AR=1, γ/ωp = 0.0005 (red). The
filled circles refer to resonators, a nanocavity26 and optical
antennas:36 nanospheroids (green), nanorods (red), and nanorod
pairs (blue).

Figure 17 demonstrates that the Purcell factor of optical res-
onators and the modification of the SE rate by optical anten-
nas can be of the same order of magnitude. Furthermore, it is
shown that the designs discussed in Ref.36 can compete with
the performances of high-Q photonic-crystal cavities

3.3.4 Mode volume. The last topic to be discussed is the
mode volume. We point out that Vm is not a well defined
quantity for optical antennas, because a dissipative environ-
ment does not have normalizable true modes.110 Since we are
mostly interested in presenting figures of merit and scaling
laws, we are satisfied with a definition of Vm based on Eq. (11).
We thus write

Vm =
3

4π2 Q
(

Γt

Γo

)−1

. (36)

We then replace the Q factor and the enhancement of the SE
rate using Eqs. (34) and (35), respectively, to arrive at

Vm =
L

(1−L)2 Vph. (37)

Figure 18 compares the result of Eq. (37) with the mode
volume of optical resonators. Note that even for the smallest
photonic-crystal cavities Vm is about three orders of magni-
tude larger than for optical antennas. Furthermore, while for
the latter Vm is comparable to Vph, for microcavities Vph is sig-
nificantly larger than Vm.

An alternative way to derive Vm for an optical antenna uti-
lizes the vacuum Rabi frequency Ω. The latter can be ob-
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Fig. 18 Mode volume as a function of Vph. The curves represent
the antenna model: AR=1, γ/ωp = 0.005 (black), AR=10,
γ/ωp = 0.005 (blue), AR=1, γ/ωp = 0.0005 (red). The filled circles
refer to resonators and optical antennas:36 nanospheroids (green),
nanorods (red), and nanorod pairs (blue). The dashed line marks
Vm =Vph.

tained from a Green-function formulation of QED.104,105 If
the antenna leads to a strong modification of the SE rate
(Γt/Γo � 1), we can ignore the free-space radiation modes
and approximate the imaginary part of the Green function with
a Lorentzian of width Γa. It can be shown that the Rabi fre-
quency is related to Γt and Γa through the formula

Ω =

√
ΓtΓa

4
. (38)

From Eqs. (28) and (35) we find

Ω =
1−L√

L
1√
Vph

, (39)

Note that the above expression is given in units of
ω2d/(4

√
ε0h̄π3c3). Since Ω =

√
ωod2/(2ε0h̄Vµ), where Vµ

is the mode volume in dimensional units, one obtains the same
result of Eq. (37).

After these considerations, we once more wish to discuss
the competition between ηa and the enhancement of light-
matter interaction. While ηa drops very rapidly when the an-
tenna dimensions become smaller than a certain value that pri-
marily depends on the parameter γ/ωp, the enhancement of
the SE rate increases and, despite the low Q factor, it reaches
values that compete with those of state-of-the-art optical cav-
ities. Within these opposite trends there is a parameter range
where optical antennas could function as nanoscale resonators
with a tiny device footprint (see Fig. 19), manageable absorp-
tion losses and ultrafast operation.

footprint

optical
antenna

GaAs

air holes

1 μm

Fig. 19 Device footprint for a GaAs photonic-crystal cavity (figure
adapted with permission from Ref.137. Copyright (2007) by SPIE)
and an optical antenna.

We based our discussion on a simplified antenna model,
which is nevertheless able to relate the main physical mag-
nitudes of a resonator with those of an antenna and provide
scaling laws for the figures of merit. Moreover, we have found
good agreement between the outcome of our model and real-
istic antenna designs36. These are indicated as filled circles
in the previous figures. Although we based the analysis on
metal nanoparticles, we wish to point out that our expressions
are in principle applicable to a larger class of antennas and
nanocavities, since the geometrical factor L is the only quan-
tity that depends on the specific design. This is confirmed in
Fig. 17, where we show that the parameters of a nanocavity fit
our model very well.

Inspired by Fig. 14, we wish to conclude our analysis by
presenting in Fig. 20 a classification of optical antennas ac-
cording to their mode volume and confinement method. In
doing so we keep in mind that this field is still making rapid
progress. Our attempt is thus to indicate which approaches
are consolidating and how they may differ from conventional
strategies that have been used in the past century to confine
light at optical frequencies. The striking differences with re-
spect to Fig. 14 must not only be attributed to the role of SPP
resonances, but also to the different level of theory involved
in the resonator design. In fact, while optical microcavities
rely on physical optics, nanoscale cavities owe their proper-
ties to near-field optics, whose wealth of effects may lead to
unprecendented possibilities in the resonator design.111,112

4 Conclusions and outlook

We investigated fluorescence enhancement by optical anten-
nas. Previous works indicated that at optical wavelengths
losses by real metals could quench light emission. We estab-
lished that this is not a fundamental constraint and showed that
the interaction can be improved by more than three orders of
magnitude without substantial quenching.34

We took advantage of computational nano-optics to analyze
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Fig. 20 Classification of optical antennas according to their mode volume Vm and confinement method, namely nanoparticles,16,34,36

nanoholes and nanocavities,25–27,138 nanorings102,139 and hybrid approaches.140–144 Nanoholes and nanocavities may be understood as the
complementary structure of metal nanoparticles. Nanorings and nanodisks of deep subwavelength dimensions should be considered as
nanoparticles. Otherwise they correspond to whispering gallery resonators. Hybrid approaches range from the combination of nanoscale
structures with optical microcavities (upper panel) to the exploitation of near-field effects with non-resonant geometries like a metal film
(bottom panel). Note that sorting based on the Q factor, as in Fig. 14, would be less meaningful.

the significant role that geometrical details play in determining
the antenna behavior.36,38 Moreover, we discussed the choice
of different metals to enhance emitters from the ultraviolet to
the near-infrared spectral range.37 We would like to empha-
size that these performances occur for distances such that mi-
croscopic effects can be safely neglected113–115 and our design
strategies are solely based on electrodynamics considerations
like for radio-wave antennas.63

Optical antennas that strongly enhance the SE rate may
improve the quantum yield of weak emitters, such as sili-
con nano-crystals,116 molecules,117 nanotubes85 or diamond
color centers,118 and provide a handle on photophysical pro-
cesses in general.77,119 Furthermore, a larger decay rate per-
mits a higher degree of light emission, with immediate impli-
cations for single-photon sources.120,121

An important theme of our research has been the enhance-
ment of light-matter interaction towards levels pertaining to
optical resonators. To better understand the implications of
these findings, we derived figures of merit using antenna the-
ory39 and compared them to common resonator designs.18,21

Despite absorption losses we found that antennas are promis-
ing candidates for implementing the functionalities of optical
resonators at the nanoscale. Moreover, having a low Q factor,
antennas do not suffer from the bandwidth limitations that are
common to high-finesse cavities.

Altogether, these settings hold great promise for interfacing
photons to a quantum system beyond the framework of cavity
QED17 and urge further thorough theoretical and experimen-

tal investigations. These include studying the quantum optical
phenomena that take place when an optical antenna mediates
the interaction between photons and single quantum emitters
in the full QED picture and beyond continuous wave excita-
tion.33 For instance, a number of proposals for quantum infor-
mation science that are based on cavity-assisted interactions
could be explored in this way.122,123

The ultrafast response of optical antennas, combined with
their ability to funnel light beyond the diffraction limit with
a high throughput,52 has immediate implications for scanning
implementations of time-resolved, multidimensional and non-
linear nanoscopies.124–129 Furthermore, combining ultrafast
spectroscopy, field-enhanced spectroscopy and quantum op-
tics could push forward the possibility of the coherent op-
tical access of a quantum emitter above cryogenic temper-
atures,130,131 and monitor quantum coherence under condi-
tions where dephasing processes occur at very short time
scales.132,133

The stringent requirements on photon management im-
posed by quantum-optical applications might turn out to be
extremely useful also for classical information processing
to achieve, for instance, nonlinearities at the single-photon
level.134 In both cases we have to fight the mismatch between
light and nanoscale matter to attain strong and controllable
interactions; we need to process very small optical signals,
ideally down to single photons and possibly at very high rates.
Thus, studying the physics and engineering of optical antennas
may also pave the way to the next generation of nanophotonics
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