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A recently developed strategy for multi-step synthesis is the use of continuous flow techniques to 
combine multiple synthetic steps into a single continuous operation. In this mini-review we discuss 
the current state of the art in this field.

Introduction 
The multi-step synthesis of complex organic compounds from 10 

simpler precursors is one of the outstanding accomplishments 
of synthetic organic chemistry. Through the development and 
invention of synthesis strategies, methods and technologies, 
increasingly complex molecules can be assembled with 
designed structures and functions for a variety of medicinal, 15 

agrochemical and materials applications. However, despite 
significant advances, organic synthesis is still largely 
considered an inefficient and unsustainable practice that is 
highly labour- and resource-intensive.1 

The traditional pathway for multi-step synthesis proceeds by 20 

the batchwise and iterative step-by-step transformation of 
starting materials into desired products (Figure 1(a)). 
Typically, after the completion of each synthetic step 
(A+B→C, C→D and D→E), products are isolated from the 
reaction mixture and purified to remove any undesired 25 

components that might interfere with the subsequent synthetic 
transformations. Although this approach is the foundation on 
which modern synthesis has been built, such an approach is 
time-consuming, often wasteful and in stark contrast to the 
single-cell multi-step biosynthetic pathways found in nature.2 

30 
 

 
Figure 1 Synthesis strategies. 

Currently, the ideal laboratory synthesis3 (Figure 1(b)) is 
unlikely to be achieved in practice, although a number of 35 

innovative strategies have been developed to increase 
synthetic efficiency.4 A recently introduced method for 

streamlining multi-step syntheses is the use of continuous 
flow techniques5 to combine multiple synthetic steps into a 
single continuous reactor network, thereby circumventing the 40 

need to isolate intermediate products (Figure 1(c)). In this 
mini-review we detail some recent developments in the field 
of multi-step continuous flow synthesis6 and discuss select 
contemporary examples of this emerging technology.  

Multi-Step Flow Synthesis 45 

Solution-based approaches 

Synthetic chemists have long known that telescoping can be 
an effective tactic for truncating a multi-step synthesis.7 
Telescoping reaction sequences typically involves the 
consecutive addition of reagents and/or catalysts to a reactor 50 

in order to initiate further transformations of intermediate 
products or to achieve in situ quenching of reactive species. 
This strategy is well suited to flow chemistry and a number of 
reports employing solution-based systems have been 
disclosed. 55 

The Yoshida group has published several examples outlining 
the use of highly reactive and unstable organolithium 
compounds for multi-step synthesis under continuous flow 
conditions.8 For example, o-dibromobenzene could be 
effectively coupled with two different electrophiles via 60 

sequential halogen–lithium exchange reactions in an 
extremely fast yet controlled manner (Scheme 1).9 The 
authors used flow reactors constructed from stainless steel 
micromixers and tubes, whilst the reagent streams were driven 
by syringe pump devices. The success of these protocols is 65 

attributed to effective temperature and residence time10 (tR) 
control that allows the unstable intermediates to be rapidly 
transferred to the next stage of the reactor before 
decomposition can occur.  

 70 

 
 

Scheme 1 Generation and reaction of o-bromophenyllithium 
species using flow chemistry (Yoshida).  
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Recently, the McQuade group reported a synthesis of the non-
steroidal anti-inflammatory drug ibuprofen using continuous 
flow methods (Scheme 2).11 The three-step synthesis (Friedel–
Crafts acylation, 1,2-migration and ester hydrolysis) was 
linked into a single continuous system and provided ibuprofen 5 

in 51% isolated yield following off-line workup and 
crystallisation of the exiting flow stream. 
 

 
 10 

Scheme 2 Continuous flow synthesis of ibuprofen (McQuade). 

The ability to perform multi-step reactions in an uninterrupted 
continuous fashion may also be beneficial for medicinal 
chemistry applications.12 Cosford recently described a 
continuous two-step synthesis of a focused 13-membered 15 

library of imidazo[1,2-a]pyridine-2-carboxamides (Scheme 
3).13 No isolation of the carboxylic acid intermediate was 
required and a final off-line purification of the crude reaction 
mixture provided the targets. For their work the authors used 
the commercially available Syrris AFRICA flow system.14 

20 

 

 
 

Scheme 3 Synthesis of a Mur ligase inhibitor using multi-step 
continuous flow synthesis (Cosford). 25 

Continuous separation and distillation 

Although the telescoping processes described above are 
effective, they are not without limitations. A significant 
drawback is that excess reagents are often required, whilst the 
requirement for careful route design to ensure downstream 30 

reagent compatibility is an added challenge. The integration 
of solution-based quenching with subsequent phase separation 
operations into flow systems would therefore greatly expand 
the utility of this new technology.  
The Jensen group reported the integration of microfluidic 35 

biphasic extraction systems with microreactors for the multi-
step synthesis of carbamates (Scheme 4).15 A microseparator 
incorporating a hydrophobic membrane was designed and 
used to successfully remove the aqueous stream and thus any 
water-soluble components.16 40 

 

 
 

Scheme 4 Continuous carbamate synthesis involving multiple 
reactions and separations (Jensen).  45 

The Jensen group added a further instrument to the flow 
toolbox with the development of a microfluidic distillation 
unit capable of performing an in-line solvent switch. Working 
in conjunction with the Buchwald laboratory, a two-step flow 
sequence to prepare enol ethers was developed (Scheme 5).17 50 

A bespoke silicon device was employed to carry out a 
continuous distillation of a binary solvent mixture 
(dichloromethane/DMF).18  
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Scheme 5 Continuous synthesis of an enol-ether involving 
liquid–liquid separation and continuous solvent exchange (Jensen 
and Buchwald). 

Solid-supported multi-step flow synthesis 60 

The use of supported reagents, catalysts and scavengers in 
synthesis is well documented and has proven to be an 
extremely advantageous technology in the modern 
laboratory.19 The combination of immobilized reagents with 
flow reactors20 has great potential for revolutionising the 65 

synthesis process.21 

The Ley group has pioneered the use of solid-supported 
reagents, catalysts and scavengers to facilitate organic 
synthesis and has an expanding portfolio of work in the area 
of continuous flow multi-step synthesis.22 Indeed, the group’s 70 

2006 synthesis of the complex natural product oxomaritidine 
is currently the most elaborate example of continuous flow 
multi-step synthesis to date (Scheme 6).23 Employing a variety 
of supported reagents and catalysts, including the 
commercially available H-Cube hydrogenator,24 seven 75 

synthetic steps were orchestrated into a single reactor network 
to afford the target in excellent yield (>40%) and purity 
(>90%). 
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Scheme 6 Continuous flow synthesis of oxomaritidine (Ley). PS 
= polymer supported. 

The development of catalytic process is integral to the future 
of synthesis25 and so the use of solid-supported catalysts for 5 

muliple steps in flow systems is particularly attractive. Using 
an electroosmotic flow-driven miniaturized flow reactor, 
Watts recently reported the use of two solid-supported 
catalysts in series for the two-step synthesis of analytically 
pure α,β-unsaturated compounds (Scheme 7).26 10 

 

 
 

Scheme 7 Continuous two-step synthesis of α,β-unsaturated 
compounds using supported catalysts (Watts). 15 

 
In many instances, such as the synthesis of pharmaceuticals, 
the quality of the final product of a synthetic route must meet 
stringent purity standards. An effective method for achieving 
in-line purification in flow-mode is the integration of solid-20 

supported scavengers to selectively remove unwanted 
components of the flow stream.  
The Ley group recently reported on the multi-step synthesis of 
triazoles27 using the commercially available flow system from 
Vapourtec28 (Scheme 8). Following three chemical 25 

transformations (oxidation, homologation and ‘click’ triazole 
formation) the flowing solution was subsequently pumped 
through a variety of strategically positioned solid-supported 
scavengers to sequester any fouling components. This 
effectively provided the desired product in excellent purity 30 

and without recourse to traditional column chromatography.29  
 

 
 

Scheme 8 Three-step continuous flow synthesis of a triazole 35 

employing a variety of immobilized reagents and scavengers 
(Ley). 

The Lectka group has described the use of sequentially linked 
jacketed glass columns for catalytic and enantioselective 
multi-step flow synthesis and reported a continuous route to 40 

the metalloproteinase inhibitor BMS-275291 (Scheme 9).30 
The use of scavenger columns eliminated the need for batch 
purification of the eluting flow stream. In their approach the 
flow streams were purely gravity-driven and Celite® was 
employed to control the column residence times. Remarkably 45 

impressive yields and selectivities were observed.  
 

 
 

Scheme 9 Synthesis of BMS-275291 using a column-based 50 

system incorporating resin-bound reagents and scavengers 
(Lectka). 

In a further example of a multiphase continuous flow system, 
Ulven reported the preparation of a 15-membered library of 
potential chemokine receptor ligands (Scheme 10).31 Three 55 

separate building blocks were combined in three distinct 
reaction steps, whilst two scavenger resins were employed to 
remove any unreacted substrates. Semi-automatic purification 
of the crude products allowed a high compound throughput, 
further underscoring the potential of continuous flow multi-60 

Br

HO

PS-NMe3N3

OH

MeO

OMe

PS-TPAP

PS-PhP(n-Bu)2 H-Cube!

F3C

O

O

O

CF3

MeO

OMe

N
H

HO

PS-NMe3OH

N

MeO

MeO

O

H

oxomaritidine

Si-amine

PS-PIFA

I
OC(O)CF3

OC(O)CF3

80 °C

70 °C RT then 55 °C

35 °C

4:1 MeOH/H2O

PS-PIFA

Si-amine

N
H

NH2

Si

in 1:1 MeCN/THF

in THF

solvent switch to 
CH2Cl2

5 eq. in CH2Cl2

PS-SO3H Si-piperazine

OMe

OMe

O

OEt
N

O

OEt
N

S
O2N

S
NO2

>99% yield
>99% purity

1:1 in MeCN

Me

O

N2

P(O)(OMe)2

PhF

N3

PS-TEMPO

OH

1.2 eq. KOtBu 
in MeOH

QP-TU QP-BZA

PS-NMe2 PS-SO3H

Ph

N
NN

F

60 °C 100 °C 70 °C

SO3 NO

Me
Me

Me
Me

N
H

S

NH2

55%

tR = 48 min

PS-TEMPO QP-TU

1 eq.

2 eq.2 eq.

PS-NMe2•CuI

NH2

QP-TU

all in MeCN

O
Cl

Cl
Cl

Cl

Cl
Cl

N

N

O
Me

O

Me

Me Cl

O

PS-organocat. PS-piperazine

H2N
N
H

Me
O

t-BuO

OH
FMocHN

s-Bu

PS-CDI PS-trisamine

H
N

N
H

Me
O

t-BuO
N
H

s-BuO
HS

N

N

OO
Me

Me 34%
dr 91.5:8.5

N
•

N

H
N

N

H2N NH2

O O

N

OMe

N
H

PS-CDI PS-trisamine PS-organocat.

BMS-275291

celite! PS-NMe3SH
2.25 eq. in THF

2.25 eq. in THF

1 eq. in THF1.05 eq. in THF



 

4  |  Journal Name, [year], [vol], 00–00 This journal is © The Royal Society of Chemistry [year] 

step synthesis as a tool for the drug discovery process. 
 
 

 
 5 

Scheme 10 Three-step continuous flow synthesis of receptor 
ligands (Ulven). 

Finally, immobilized enzymes have also been integrated into 
continuous flow systems. Ley and co-workers reported the 
preparation of the natural product grossamide using a 10 

continuous flow reactor system (Scheme 11).32 An initial 
peptide coupling protocol,33 was followed by a peroxidase 
catalysed dimerization to deliver the neolignan natural 
product. 
 15 

 
 

Scheme 11 A multi-step continuous synthesis of grossamide 
using an immobilised horseradish peroxidase (Ley). 

Summary and Outlook 20 

In this mini-review we hope to have demonstrated that the use 
of continuous flow methods for multi-step organic synthesis is 
a burgeoning and exciting area of research that has the 
potential to greatly simplify and improve the synthesis 
process. Indeed, with the promise of economic and safety 25 

benefits, pharmaceutical manufacturers have begun to 
investigate and implement continuous manufacturing as a 
viable alternative to the traditional batchwise synthesis of 
API’s.32 Although many challenges remain, continuous flow 
multi-step synthesis may be a key breakthrough technology 30 

for enabling the efficient preparation of complex substances. 
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