Issue 1, 2011

Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on supported Ru catalysts

Abstract

The selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol was carried out on different catalysts in the presence of Ca(OH)2. The catalysts included Ru supported on activated carbon (C) and, for comparison, on metal oxides, Al2O3, TiO2, ZrO2 and Mg2AlOx as well as C-supported other noble metals, Rh, Pd and Pt, with similar particle sizes (1.6–2.0 nm). The kinetic effects of H2 pressures (0–10 MPa), temperatures (433–513 K) and solid bases including Ca(OH)2, Mg(OH)2 and CaCO3 were examined on Ru/C. Ru/C exhibited superior activities and glycol selectivities than Ru on TiO2, ZrO2, Al2O3 and Mg2AlOx, and Pt was found to be the most active metal. Such effects of the metals and supports are attributed apparently to their different dehydrogenation/hydrogenation activities and surface acid-basicities, which consequently influenced the xylitol reaction pathways. The large dependencies of the activities and selectivities on the H2 pressures, reaction temperatures, and pH values showed their effects on the relative rates for the hydrogenation and base-catalyzed reactions involved in xylitol hydrogenolysis, reflecting the bifunctional nature of the xylitol reaction pathways. These results led to the proposition that xylitol hydrogenolysis to ethylene glycol and propylene glycol apparently involves kinetically relevant dehydrogenation of xylitol to xylose on the metal surfaces, and subsequent base-catalyzed retro-aldol condensation of xylose to form glycolaldehyde and glyceraldehyde, followed by direct glycolaldehyde hydrogenation to ethylene glycol and by sequential glyceraldehyde dehydration and hydrogenation to propylene glycol. Clearly, the relative rates between the hydrogenation of the aldehyde intermediates and their competitive reactions with the bases dictate the selectivities to the two glycols. This study provides directions towards efficient synthesis of the two glycols from not only xylitol, but also other lignocellulose-derived polyols, which can be achieved, for example, by optimizing the reaction parameters, as already shown by the observed effects of the catalysts, pH values, and H2 pressures.

Graphical abstract: Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on supported Ru catalysts

Article information

Article type
Paper
Submitted
18 Sep 2010
Accepted
05 Nov 2010
First published
01 Dec 2010

Green Chem., 2011,13, 135-142

Selective hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on supported Ru catalysts

J. Sun and H. Liu, Green Chem., 2011, 13, 135 DOI: 10.1039/C0GC00571A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements