Issue 42, 2009

π-σ-Phosphonic acid organic monolayer–amorphous sol–gel hafnium oxide hybrid dielectric for low-voltage organic transistors on plastic

Abstract

A vacuum-free solution processed hybrid dielectric composed of an anthryl-alkyl-phosphonic acid (π-σ-PA) self-assembled monolayer on an amorphous sol–gel processed hafnium oxide (HfOx) is demonstrated for low-voltage organic thin film transistors (OTFTs) on plastic substrates. The π-σ-PA/HfOx hybrid dielectric provides high capacitance (0.54 µF cm−2) and low leakage current (2 × 10−8 A cm−2), and has a chemically and electrically compatible dielectric interface for evaporated and solution processed acene semiconductors. The utility of this dielectric is demonstrated by fabricating pentacene and 6,13-bis(triisopropyl-silylethynyl) pentacene (TIPS-PEN) based OTFTs with operating voltages under 2 V, subthreshold slopes as low as 100 mV dec−1, and average mobilities of 0.32 cm2 V−1 s−1 and 0.38 cm2 V−1 s−1, for pentacene and TIPS-PEN, respectively.

Graphical abstract: π-σ-Phosphonic acid organic monolayer–amorphous sol–gel hafnium oxide hybrid dielectric for low-voltage organic transistors on plastic

Article information

Article type
Paper
Submitted
13 May 2009
Accepted
09 Jul 2009
First published
07 Sep 2009

J. Mater. Chem., 2009,19, 7929-7936

π-σ-Phosphonic acid organic monolayer–amorphous sol–gel hafnium oxide hybrid dielectric for low-voltage organic transistors on plastic

O. Acton, G. G. Ting II, H. Ma, D. Hutchins, Y. Wang, B. Purushothaman, J. E. Anthony and A. K.-Y. Jen, J. Mater. Chem., 2009, 19, 7929 DOI: 10.1039/B909484A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements