Issue 1, 2009

On the mechanical stability of polymeric microcontainers functionalized with nanoparticles

Abstract

We present key factors that influence the mechanical stability of polyelectrolyte/nanoparticle composite microcontainers and their encapsulation behavior by thermal shrinkage. Poly(diallyldimethylammonium chloride) (PDADMAC), poly(styrenesulfonate) (PSS) microshells and citrate-stabilized gold nanoparticles are used. The presence of nanoparticles in the microshell renders the encapsulation process by heat-shrinking more difficult. The encapsulation efficiency is found to decrease as the concentration of material to be encapsulated increases. Increasing nanoparticle content in the microshell or the concentration of dextran increases the likelihood of getting fused and damaged capsules during encapsulation. On the other hand, mechanical studies show that doping microshells with gold nanoparticles significantly increases their stiffness and resistance to deformation. Internalization of capsules by cells supports that the incorporation of metal nanoparticles makes the shells more resistant to deformation. This work provides information of significant interest for the potential biomedical applications of polymeric microshells such as intracellular storage and delivery.

Graphical abstract: On the mechanical stability of polymeric microcontainers functionalized with nanoparticles

Article information

Article type
Paper
Submitted
22 Jul 2008
Accepted
15 Sep 2008
First published
29 Oct 2008

Soft Matter, 2009,5, 148-155

On the mechanical stability of polymeric microcontainers functionalized with nanoparticles

M. F. Bédard, A. Munoz-Javier, R. Mueller, P. del Pino, A. Fery, W. J. Parak, A. G. Skirtach and G. B. Sukhorukov, Soft Matter, 2009, 5, 148 DOI: 10.1039/B812553H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements