Skip to main content
Log in

Photobiological and thermal effects of photoactivating UVA light doses on cell cultures

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

While near-ultraviolet light has been widely used to photoactivate fluorophores and caged compounds in cells, little is known of the long-term biological effects of this light. UVA (315-400 nm) photoactivating light has been well characterized in short-term cell studies and is now being employed in higher doses to control longer-duration phenomena (e.g. gene expression). Annexin V-Cy5/propidium iodide apoptosis flow cytometry assays were used to determine responses of HeLa cells to doses of UVA light up to 23.85 J cm−2. Cells seeded at low densities had higher percentages of apoptosis and necrosis and were also more susceptible to UVA damage than cells seeded at higher densities. The dose to induce apoptosis and death in 50% of the cells (dose1/2) was determined for two different commercially available UVA light sources: 7.6 J cm−2 for the GreenSpot photocuring system and 2.52 J cm−2 for the BlakRay lamp. All BlakRay doses tested had significant cellular responses, whereas no significant cellular responses were found for doses below 1.6 J cm−2 from the GreenSpot light source. A temperature control and measurement system was used to determine direct heating from the UVA sources and also the effect that cooling cell cultures during photoexposure has on minimizing cell damage. Cooling during the BlakRay photoexposure significantly reduced the percentage of necrotic cells, but there was no significant difference for cooling during photoactivation with the GreenSpot. Differences in cell responses to similar UVA doses of different intensities suggest that photoduration should be considered along with total dose and thermal conditions in photoactivation studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. H. Kaplan, B. Forbush and J. F. Hoffman, Rapid photolytic release of adenosine 5′-triphosphate from a protected analog-utilization by Na-K pump of human red blood-cell ghosts Biochemistry 1978 17 1929–1935.

    Article  CAS  PubMed  Google Scholar 

  2. A. P. Pelliccioli and J. Wirz, Photoremovable protecting groups: reaction mechanisms and applications Photochem. Photobiol. Sci. 2002 1 441–458.

    Article  PubMed  Google Scholar 

  3. W. T. Monroe, M. M. McQuain, M. S. Chang, J. S. Alexander and F. R. Haselton, Targeting expression with light using caged DNA J. Biol. Chem. 1999 274 20895–20900.

    Article  CAS  PubMed  Google Scholar 

  4. H. Ando, T. Furuta, R. Y. Tsien and H. Okamoto, Photo-mediated gene activation using caged RNA/DNA in zebrafish embryos Nat. Genet. 2001 28 317–325.

    Article  CAS  PubMed  Google Scholar 

  5. B. Ghosn, F. R. Haselton, K. R. Gee and W. T. Monroe, Control of DNA hybridization with photocleavable adducts Photochem. Photobiol. 2005 81 953–959.

    Article  CAS  PubMed  Google Scholar 

  6. M. Goard, G. Aakalu, O. D. Fedoryak, C. Quinonez, J. St Julien, S. J. Poteet, E. M. Schuman and T. M. Dore, Light-mediated inhibition of protein synthesis Chem. Biol. 2005 12 685–693.

    Article  CAS  PubMed  Google Scholar 

  7. J. R. Meunier, A. Sarasin and L. Marrot, Photogenotoxicity of mammalian cells: A review of the different assays for in vitro testing Photochem. Photobiol. 2002 75 437–447.

    Article  CAS  PubMed  Google Scholar 

  8. P. U. Giacomoni, Open Questions in Photobiology 2. Induction of Nicks by UV-A J. Photochem. Photobiol., B 1995 29 83–85.

    Article  CAS  Google Scholar 

  9. D. Kulms and T. Schwarz, 20 years after—Milestones in molecular photobiology J. Invest. Dermatol. Symp. P. 2002 7 46–50.

    Article  Google Scholar 

  10. D. Kulms, B. Poppelmann and T. Schwarz, Ultraviolet radiation-induced interleukin 6 release in HeLa cells is mediated via membrane events in a DNA damage-independent way J. Biol. Chem. 2000 275 15060–15066.

    Article  CAS  PubMed  Google Scholar 

  11. J. F. R. Kerr, A. H. Wyllie and A. R. Currie, Apoptosis—Basic biological phenomenon with wide-ranging implications in tissue kinetics Br. J. Cancer 1972 26 239–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Y. Y. He, J. L. Huang, R. H. Sik, J. Liu, M. P. Waalkes and C. F. Chignell, Expression profiling of human keratinocyte response to ultraviolet A: Implications in apoptosis J. Invest. Dermatol. 2004 122 533–543.

    Article  CAS  PubMed  Google Scholar 

  13. R. M. Tyrrell and S. M. Keyse, New trends in photobiology—the interaction of UV-A radiation with cultured cells J. Photochem. Photobiol., B 1990 4 349–361.

    Article  CAS  Google Scholar 

  14. C. Rosette and M. Karin, Ultraviolet light and osmotic stress: Activation of the JNK cascade through multiple growth factor and cytokine receptors Science 1996 274 1194–1197.

    Article  CAS  PubMed  Google Scholar 

  15. L. J. Suva, M. S. Flannery, M. P. Caulfield, D. M. Findlay, H. Juppner, S. R. Goldring, M. Rosenblatt and M. Chorev, Design, synthesis and utility of novel benzophenone-containing calcitonin analogs for photoaffinity labeling the calcitonin receptor J. Pharmacol. Exp. Ther. 1997 283 876–884.

    CAS  PubMed  Google Scholar 

  16. R. Kage, S. E. Leeman, J. E. Krause, C. E. Costello and N. D. Boyd, Identification of methionine as the site of covalent attachment of a p-benzoyl-phenylalanine-containing analogue of substance P on the substance P (NK-1) receptor J. Biol. Chem. 1996 271 25797–25800.

    Article  CAS  PubMed  Google Scholar 

  17. S. L. Broitman, O. Amosova and J. R. Fresco, Repairing the sickle cell mutation. III. Effect, of irradiation wavelength on the specificity and type of photoproduct formed by a 3′-terminal psoralen on a third strand directed to the mutant base pair Nucleic Acids Res. 2003 31 4682–4688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. A. D. Griffiths and D. S. Tawfik, Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization EMBO J. 2003 22 24–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. P. Grof, G. Ronto and E. Sage, A computational study of physical and biological characterization of common UV sources and filters, and their relevance for substituting sunlight J. Photochem. Photobiol., B 2002 68 53–59.

    Article  CAS  Google Scholar 

  20. G. Koopman, C. P. M. Reutelingsperger, G. A. M. Kuijten, R. M. J. Keehnen, S. T. Pals and M. H. J. Vanoers, Annexin-V for flow cytometric detection of phosphatidylserine expression on B-cells undergoing apoptosis Blood 1994 84 1415–1420.

    Article  CAS  PubMed  Google Scholar 

  21. M. Tafani, D. A. Minchenko, A. Serroni and J. L. Farber, Induction of the mitochondrial permeability transition mediates the killing of HeLa cells by staurosporine Cancer Res. 2001 61 2459–2466.

    CAS  PubMed  Google Scholar 

  22. M. van Engeland, L. J. W. Nieland, F. C. S. Ramaekers, B. Schutte and C. P. M. Reutelingsperger, Annexin V-affinity assay: A review on an apoptosis detection system based on phosphatidylserine exposure Cytometry 1998 31 1–9.

    Article  PubMed  Google Scholar 

  23. G. Del Bino, Z. Darzynkiewicz, C. Degraef, R. Mosselmans, D. Fokan and P. Galand, Comparison of methods based on annexin-V binding, DNA content or TUNEL for evaluating cell death in HL-60 and adherent MCF-7 cells Cell Prolifer. 1999 32 25–37.

    Article  CAS  Google Scholar 

  24. F. P. Gasparro and D. B. Brown, Photobiology 102: UV sources and dosimetry—the proper use and measurement of “photons as a reagent” J. Invest. Dermatol. 2000 114 613–615.

    Article  CAS  PubMed  Google Scholar 

  25. J. Dahle, O. Kaalhus, T. Stokke and E. Kvam, Bystander effects may modulate ultraviolet A and B radiation-induced delayed mutagenesis Radiat. Res. 2005 163 289–295.

    Article  CAS  PubMed  Google Scholar 

  26. Z. Kuluncsics, D. Perdiz, E. Brulay, B. Muel and E. Sage, Wavelength dependence of ultraviolet-induced DNA damage distribution: involvement of direct or indirect mechanisms and possible artefacts J. Photochem. Photobiol., B 1999 49 71–80.

    Article  CAS  Google Scholar 

  27. M. van Engeland, F. C. S. Ramaekers, B. Schutte and C. P. M. Reutelingsperger, A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture Cytometry 1996 24 131–139.

    Article  PubMed  Google Scholar 

  28. A. Schindl, G. Klosner, H. Honigsmann, G. Jori, P. C. Calzavara-Pinton and F. Trautinger, Flow cytometric quantification of UV-induced cell death in a human squamous cell carcinoma-derived cell line: dose and kinetic studies J. Photochem. Photobiol., B 1998 44 97–106.

    Article  CAS  Google Scholar 

  29. M. C. Willingham, Cytochemical methods for the detection of apoptosis J. Histochem. Cytochem. 1999 47 1101–1109.

    Article  CAS  PubMed  Google Scholar 

  30. W. Malorni, G. Donelli, E. Straface, M. T. Santini, S. Paradisi and P. U. Giacomoni, Both UV-A and UV-B induce cytoskeleton-dependent surface blebbing in epidermoid cells J. Photochem. Photobiol., B 1994 26 265–270.

    Article  CAS  Google Scholar 

  31. J. Dahle, H. B. Steen and J. Moan, The mode of cell death induced by photodynamic treatment depends on cell density Photochem. Photobiol. 1999 70 363–367.

    Article  CAS  PubMed  Google Scholar 

  32. E. Kvam and R. M. Tyrrell, Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation Carcinogenesis 1997 18 2379–2384.

    Article  CAS  PubMed  Google Scholar 

  33. H. Carvalho, R. M. A. da Costa, V. Chigancas, R. Weinlich, G. Brumatti, G. P. Amarante-Mendes, A. Sarasin and C. F. M. Menck, Effect of cell confluence on ultraviolet light apoptotic responses in DNA repair deficient cells Mutat. Res. 2003 544 159–166.

    Article  CAS  PubMed  Google Scholar 

  34. Y. Shindo and T. Hashimoto, Time course of changes in antioxidant enzymes in human skin fibroblasts after UVA irradiation J. Dermatol. Sci. 1997 14 225–232.

    Article  CAS  PubMed  Google Scholar 

  35. F. Breuckmann, G. von Kobyletzki, A. Avermaete, M. Radenhausen, S. Hoxtermann, C. Pieck, P. Schoneborn, T. Gambichler, M. Freitag, K. Hoffmann and P. Altmeyer, Mechanisms of apoptosis: UVA1-induced immediate and UVB-induced delayed apoptosis in human T cells in vitro J. Eur. Acad. Dermatol. 2003 17 418–429.

    Article  CAS  Google Scholar 

  36. S. Zigman, T. McDaniel, J. Schultz and J. Reddan, Effects of intermittent UVA exposure on cultured lens epithelial cells Curr. Eye Res. 2000 20 95–100.

    Article  CAS  PubMed  Google Scholar 

  37. S. Guhl, K. Hartmann, S. Tapkenhinrichs, A. Smorodchenko, A. Grutzkau, B. M. Henz and T. Zuberbier, Ultraviolet irradiation induces apoptosis in human immature, but not in skin mast cells J. Invest. Dermatol. 2003 121 837–844.

    Article  CAS  PubMed  Google Scholar 

  38. D. E. Godar, UVA1 radiation triggers two different final apoptotic pathways J. Invest. Dermatol. 1999 112 3–12.

    Article  CAS  PubMed  Google Scholar 

  39. R. Y. Yao and C. B. Wang, Protective effects of polypeptide from Chlamys farreri on Hela cells damaged by ultraviolet A Acta. Pharmacol. Sin. 2002 23 1018–1022.

    CAS  PubMed  Google Scholar 

  40. H. Merwald, G. Klosner, C. Kokesch, M. Der-Petrossian, H. Honigsmann and F. Trautinger, UVA-induced oxidative damage and cytotoxicity depend on the mode of exposure J. Photochem. Photobiol., B 2005 79 197–207.

    Article  CAS  Google Scholar 

  41. B. L. Diffey, What is light? Photodermatol. Photoimmunol. Photomed. 2002 18 68–74.

    Article  PubMed  Google Scholar 

  42. C. R. Shea, Y. Hefetz, R. Gillies, J. Wimberly, G. Dalickas and T. Hasan, Mechanistic investigation of doxycycline photosensitization by picosecond-pulsed and continuous wave laser irradiation of cells in culture J. Biol. Chem. 1990 265 5977–5982.

    Article  CAS  PubMed  Google Scholar 

  43. F. Trautinger, Stress Proteins in the Photobiology of Mammalian Skin in Handbook of Photochemistry and Photobiology, ed. H. S. Nalwa, American Scientific Publishers, Stevenson Ranch, 2003, vol. 4 (Photobiology), ch. 5, pp. 149–158.

    Google Scholar 

  44. W. F. Patton, J. S. Alexander, A. B. Dodge, R. J. Patton, H. B. Hechtman and D. Shepro, Mercury-arc photolysis—a method for examining 2nd messenger regulation of endothelial-cell monolayer integrity Anal. Biochem. 1991 196 31–38.

    Article  CAS  PubMed  Google Scholar 

  45. F. G. Cruz, J. T. Koh and K. H. Link, Light-activated gene expression J. Am. Chem. Soc. 2000 122 8777–8778.

    Article  CAS  Google Scholar 

  46. G. von Kobyletzki, C. Pieck, K. Hoffmann, M. Freitag and P. Altmeyer, Medium-dose UVA1 cold-light phototherapy in the treatment of severe atopic dermatitis J. Am. Acad. Dermatol. 1999 41 931–937.

    Article  Google Scholar 

  47. J. T. Beckham, M. A. Mackanos, C. Crooke, T. Takahashi, C. O’Connell-Rodwell, C. H. Contag and E. D. Jansen, Assessment of cellular response to thermal laser injury through bioluminescence imaging of heat shock protein 70 Photochem. Photobiol. 2004 79 76–85.

    Article  CAS  PubMed  Google Scholar 

  48. F. Engert, G. G. Paulus and T. Bonhoeffer, A low-cost UV laser for flash photolysis of caged compounds J. Neurosci. Methods 1996 66 47–54.

    Article  CAS  PubMed  Google Scholar 

  49. G. Rapp and K. Guth, A low cost high intensity flash device for photolysis experiments Pfugers Arch. 1988 411 200–203.

    Article  CAS  Google Scholar 

  50. M. A. Mackanos, J. A. Kozub, D. L. Hachey, K. M. Joos, D. L. Ellis and E. D. Jansen, The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: biological effects Phys. Med. Biol. 2005 50 1885–1899.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Todd Monroe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forman, J., Dietrich, M. & Monroe, W.T. Photobiological and thermal effects of photoactivating UVA light doses on cell cultures. Photochem Photobiol Sci 6, 649–658 (2007). https://doi.org/10.1039/b616979a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b616979a

Navigation