
 
 

University of Birmingham

Dehalogenation of polychlorinated biphenyls and
polybrominated diphenyl ethers using a hybrid
bioinorganic catalyst
Harrad, Stuart; Robson, ME; Hazrati, Sadegh; Baxter-Plant, VS; Deplanche, Kevin; Redwood,
Mark; Macaskie, Lynne
DOI:
10.1039/b616567b

Citation for published version (Harvard):
Harrad, S, Robson, ME, Hazrati, S, Baxter-Plant, VS, Deplanche, K, Redwood, M & Macaskie, L 2007,
'Dehalogenation of polychlorinated biphenyls and polybrominated diphenyl ethers using a hybrid bioinorganic
catalyst', Journal of Environmental Monitoring, vol. 9, pp. 314-318. https://doi.org/10.1039/b616567b

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 23. May. 2024

https://doi.org/10.1039/b616567b
https://doi.org/10.1039/b616567b
https://birmingham.elsevierpure.com/en/publications/56b73c40-3436-4851-862d-f6923d1ef1df


Dehalogenation of polychlorinated biphenyls and polybrominated

diphenyl ethers using a hybrid bioinorganic catalystw

Stuart Harrad,*a Matthew Robson,za Sadegh Hazrati,a Victoria S. Baxter-Plant,yb

Kevin Deplanche,
b
Mark D. Redwood

b
and Lynne E. Macaskie

b

Received 13th November 2006, Accepted 6th February 2007

First published as an Advance Article on the web 21st February 2007

DOI: 10.1039/b616567b

The environmentally prevalent polybrominated diphenyl ether (PBDE) #47 and polychlorinated

biphenyls (PCBs) #28 and #118 were challenged for 24 hours with a novel biomass-supported Pd

catalyst (Bio-Pd0). Analysis of the products via GC-MS revealed the Bio-Pd0 to cause the

challenged compounds to undergo stepwise dehalogenation with preferential loss of the least

sterically hindered halogen atom. A mass balance for PCB #28 showed that it is degraded to

three dichlorobiphenyls (33.9%), two monochlorobiphenyls (12%), and biphenyl (30.7%). The

remaining mass was starting material. In contrast, while PCB #118 underwent degradation to

yield five tetra- and five trichlorinated biphenyls, no less chlorinated products or biphenyl were

detected, and the total mass of degraded products was 0.3%. Although the Bio-Pd0 material was

developed for treatment of PCBs, a mass balance for PBDE #47 showed that the biocatalyst

could prove a potentially useful method for treatment of PBDEs. Specifically, 10% of PBDE #47

was converted to identifiable lower brominated congeners, predominantly the tribrominated

PBDE #17 and the dibrominated PBDE #4, 75% remained intact, while 15% of the starting mass

was unaccounted for.

Introduction

Polychlorinated biphenyls (PCBs) have found widespread use

in a diverse range of applications, with around 1.2 million

tonnes produced worldwide, of which approximately 67 000

and 40 000 t were produced and used, respectively, in the UK.1

Owing to concerns about their adverse effects on humans and

wildlife,2 their production—but not their use—ceased in the

UK and throughout most of the industrialised world in the

late 1970s. Although UK human exposure to dioxins and

dioxin-like PCBs via the diet has fallen in recent years in

response to the cessation of their production,3,4 concentrations

of non-dioxin-like PCBs in indoor air in the West Midlands

conurbation of the UK have shown no significant decline

between 1997 and 2004,5 and the most recent survey of dietary

exposure of the UK population showed a substantial propor-

tion of schoolchildren and toddlers to be exposed at levels

exceeding the UK government’s recommended tolerable daily

intake of dioxins and dioxin-like PCBs.4

Polybrominated diphenyl ethers (PBDEs) have been used

widely as flame retardants. In recent years, the production and

use of PBDEs has been in the guise of three formulations:

penta (consisting primarily of BDEs 47 and 99, 37% each,

alongside smaller amounts of other tetra-, penta- and hexa-

BDEs), octa (a mixture of hexa (10–12%), hepta- (44–46%),

octa- (33–35%), and nona- (10–11%), and deca (98% deca-

bromodiphenyl ether—BDE 209—and 2% various nona-

BDEs).6,7 Global production has been dominated by the deca

commercial formulation, with worldwide demand in 2003 an

estimated 56 418 t.8 This is down from the 2002 estimate of

65 677 t, but in line with estimates for 2001 and 1999 of

56 150 t and 54 800 t, respectively.8 By comparison, the 2001

global demand for the penta-product was 7500 t,8 down

slightly from 8500 t in 1999.9 Production and use of commer-

cial PBDE formulations in Europe was considerably less than

in North America: for example, in 2001, 7100 t of penta-

product were used in North America, compared with just 150 t

in Europe.8 The uses for these commercial formulations are

myriad: the penta-product was employed principally to flame

retard polyurethane foams in carpet underlay, vehicle inter-

iors, furniture and bedding; the octa-formulation was used to

flame retard thermoplastics such as high impact polystyrene;

and the deca-product is used principally in plastic housings for

electrical goods like TVs and computers, as well as textiles.6 As

a result of concerns surrounding these contaminants, owing to

their presence in the diet and in indoor air and dust,5,9–11 and

human tissues,12 coupled with evidence relating to their po-

tential adverse effects on human health,7,13 several jurisdic-

tions have banned the marketing and use of penta- and octa-

BDEs. Furthermore, the main U.S. producer, together with

the U.S. EPA, have reached a voluntary agreement to dis-

continue production of the penta- and octa-BDE mixtures.
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The above observations of elevated indoor concentrations

of these compounds are consistent with a continuing legacy

reservoir of in-use PBDEs and PCBs which requires manage-

ment to limit their impact on current exposure and ultimate

disposal if they are not to provide a substantial source of

future human exposure to these compounds. This may occur

via direct inhalation and ingestion of contaminated indoor air

and dust, and in time via dietary exposure following their

emission, transport and incorporation into the food chain.14

Environmentally-benign disposal of this reservoir of PCB and

PBDE-containing material, both in waste streams and in-use,

therefore presents a significant challenge. Some sulfate-redu-

cing bacteria have the capacity to reductively dehalogenate

chlorinated aromatic compounds by a mechanism(s) that is

still not yet fully defined.15,16 However, it is reported that the

biodegradation of polychlorinated biphenyls (PCBs) in the

environment is slow.17 Furthermore, the use of biological

systems for the treatment of industrial wastes has several

drawbacks, e.g., biological systems are sensitive to alterations

in pH, temperature, ionic strength, solvents or other para-

meters, and biosystems usually require physiologically compa-

tible conditions. A potentially more robust alternative to

reductive dehalogenation of halogenated aromatic compounds

is the use of palladized cells of sulfate-reducing bacteria. A

particularly environmentally beneficial aspect of such a bio-

mass supported Pd catalyst is that it can be manufactured

from waste.18,19 We have shown previously that such a

Bio-Pd0 hybrid material is effective in the reductive dehalo-

genation of PCBs.20 However, the previous analysis

relied upon measurement of liberated chloride ion alone and

hence detailed information on the breakdown products

or the degradation pathway was not given. This paper there-

fore reports on the breakdown products resulting from Bio-

Pd0 treatment of two of the most prevalent PCBs (congeners

#118 and #28) and also on the potential of the Bio-Pd0

material to reductively dehalogenate PBDE #47, one of the

two principal congeners present in the widely used penta-BDE

formulation.

Experimental

Organism, and preparation of Pd catalysts

Desulfovibrio desulfuricans ATCC 29577 was cultured as de-

scribed previously.21 For the preparation of palladised bio-

mass (Bio-Pd0) a known volume of a 2 mM solution of

Na2PdCl4 (to pH 2.0 with 0.1 M HNO3) was placed in

50 mL butyl rubber sealed serum bottles and de-gassed with

oxygen free nitrogen (OFN: 15–20 min). A mid-logarithmic

phase cell suspension of Desulfovibrio desulfuricans was added

to a final ratio (wt of Pd:dry wt of cells) of 1:3 via a syringe

under OFN. The cell suspension was left for 1 hour (30 1C) to

allow initial biosorption of Pd(II) to the biomass surface.

Hydrogen was then sparged into the suspension (15 min) to

fix the palladium onto the cells as Pd0 (identified as palladium

metal by X-ray powder diffraction analysis21) via cellular

hydrogenase activity.21 The suspension was left to stand

(15 min) allowing the Pd-coated biomass to fall under gravity,

and the recovered Bio-Pd0 was washed three times in distilled

water and once in acetone (10 ml) several times, dried in air to

constant weight, and ground.

Dehalogenation tests

The following individual compounds were separately chal-

lenged with Bio-Pd0: PCBs #118 and #28, and PBDE #47

(10 mg of compound) (Table 1). The Bio-Pd0 (2 mg + 0.2 mg)

was placed into 10 mL serum bottles. The target compound

was then added (10 mg) as a suspension in a carrier of 20 mM

MOPS–NaOH buffer pH 7.0 (8.8 mL). The bottles were

sparged with oxygen-free nitrogen (15 min). The reaction

was started by the addition of 1 mL of freshly prepared 1 M

formate (final volume of reaction mixture: 10 mL). The

formate is split catalytically by the Pd0 to give hydrogen as

the reductant for the reductive dehalogenation reaction via the

Pd0 catalyst. The use of formate is preferable to hydrogen gas

as its concentration in solution can be accurately known. After

24 h exposure the experiment was stopped via removal of the

Table 1 Percentage yields of products identified after 24 h following challenge of PCB #118, PCB #28 and PBDE #47a with Bio-Pd0

Congener Yield (%) Congener Yield (%) Congener Yield (%)

2,30,4,40,5
(PCB #118, starting product)

499% 2,4,40

(PCB #28, starting product)
30.9 2,20,4,40

(BDE #47, starting product)
66.0 (83.0)

Tetrachlorobiphenyls Dichlorobiphenyls Tribromodiphenyl ethers
2,30,4,5 (PCB #67) 0.16 4,40 (PCB #15) 3.8 2,4,40 (BDE #28) 0.4 (0.6)
2,4,40,5 (PCB #74) 0.06 2,40 (PCB #8) 15.7 2,20,4 (BDE #17) 5.9 (5.4)
2,30,40,5 (PCB #70) 0.03 2,4 (PCB #7) 14.4
2,30,4,40 (PCB #66) 0.01
3,30,4,40 (PCB #77) 0.004

Trichlorobiphenyls Monochlorobiphenyls Dibromodiphenyl ethers
2,4,5 (PCB #29) 0.040 2 (PCB #1) 7.5 2,4 (BDE #7) 0.1 (0.2)
2,30,5 (PCB #26) 0.002 4 (PCB #3) 4.5 2,40 (BDE #8) 0.2 (0.2)
2,40,5 (PCB #31) 0.005 2,20 (BDE #4) 1.7 (3.1)
2,30,40 (PCB #33) 0.008 Biphenyl 30.7 4,40 (BDE #15) 0.2 (0.0)
2,30,4 (PCB #25) 0.001

2-Monobromodiphenyl ether (BDE #1) 0.0 (1.6)
Total B100 Total 107.4 Total 74.5 (93.9)

a Data shown are values obtained for the duplicate runs for this starting compound only.
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aqueous supernatant, which was immediately partitioned

against hexane (2 mL). The Bio-Pd0 mass was removed and

extracted with hexane (2 mL). The hexane extracts were then

subjected to analysis.

Analytical protocols

All samples were spiked with appropriate amounts of internal/

surrogate standards (PCBs #34, 62, and 119; or 13C12-BDEs

#28 and 47). Hexane extracts were then eluted through a 2 g

column of anhydrous sodium sulfate to remove any moisture.

After concentration to 250 mL in nonane, they were trans-

ferred to a GC vial and spiked with appropriate amounts of

recovery determination standard (PCB #129).

All analyses were carried out on a Fison’s GC8000/MD800

GC-MS fitted with an SGE BP-5 capillary column (60 m �
0.25 mm id � 0.25 mm film thickness), running temperature

programs of: (a) for PCBs 140 1C for 2 min, 5 1C min�1 to

200 1C, and 2 1C min�1 to 280 1C; and (b) for PBDEs 140 1C

with 5 1C min�1 ramp to 200 1C, and 2 1C min�1 to 300 1C,

held for 10 min. Both the injector and interface were held at

280 1C. Helium was used as the carrier gas at a head pressure

of 180 kPa. One ml of each sample was injected in splitless

mode. Initial screening of sample extracts running the mass

spectrometer in full scan mode (m/z 50–650) revealed only

lower halogenated PCBs or PBDEs or biphenyl (for PCB

experiments) to be present. Hence, in all subsequent analyses,

the mass spectrometer was operated in SIM mode, targeting

the starting compound and its lower halogenated analogues.

Monitored m/z values for these analyses were as reported

previously,9,22 with the addition of 154.10 for biphenyl.

Identification of all compounds was achieved by compar-

ison with authentic standards, with quantification relative to

the internal standard of the same or nearest homologue group.

To ensure accurate and precise measurement of compounds in

the selected ion mode, peaks were only accepted if the follow-

ing criteria were met.

� Signal to noise ratios for the least abundant ion exceeded

3:1.

� Peaks eluted within 5 s of standards run in the same batch

as the samples.

� Isotope ratios for peaks were within 20% of those

obtained for standards run in the same batch as the samples.

This applied to halogenated compounds only.

One analytical blank composed of clean MOPS buffer was

run for every 5 samples. None of the target compounds were

detected in the analytical blanks. Recoveries of internal/sur-

rogate standards in all samples and blanks ranged between 75

and 100%.

Results and discussion

PCB exposure experiments

Although determination of the relative abundance of products

at different exposure times is needed to confirm this, the

relative abundance of the products of these 24 h exposure

experiments (Table 1) suggests that the Bio-Pd0 causes PCBs

to undergo dechlorination in a stepwise fashion. For example,

the trichlorinated PCB #28 (2,4,40-trichlorobiphenyl) is first

dechlorinated to yield the following dichlorinated congeners in

order of preferential formation: 2,40-dichlorobiphenyl (PCB

#8—loss of p-chlorine), 2,4-dichlorobiphenyl (PCB #7—loss

of p-chlorine), and 4,40-dichlorobiphenyl (PCB #15—loss of

o-chlorine). Further dechlorination to the monochlorinated

congeners 2-chlorobiphenyl (PCB #1) (most abundant, arising

from loss of p-chlorine from the most abundant dichlorobi-

phenyl products) and 4-chlorobiphenyl (PCB #3—loss of

Fig. 1 Dechlorination pathways for PCB #28.
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o-chlorine from one of the most abundant dichlorobiphenyl

products, and loss of p-chlorine from the least abundant

dichlorobiphenyl products) occurs, before proceeding to

biphenyl (Table 1 and Fig. 1), which appears to be the final

product. Overall, a mass balance calculation for PCB #28

reveals that after 24 hours exposure to Bio-Pd0, around 70%

of the initial challenged mass (Table 1) was degraded, with

around 30% of the starting material remaining and biphenyl

the most abundant product. More extended incubations were

not performed.

Our results are in line with those reported recently by De

Windt et al.23 These authors challenged 2,3,4-trichlorobiphe-

nyl (PCB #21) with palladized Shewanella oneidensis MR-1 at

a Bio-Pd concentration of 50 mg L�1 in the presence of H2 as

electron donor at 28 1C. Under these conditions, these authors

reported 90% removal of PCB #21 within 5 h, and identified

as dechlorination products both 2,3-dichlorobiphenyl (PCB

#5) and 2-chlorobiphenyl (PCB #1). Other studies reported

rapid removal of almost all of the starting PCB compound

(V. S. Baxter-Plant, unpublished work), attributed to rapid

sorption of PCB molecules onto the palladium nanoparticles

within 15 min (I. P. Mikheenko, unpublished work24), which

prompted analysis of both the residual solution and also

hexane extracts of the residual catalyst in the present study.

Challenge of the pentachlorinated PCB #118 revealed simi-

lar reductive dechlorination to yield five tetrachlorinated and

five trichlorinated PCB products (Table 1 and Fig. 2). No di-

or monochlorobiphenyls or biphenyl were identified in these

samples. The overall efficiency of dehalogenation of PCB #118

after 24 h was much lower (total yield of identified products

was 0.3%); it appears that dehalogenation of this more

chlorinated starting material occurs much more slowly than

is observed for the trichlorinated PCB #28, possibly attribu-

table to steric hindrances, but this was not tested further.

PBDE #47 exposure experiments

This experiment revealed that PBDE #47 underwent de-

bromination when challenged with the Bio-Pd0. As with the

PCBs, the favoured debromination products were those invol-

ving loss of the least hindered bromine atom. A mass balance

calculation revealed that while 75% of the starting material

remained intact, 10% was converted to identifiable lower

brominated PBDEs, predominantly the tribrominated PBDE

#17 and the dibrominated PBDE #4, with the remaining

ca. 15% of starting mass unaccounted for. Given that no

diphenyl ether was detected, the unaccountable mass was

presumably converted to products resulting from cleavage of

the ether bond. Table 1 shows the percentage yields for each

congener identified. While these data show the technique to

require optimisation in order to achieve its full potential for

this class of compounds, these results suggest the potential of

this method to treat PBDE-containing wastes.
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