Issue 5, 2007

Chitosan: a soft interconnect for hierarchical assembly of nano-scale components

Abstract

Traditional microfabrication has tremendous capabilities for imparting order to hard materials (e.g., silicon wafers) over a range of length scales. However, conventional microfabrication does not provide the means to assemble pre-formed nano-scale components into higher-ordered structures. We believe the aminopolysaccharide chitosan possesses a unique set of properties that enable it to serve as a length-scale interconnect for the hierarchical assembly of nano-scale components into macro-scale systems. The primary amines (atomic length scale) of the glucosamine repeating units (molecular length scale) provide sites to connect pre-formed or self-assembled nano-scale components to the polysaccharide backbone (macromolecular length scale). Connections to the backbone can be formed by exploiting the electrostatic, nucleophilic, or metal-binding capabilities of the glucosamine residues. Chitosan's film-forming properties provide the means for assembly at micron-to-centimetre lengths (supramolecular length scales). In addition to interconnecting length scales, chitosan's capabilities may also be uniquely-suited as a soft component–hard device interconnect. In particular, chitosan's film formation can be induced under mild aqueous conditions in response to localized electrical signals that can be imposed from microfabricated surfaces. This capability allows chitosan to assemble soft nano-scale components (e.g., proteins, vesicles, and virus particles) at specific electrode addresses on chips and in microfluidic devices. Thus, we envision the potential that chitosan may emerge as an integral material for soft matter (bio)fabrication.

Graphical abstract: Chitosan: a soft interconnect for hierarchical assembly of nano-scale components

Article information

Article type
Emerging Area
Submitted
26 Sep 2006
Accepted
28 Nov 2006
First published
16 Jan 2007

Soft Matter, 2007,3, 521-527

Chitosan: a soft interconnect for hierarchical assembly of nano-scale components

G. F. Payne and S. R. Raghavan, Soft Matter, 2007, 3, 521 DOI: 10.1039/B613872A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements