Skip to main content
Log in

Ruthenium bis-terpyridine complexes connected to an oligothiophene unit for dry dye-sensitised solar cells

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The preparation of a series of new heteroleptic ruthenium complexes containing a 4′-phosphonic acid terpyridine and a terpyridine substituted in 4′osition by a bithiophene or tert-thiophene are described. The UV-Vis absorption and emission spectra along the redox potentials of these complexes are reported. These new complexes were also tested as sensitizers in dry dye-sensitised solar cell using regioregular polyoctylthiophene as a solid hole conductor. It has been shown that the complexes substituted with thiophene chain exhibit poor photovoltaic efficiency most probably due to low electron injection efficiency. This latter property can be rationalised by the fact that the LUMO orbitals in these complexes are localised in the terpyridine substituted by the thiophene chain and not in the terpyridine phosphonic which is bonded to the TiO2 photoanode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Smestad, C. Bignozzi and R. Argazzi, Testing of dye sensitized TiO2 solar cells I: Experimental photocurrent output and conversion efficiencies, Sol. Energy Mater. Sol. Cell, 1994, 32, 259–272

    Article  CAS  Google Scholar 

  2. A. Hagfeldt and M. Grätzel, Light-induced redox reactions in nanocrystalline systems, Chem. Rev., 1995, 95, 49

    Article  CAS  Google Scholar 

  3. K. Kalyanasundaram and M. Grätzel, Applications of functionalized transition metal complexes in photonic and optoelectronic devices, Coord. Chem. Rev., 1998, 177, 347–414.

    Article  CAS  Google Scholar 

  4. B. O’Regan and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal titanium dioxide films, Nature, 1991, 353, 737–740.

    Article  Google Scholar 

  5. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer and M. Grätzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature, 1998, 395, 583–585

    Article  CAS  Google Scholar 

  6. K. R. Haridas, J. Ostrauskaite, M. Thelakkat, M. Heim, R. Bilke and D. Haarer, Synthesis of low melting hole conductor systems based on triarylamines and application in dye sensitized solar cells, Synth. Met., 2001, 121, 1573–1574

    Article  CAS  Google Scholar 

  7. C. Jäger, R. Bilke, M. Heim, D. Haarer, H. Karickal and M. Thelakkat, Hybrid solar cells with novel hole transporting poly(triphenyldiamine)s, Synth. Met., 2001, 121, 1543–1544

    Article  Google Scholar 

  8. S. Luzzati, M. Basso, M. Catellani, C. J. Brabec, D. Gebeyehu and N. S. Sariciftci, Photo-induced electron transfer from a dithienothiophene-based polymer to TiO2, Thin Solid Films, 2002, 403–404, 52–56

    Article  Google Scholar 

  9. B. O’Regan and D. T. Schwartz, Large Enhancement in Photocurrent Efficiency Caused by UV Illumination of the Dye-Sensitized Heterojunction TiO2/RuLLNCS/CuSCN: Initiation and Potential Mechanisms, Chem. Mater, 1998, 10, 1501–1509

    Article  Google Scholar 

  10. V. P. S. Perera and K. Tennakone, Recombination processes in dye-sensitized solid-state solar cells with CuI as the hole collector, Sol. Energy Mater. Sol. Cells, 2003, 79, 249–255

    Article  CAS  Google Scholar 

  11. S. Nagamatsu, S. S. Pandey, W. Takashima, T. Endo, M. Rikukawa and K. Kaneto, Photocarrier transport in processable poly(3-alkylthiophene), Synth. Met., 2001, 121, 1563–1564

    Article  CAS  Google Scholar 

  12. K. A. Walters, L. Trouillet, S. Guillerez and K. S. Schanze, Photophysics and Electron Transfer in Poly(3-octylthiophene) Alternating with Ru(II)- and Os(II)-Bipyridine Complexes, Inorg. Chem., 2000, 39, 5496–5509

    Article  CAS  PubMed  Google Scholar 

  13. S. Spiekermann, G. Smestad, J. Kowalik, L. M. Tolbert and M. Grätzel, Poly(4-undecyl-2,2’-bithiophene) as a hole conductor in solid state dye sensitized titanium dioxide solar cells, Synth. Met., 2001, 121, 1603–1604

    Article  CAS  Google Scholar 

  14. M. Kinoshita, N. Fujii, T. Tsuzuki and Y. Shirota, Creation of novel light sensitive amorphous molecular materials and their photovoltaic properties, Synth. Met., 2001, 121, 1571–1572.

    Article  CAS  Google Scholar 

  15. D. Gebeyehu, C. J. Brabec, F. Padinger, T. Fromherz, S. Spiekermann, N. Vlachopoulos, F. Kienberger, H. Schindler and N. S. Sariciftci, Solid state dye-sensitized TiO2 solar cells with poly(3-octylthiophene) as hole transport layer, Synth. Met., 2001, 121, 1549–1550

    Article  CAS  Google Scholar 

  16. D. Gebeyehu, C. J. Brabec and N. S. Sariciftci, Solid-state organic/inorganic hybrid solar cells based on conjugated polymers and dye-sensitized TiO2 electrodes, Thin Solid Films, 2002, 403–404, 271–274.

    Article  Google Scholar 

  17. G. P. Smestad, S. Spiekermann, J. Kowalik, C. D. Grant, A. M. Schwartzberg, J. Zhang, L. M. Tolbert and E. Moons, A technique to compare polythiophene solid-state dye sensitized TiO2 solar cells to liquid junction devices, Sol. Energy Mater. Sol. Cells, 2003, 76, 85–105.

    Article  CAS  Google Scholar 

  18. W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada and S. Yanagida, Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator, Chem. Commun., 2002, 374–375.

    Google Scholar 

  19. W. Kubo, S. Kambe, S. Nakade, T. Kitamura, K. Hanabusa, Y. Wada and S. Yanagida, Photocurrent-Determining Processes in Quasi-Solid-State Dye-Sensitized Solar Cells Using Ionic Gel Electrolytes, J. Phys. Chem. B, 2003, 107, 4374–4381.

    Article  CAS  Google Scholar 

  20. Y. Ren, Z. Zhang, S. Fang, M. Yang and S. Cai, Application of PEO based gel network polymer electrolytes in dye-sensitized photoelectrochemical cells, Sol. Energy Mater. Sol. Cells, 2002, 71, 253–259

    Article  CAS  Google Scholar 

  21. G. Katsaros, T. Stergiopoulos, I. M. Arabatzis, K. G. Papadokostaki and P. Falaras, A solvent-free composite polymer/inorganic oxide electrolyte for high efficiency solid-state dye-sensitized solar cells, J. Photochem. Photobiol. A: Chem., 2002, 149, 191–198.

    Article  CAS  Google Scholar 

  22. U. Bach, Y. Tachibana, J.-E. Moser, S. A. Haque, J. R. Durrant, M. Grätzel and D. R. Klug, Charge Separation in Solid-State Dye-Sensitized Heterojunction Solar Cells, J. Am. Chem. Soc., 1999, 121, 7445–7446

    Article  CAS  Google Scholar 

  23. D. Gebeyehu, C. J. Brabec, N. S. Sariciftci, D. Vangeneugden, R. Kebooms, D. Vanderzande, F. Kienberger and H. Schindler, Hybrid solar cells based on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport materials, Synth. Met., 2002, 125, 279–287.

    Article  CAS  Google Scholar 

  24. G. Kron, T. Egerter, G. Nelles, A. Yasuda, J. H. Werner and U. Rau, Electrical characterization of dye sensitized nanocrystalline TiO2 solar cells with liquid electrolyte and solid-state organic hole conductor, Thin Solid Films, 2002, 403–404, 242–246.

    Article  Google Scholar 

  25. J. Hjelm, E. C. Constable, E. Figgemeier, A. Hagfeldt, R. Handel, C. E. Housecroft, E. Mukhtar and E. Schofield, A rod-like polymer containing Ru(terpy)2 units prepared by electrochemical coupling of pendant thienyl moieties, Chem. Commun., 2002, 284–285

    Google Scholar 

  26. J. Hjelm, R. W. Handel, A. Hagfeldt, E. C. Constable, C. E. Housecroft and R. J. Forster, Conducting Polymers Containing In-Chain Metal Centers: Homogeneous Charge Transport through a Quaterthienyl-Bridged Os(tpy)2 Polymer, J. Phys. Chem. B, 2003, 107, 10431–10439.

    Article  CAS  Google Scholar 

  27. K. Murakoshi, R. Kogure, Y. Wada and S. Yanagida, Fabrication of solid-state dye-sensitized TiO2 solar cells combined with polypyrrole, Sol. Energy Mater. Sol. Cells, 1998, 55, 113–125.

    Article  CAS  Google Scholar 

  28. E. C. Constable, R. Handel, C. E. Housecroft, M. Neuburger, E. R. Schofield and M. Zehnder, Efficient syntheses of 4’-(2-thienyl)- and 4’-(3-thienyl)-2,2’:6’,2″-terpyridine: preparation and characterization of Fe(II), Ru(II), Os(II) and Co(II) complexes, Polyhedron, 2004, 23, 135–143.

    Article  CAS  Google Scholar 

  29. P.-L. Vidal, B. Divisia-Blohorn, G. Bidan, J.-L. Hazemann, J.-M. Kern and J.-P. Sauvage, p-Conjugated ligand polymers entwined around copper centers, Chem.-Eur. J., 2000, 6, 1663–1673.

    Article  CAS  PubMed  Google Scholar 

  30. K. Tamao, S. Kodama, I. Nakajima and M. Kumada, Nickel-phosphine complex catalyzed Grignard coupling-II, Tetrahedron, 1982, 38, 3347–3354.

    Article  CAS  Google Scholar 

  31. P. Bäuerle, F. Würthner, G. Go¨tz and F. Effenberger, Selective synthesis of a-substituted oligothiophenes, Synthesis, 1993, 1099–1103

    Google Scholar 

  32. M. A. Keegstra and L. Brandsma, Convenient high-yield procedures for 2-bromothiophene and 2,5-dibromothiophene, Synthesis, 1988, 890–891.

    Google Scholar 

  33. A. F. Littke and G. C. Fu, The first general method for Stille cross-couplings of aryl chlorides, Angew. Chem., Int. Ed., 1999, 38, 2411–2413.

    Article  CAS  Google Scholar 

  34. O. Henze, U. Lehmann and A. D. Schlueter, Synthesis of 5,5’-disubstituted 2,2’-bipyridines for modular chemistry, Synthesis, 1999, 683–687

    Google Scholar 

  35. U. Lehmann, O. Henze and A. D. Schluter, 5,5/“-Disubstituted 2,2’:6’,2/”-terpyridines through and for metal-mediated cross-coupling chemistry, Chem. Eur. J., 1999, 5, 854–859

    Article  CAS  Google Scholar 

  36. M. Heller and U. S. Schubert, Functionalized2,2’-Bipyridinesand 2,2’:6’,2″-Terpyridines via Stille-Type Cross-Coupling Procedures, J. Org. Chem., 2002, 67, 8269–8272

    Article  CAS  PubMed  Google Scholar 

  37. G. R. Newkome, A. K. Patri, E. Holder and U. S. Schubert, Synthesis of 2,2’-bipyridines: Versatile building blocks for sexy architectures and functional nanomaterials, Eur. J. Org. Chem., 2004, 235–254

    Google Scholar 

  38. U. S. Schubert, C. Eschbaumer and M. Heller, Stille-Type Cross-Coupling-An Efficient Way to Various Symmetrically and Unsymmetrically Substituted Methyl-Bipyridines: Toward New ATRP Catalysts, Org. Lett.,2000, 2, 3373–3376.

    Article  CAS  PubMed  Google Scholar 

  39. M. Beley, J. P. Collin and J. P. Sauvage, Highly coupled mixed-valence dinuclear ruthenium and osmium complexes with a bis-cyclometalating terpyridine analog as bridging ligand, Inorg. Chem., 1993, 32, 4539–4543

    Article  CAS  Google Scholar 

  40. F. Barigelletti, L. Flamigni, V. Balzani, J.-P. Collin, J.-P. Sauvage and A. Sour, Luminescence properties of rigid, rod-like, dichromophoric species Dinuclear Ru-Os terpyridine-type complexes with 2.4 nm metal-to-metal distance, New J. Chem., 1995, 19, 793–798.

    CAS  Google Scholar 

  41. S. M. Zakeeruddin, M. K. Nazeeruddin, P. Pechy, F. P. Rotzinger, R. Humphry-Baker, K. Kalyanasundaram, M. Grätzel, V. Shklover and T. Haibach, Molecular Engineering of Photosensitizers for Nanocrystalline Solar Cells: Synthesis and Characterization of Ru Dyes Based on Phosphonated Terpyridines, Inorg. Chem., 1997, 36, 5937–5946.

    Article  CAS  PubMed  Google Scholar 

  42. I. Gillaizeau-Gauthier, F. Odobel, M. Alebbi, R. Argazzi, E. Costa, C. A. Bignozzi, P. Qu and G. J. Meyer, Phosphonate-Based Bipyridine Dyes for Stable Photovoltaic Devices, Inorg. Chem., 2001, 40, 6073–6079

    Article  CAS  PubMed  Google Scholar 

  43. H. Zabri, I. Gillaizeau-Gauthier, C. A. Bignozzi, S. Caramori, M.-F. Charlot, J.-C. Boquera and F. Odobel, Synthesis and Comprehensive Characterizations of New cis-RuL2X2 (X = Cl, CN and NCS) Sensitizers for Nanocrystalline TiO2 solar cell using bis-phosphonated bipyridine ligands (L), Inorg. Chem., 2003, 42, 6655–6666.

    Article  CAS  PubMed  Google Scholar 

  44. C. E. McKenna, M. T. Higa, N. H. Cheung and M. C. McKenna, The facile dealkylation of phosphonic acid dialkyl esters by bro-motrimethylsilane, Tetrahedron Lett., 1977, 155–158.

    Google Scholar 

  45. K. Kalyanasundaram in Photochemistry of polypyridine and porphyrin complexes, ed. K. Kalyanasundaram, Academic Press, London, 1992, p. 106–112.

  46. S. Encinas, L. Flamigni, F. Barigelletti, E. C. Constable, C. E. Housecroft, E. R. Schofield, E. Figgemeier, D. Fenske, M. Neuburger, J. G. Vos and M. Zehnder, Electronic energy transfer and collection in luminescent molecular rods containing ruthenium(II) and osmium(II) 2,2:6,2-terpyridine complexes linked by thiophene-2,5-diyl spacers, Chem.-Eur. J., 2002, 8, 137–150.

    Article  CAS  PubMed  Google Scholar 

  47. T. M. Pappenfus and K. R. Mann, Synthesis, spectroscopy and electrochemical studies of binuclear tris-bipyridine ruthenium(II) complexes with oligothiophene bridges, Inorg. Chem., 2001, 40, 6301–6307.

    Article  CAS  PubMed  Google Scholar 

  48. A. Harriman, A. Mayeux, A. De Nicola and R. Ziessel, Synthesis and photophysical properties of ruthenium(II) bis(2,2’:6’,2″-terpyridine) complexes constructed from a diethynylated-thiophene residue, Phys. Chem. Chem. Phys., 2002, 4, 2229–2235.

    Article  CAS  Google Scholar 

  49. Lmax of the MLCT transition in complex 10 was at 486 nm and passed to 482 nm for complex 13 after hydrolysis..

  50. E. Figgemeier, V. Aranyos, E. C. Constable, R. W. Handel, C. E. Housecroft, C. Risinger, A. Hagfeldt and E. Mukhtar, Modification of electron transfer properties in photoelectrochemical solar cells by substituting Ru(terpy)22+ dyes with thiophene, Inorg. Chem. Commun., 2003, 7, 117–121.

    Article  CAS  Google Scholar 

  51. J. Hjelm, R. W. Handel, A. Hagfeldt, E. C. Constable, C. E. Housecroft and R. J. Forster, Electropolymerisation dynamics of a highly conducting metallopolymer: poly-[Os(4’-(5-(2,2’-bithienyl))-2,2’:6’,2″-terpyridine)2]2+, Electrochem. Commun., 2004, 6, 193–200.

    Article  CAS  Google Scholar 

  52. J. Roncali, Conjugated Poly(thiophenes): Synthesis, Functionaliza-tion and applications, Chem. Rev., 1992, 92, 711–738

    Article  CAS  Google Scholar 

  53. J. Roncali, Synthetic principles for bandgap control in linear p-conjugated systems, Chem. Rev., 1997, 97, 173–205.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Odobel.

Additional information

Electronic supplementary information (ESI) available: Full experimental details with the 1H NMR,13C NMR and mass spectra characterisations of all new materials. See http://www.rsc.org/suppdata/pp/b4/b414031a/

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houarner, C., Blart, E., Buvat, P. et al. Ruthenium bis-terpyridine complexes connected to an oligothiophene unit for dry dye-sensitised solar cells. Photochem Photobiol Sci 4, 200–204 (2005). https://doi.org/10.1039/b414031a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b414031a

Navigation