Skip to main content
Log in

Light-induced electron transfer in porphyrin–calixarene conjugates

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The fluorescence from a set of porphyrin–calixarene complexes is quenched upon addition of benzo-1,4-quinone (BQ) in fluid solution. In N,N-dimethylformamide solution, fluorescence quenching involves both static and dynamic interactions but there are no obvious differences between porphyrins with or without the appended calixarene. Under such conditions, the static quenching behaviour is attributed to π-complexation between the reactants and it is concluded that the calixarene cavity does not bind BQ. An additional static component is apparent in dichloromethane solution. This latter effect involves partial fluorescence quenching, for which the intramolecular rate constant can be obtained by time-resolved fluorescence spectroscopy. The derived rate constants depend on molecular structure in a manner consistent with fluorescence quenching being due to electron transfer. In all cases, however, the dominant quenching step involves diffusional contact between the porphyrin nucleus and a non-bound molecule of BQ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Deisenhofer, O. Epp, K. Miki, R. Huber and H. Michel, X-Ray structure analysis of a membrane-protein complex–electron density map at 3 Å resolution and a model of the photosynthetic reaction center from rhodopseudomonas-viridis, J. Mol. Biol., 1984, 180, 385–398.

    Article  CAS  PubMed  Google Scholar 

  2. J. Deisenhofer, O. Epp, K. Miki, R. Huber and H. Michel, Structure of the protein subunits in the photosynthetic reaction center of rhodopseudomonas-viridis at 3 Å resolution, Nature, 1985, 318, 618–624.

    Article  CAS  PubMed  Google Scholar 

  3. H. Michel, O. Epp and J. Deisenhofer, Pigment–protein interactions in the photosynthetic reaction center complex from rhodopseudomonas-viridis, EMBO J., 1986, 5, 2445–2451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. J. P. Allen, G. Feher, T. O. Yeates, H. Komiya and D. C. Rees, Structure of the reaction center from rhodobacter-sphaeroides R-26—the protein subunits, Proc. Natl. Acad. Sci. USA, 1987, 84, 6162–6166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. J. P. Allen, G. Feher, T. O. Yeates, H. Komiya and D. C. Rees, Structure of the reaction center from rhodobacter-sphaeroides R-26—the cofactors 1, Proc. Natl. Acad. Sci. USA, 1987, 84, 5730–5734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. H. Michel, 3-Dimensional crystals of a membrane-protein complex—the photosynthetic reaction center from rhodopseudomonas-viridis, J. Mol. Biol., 1982, 158, 567–572.

    Article  CAS  PubMed  Google Scholar 

  7. N. W. Woodbury, M. Becker, D. Middendorf and W. W. Parson, Picosecond kinetics of the initial photochemical electron-transfer reaction in bacterial photosynthetic reaction centers, Biochemistry, 1985, 24, 7516–7521.

    Article  CAS  PubMed  Google Scholar 

  8. J. L. Martin, J. Breton, A. J. Hoff, A. Migus and A. Antonetti, Femtosecond spectroscopy of electron transfer in the reaction center of the photosynthetic bacterium rhodopseudomonas-viridis R-26—Direct electron transfer from the dimeric bacteriochlorophyll primary donor to the bacteriopheophytin acceptor with a time constant of 2.8 ± 0.2 ps, Proc. Natl. Acad. Sci. USA, 1986, 83, 957–961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. J. Breton, J. L. Martin, A. Migus, A. Antonetti and A. Orszag, Femtosecond spectroscopy of excitation energy transfer and initial charge separation in the reaction center of the photosynthetic bacterium rhodopseudomonas-viridis, Proc. Natl. Acad. Sci. USA, 1986, 83, 5121–5125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. C. Kirmaier and D. Holten, Subpicosecond characterization of the optical properties of the primary electron donor and the mechanism of the initial electron transfer in rhodobacter-capsulatus reaction centers, FEBS Lett., 1988, 239, 211–218.

    Article  CAS  Google Scholar 

  11. J. Breton, J. L. Martin, G. R. Fleming and J. C. Lambry, Low temperature femtosecond spectroscopy of the initial step of electron transfer in reaction centers of photosynthetic purple bacteria, Biochemistry, 1988, 27, 8276–8284.

    Article  CAS  Google Scholar 

  12. R. S. Becker, J. B Allison, Effect of metal atom perturbations on the luminescent spectra of porphyrins, J. Chem. Phys., 1960, 32, 1410–1417.

    Article  Google Scholar 

  13. R. S. Becker and J. B. Allison, Metalloporphyrins: Electronic spectra and nature of perturbations, I. Transition metal ion derivatives, J. Phys. Chem., 1963, 67, 2662–2669.

    Article  CAS  Google Scholar 

  14. A. Harriman, G. Porter and N. Searle, Reversible photooxidation of zinc tetraphenylporphyrin by benzo-1,4-quinone, J. Chem. Soc., Faraday Trans. 2, 1979, 75, 1515–1521.

    Article  CAS  Google Scholar 

  15. A. Harriman, Luminescence of porphyrins and metalloporphyrins. Part 1. Zinc(ii), nickel(ii), and manganese(ii) porphyrins, J. Chem. Soc., Faraday Trans. 1, 1980, 76, 1978–1982.

    Article  CAS  Google Scholar 

  16. J. Davila, A. Harriman and L. R. Milgrom, A light-harvesting array of synthetic porphyrins, Chem. Phys. Lett., 1987, 136, 427–430.

    Article  Google Scholar 

  17. A. Harriman, D. Magda and J. L. Sessler, Energy transfer across a hydrogen-bonded cytosine-derived, zinc–free-base porphyrin conjugate, J. Chem. Soc., Chem. Commun., 1991, 345–348.

    Google Scholar 

  18. A. Harriman, D. Magda and J. L. Sessler, Photon antennae assembled by nucleic acid base pairing, J. Phys. Chem., 1991, 95, 1530–1532.

    Article  CAS  Google Scholar 

  19. A. Harriman, Y. Kubo and J. L. Sessler, Molecular recognition via base pairing: Photoinduced electron transfer in hydrogen-bonded zinc porphyrin–benzoquinone conjugates, J. Am. Chem. Soc., 1992, 114, 388–390.

    Article  CAS  Google Scholar 

  20. M. Brun, S. J. Atherton, A. Harriman, V. Heitz and J. P. Sauvage, Photophysics of entwined porphyrin conjugates. Competitive exciton annihilation, energy-transfer, electron-transfer, and superexchange processes, J. Am. Chem. Soc., 1992, 114, 4632–4639.

    Article  CAS  Google Scholar 

  21. A. Harriman, V. L. Capuano and J. L. Sessler, Electronic energy migration in quinone-substituted, phenyl-linked dimeric and trimeric porphyrins, J. Am. Chem. Soc., 1993, 115, 4618–4628.

    Article  Google Scholar 

  22. J. L. Sessler, B. Wang and A. Harriman, Long-range photoinduced electron transfer in an associated but non-covalently linked photosynthetic model system, J. Am. Chem. Soc., 1993, 115, 10 418–10419.

    Article  CAS  Google Scholar 

  23. J. P. Collin, A. Harriman, V. Heitz, F. Odobel and J. P. Sauvage, Photoinduced electron- and energy-transfer processes occurring within porphyrin–metal bisterpyridyl conjugates, J. Am. Chem. Soc., 1994, 116, 5679–5690.

    Article  CAS  Google Scholar 

  24. Y. Aoyama, M. Asakawa, Y. Matsui and H. Ogoshi, Molecular recognition. 16. Molecular recognition of quinones—2-point hydrogen bonding strategy for the construction of face-to-face porphyrin quinone architectures, J. Am. Chem. Soc., 1991, 113, 6233–6240.

    Article  CAS  Google Scholar 

  25. T. Hayashi, T. Miyahara, N. Hashizume and H. Ogoshi, Specific molecular recognition via multipoint hydrogen bonding: Ubiquinone analogs of porphyrins having 4 convergent hydroxyl groups pairing, J. Am. Chem. Soc., 1993, 115, 2049–2051.

    Article  CAS  Google Scholar 

  26. T. Nagasaki, H. Fujishima and S. Shinkai, Calix[4]arene-capped tetraphenylporphyrin—synthetic approach to a chiral capped porphyrin with regular C-4 symmetry, Chem. Lett., 1994, 35, 989–992.

    Article  Google Scholar 

  27. D. M. Rudkevich, W. Verboom and D. N. Reinhoudt, Biscalix[4]arene-Zn-tetraarylporphyrins, Tetrahedron Lett., 1994, 35, 7131–7134.

    Article  CAS  Google Scholar 

  28. D. Gosztola, H. Yamada and M. R. Wasielewski, Electric field effects of photogenerated ion-pairs on nearby molecules—a model for the carotenoid band shift in photosynthesis, J. Am. Chem. Soc., 1995, 117, 2041–2048.

    Article  CAS  Google Scholar 

  29. R. Milbradt and J. Weiss, Efficient combination of calix[4]arenes and meso-diphenylporphyrins, Tetrahedron Lett., 1995, 36, 2999–3002.

    Article  CAS  Google Scholar 

  30. C. D. Gutsche, Calixarenes: Monographs in Supramolecular Chemistry, ed. J. F. Stoddart, The Royal Society of Chemistry, London, 1989, vol. 1.

  31. J. Vicens, Calixarenes: A Versatile Class of Macrocyclic Compounds, ed. V. Bhomer and J. Vicens, Kluwer Academic Publisher, Hingham, MA, 1991.

  32. S. Shinkai, Calixarenes—the 3rd generation of supramolecules, Tetrahedron, 1993, 49, 8933–8968.

    Article  CAS  Google Scholar 

  33. V. Böhmer, Calixarenes, macrocycles with (almost) unlimited possibilities, Angew. Chem., Int. Ed. Engl., 1995, 34, 713–745.

    Article  Google Scholar 

  34. Pochini and R. Ungaro, Comprehensive Supramolecular Chemistry, ed. F. Vögtle, Elsevier Science Ltd., Oxford, 1996, vol. II, p. 103.

    Google Scholar 

  35. P. Lhoták and S. Shinkai, Calix[n]arenes—powerful building blocks of supramolecular chemistry, J. Synth. Org. Chem. Jpn., 1995, 53, 963–974.

    Article  Google Scholar 

  36. H. M. Chawla, K. Srivinas and S. Meena, Calix[n]arene–quinone interactions—molecular recognition of 2,6-naphthoquinone by 37,38,39,40,41,42-hexahydroxycalix[6]arene, Tetrahedron, 1995, 51, 2709–2718.

    Article  CAS  Google Scholar 

  37. E. Katchalski-Katzir, I. Shariv, M. Eisenstein, A. A. Friesem, C. Aflalo and I. Vakser, Molecular-surface recognition–determination of geometric fit between proteins and their ligands by correlation techniques, Proc. Natl. Acad. Sci. USA, 1992, 89, 2195–2199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. R. Livingston and C. Ke, Quenching of the fluorescence of chlorophyll-a solutions, J. Am. Chem. Soc., 1950, 72, 909–915.

    Article  CAS  Google Scholar 

  39. S. Yamada, T. Sato, K. Kano and T. Ogawa, Fluorescence quenching of 5,10,15,20-tetra(para-tolyl)porphine and its zinc complex by quinones—charge-transfer interaction and transient effect, Photochem. Photobiol., 1983, 37, 257–262.

    Article  CAS  Google Scholar 

  40. T. L. Nemzek and W. R. Ware, Kinetics of diffusion-controlled reactions: Transient effects in fluorescence quenching, J. Chem. Phys., 1975, 62, 477–489.

    Article  CAS  Google Scholar 

  41. R. M. Noyes, Kinetics of competitive processes when reactive fragments are produced in pairs, J. Am. Chem. Soc., 1955, 77, 2042–2045.

    Article  CAS  Google Scholar 

  42. R. M Noyes, More rigorous kinetic expressions for competitive processes in solution, J. Phys. Chem., 1961, 65, 763–765.

    Article  CAS  Google Scholar 

  43. W. R. Ware and J. S. Novros, Kinetics of diffusion-controlled reactions. An experimental test of the theory as applied to fluorescence quenching, J. Phys. Chem., 1966, 70, 3246–3253.

    Article  CAS  Google Scholar 

  44. W. R. Ware, L. J. Doemeny and T. L. Nemzek, Deconvolution of fluorescence and phosphorescence decay curves. Least-squares method, J. Phys. Chem., 1973, 77, 2038–2048.

    Article  CAS  Google Scholar 

  45. C.A. Hunter, Meldola Lecture—the role of aromatic interactions in molecular recognition, Chem. Soc. Rev., 1994, 23, 101–109.

    Article  CAS  Google Scholar 

  46. T. Arimura, T. Nishioka, S. Ide, Y. Suga, M. Sugihara, S. Murata and M. Tachiya, Intracomplex electron transfer in a hydrogen-bonded calixarene-porphyrin conjugate: Tweezers for a quinone, J. Photochem. Photobiol. A: Chem., 2001, 145, 123–128.

    Article  CAS  Google Scholar 

  47. T. Arimura, S. Ide, H. Sugihara, S. Murata and J. L. Sessler, A non-covalent assembly for electron transfer based on a calixarene-porphyrin conjugate: Tweezers for a quinone, New J. Chem., 1999, 23, 977–979.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Harriman.

Additional information

Dedicated to Professor Hiroshi Masuhara on the occasion of his 60th birthday.

Deceased 21st March 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harriman, A., Mehrabi, M. & Maiya, B.G. Light-induced electron transfer in porphyrin–calixarene conjugates. Photochem Photobiol Sci 4, 47–53 (2005). https://doi.org/10.1039/b410141c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b410141c

Navigation