Skip to main content
Log in

Photoelectrochemical properties of supramolecular species containing porphyrin and ruthenium complexes on TiO2 films

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Modification of wide band gap semiconductor surfaces by a new generation of supramolecular sensitizers, combining porphyrin and ruthenium—phenanthroline complexes leads to versatile molecular interfaces, allowing the exploitation of photoinduced charge transfer in dye sensitized photoelectrochemical cells. meso-Tetrapyridylporphyrin coordinated to two ruthenium complexes converts 21% of the incident photons into current after excitation at the Soret band. In this work we discuss the electron/energy transfer mechanisms involved in the TiO2 sensitization by these supramolecular species, invoking some theoretical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. O’Reagan, M. Grätzel, A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films, Nature, 1991, 353, 737–740.

    Article  Google Scholar 

  2. M. K. Nazeeruddin, A. Kay, R. Humphry-Baker, E. Muller, P. Liska, N. Vanchopoulos, M. Grätzel, Conversion of light to electricity by cis-X2Bis (2,2′-bipyridyl-4,4′dicarboxylate) ruthenium(II) charge transfer sensitizers (X = Cl, Br, I, CN,, and SCN) on Nanocrystalline TiO2 electrodes, J. Am. Chem. Soc., 1993, 115, 6382–6390.

    Article  CAS  Google Scholar 

  3. K. Kalyanasundaram, M. Grätzel, Applications of funcionalized transition metal complexes in photonic, and optoelectronic devices, Coord. Chem. Rev., 1998, 77, 347–414.

    Article  Google Scholar 

  4. R. Argazzi, C. A. Bignozzi, T. A. Heimer, F. Castellano and G. J. Meyer, Enhanced spectral sensitivity from ruthenium(II) polypyridyl based photovoltaic devices, Inorg. Chem., 1994, 33, 5741.

    Article  CAS  Google Scholar 

  5. O. Kohle, S. Ruile, M. Grätzel, Ruthenium(II) charge-transfer sensitizers containing 4,4′-dicarboxy-2,2′-bipyridine. Synthesis, properties, and bonding mode of coordinated thio-, and selenocyanates, Inorg. Chem., 1996, 35, 4779–4787.

    Article  CAS  Google Scholar 

  6. C. A. Bignozzi, R. Argazzi, M. T. Indelli and F. Scandola, Design of supramolecular systems for spectral sensitization of semiconductors, Sol. Energy Mater. Sol. Cells, 1994, 32, 229–244.

    Article  CAS  Google Scholar 

  7. C. A. Bignozzi, R. Argazzi and C. J. Kleverlaan, Molecular, and supramolecular sensitization of nanocrystalline wide band-gap semiconductors with mononuclear, and polynuclear metal complexes, Chem. Soc. Rev., 2000, 29, 87–96.

    Article  CAS  Google Scholar 

  8. A. Kay, R. Humphry-Baker, M. Grätzel, Artificial Photosynthesis. 2. Investigations on the mechanism of photosensitization of nanocrystalline TiO2 solar cells by chlorophyll derivatives, J. Phys. Chem., 1994, 98, 952–958.

    Article  CAS  Google Scholar 

  9. K. Kalyanasundaram, N. Vanchopoulos, V. Krishnan, A. Monnier, M. Grätzel, Sensitization of TiO2 in the visible light region using zinc pophyrin, J. Phys. Chem., 1987, 91, 2342–2347.

    Article  CAS  Google Scholar 

  10. T. Ma. K. Inoue, H. Noma, K. Yao and E. Abe, Effect of functional group on photochemical properties, and photosensitization of TiO2 electrode sensitized by porphyrin derivatives, J. Photochem. Photobiol. A, 2002, 152, 207–212.

    Article  Google Scholar 

  11. G. K. Boschloo and A. Goossens, Electron trapping in porphyrin-sensitized porous nanocrystalline TiO2 electrodes, J. Phys. Chem., 1996, 100, 19489–19494.

    Article  CAS  Google Scholar 

  12. M. K. Nazeeruddin, R. Humphry-Baker, M. Grätzel, D. Wohrle, G. Schnurpfeil, G. Schneider, A. Hirth and N. Trombach, Efficient near-IR sensitisation of nanocrystalline TiO2 films by zinc, and aluminium phthalocyanines, J. Porphyrins Phthalocyanines, 1999, 3, 230–237.

    Article  CAS  Google Scholar 

  13. S. Ferrere and B. A. Gregg, New perylenes for dye sensitization of TiO2, New J. Chem., 2002, 26, 1155–1160.

    Article  CAS  Google Scholar 

  14. K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara and H. Arakawa, Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells, Sol. Energy Mater. Sol. Cells, 2000, 64, 115–134.

    Article  CAS  Google Scholar 

  15. A. Hagfeldt and M. Gratzel, Light-induced redox reactions in nanocrystalline systems, Chem. Rev., 1995, 95, 49–68.

    Article  CAS  Google Scholar 

  16. Y. Tachibana, S. A. Haque, I. P. Mercer, J. R. Durrant and D. R. Klug, Electron injection, and recombination in dye sensitized nanocrystalline titanium dioxide films: a comparison of ruthenium bipyridyl, and pophyrin sensitizer dyes, J. Phys. Chem. B, 2000, 104, 1198–1205.

    Article  CAS  Google Scholar 

  17. F. Odobel, E. Blart, M. Lagrée, M. Villieras, H. Boujtita, N. E. Murr, S. Caramori and C. A. Bignozzi, Porphyrin dyes for TiO2 sensitization, J. Mater. Chem., 2003, 13, 502–510.

    Article  CAS  Google Scholar 

  18. M. J. Gunter and P. Turner, Metalloporphyrins as models for the cytochromes-P-450, Coord. Chem. Rev., 1991, 108, 115–161.

    Article  CAS  Google Scholar 

  19. C. Shi and F. C. Anson, Cobalt meso-tetrakis(N-methyl-4-pyridiniumyl)-porphyrin becomes a catalyst for the electroreduction of O2 by four electrons when [(NH3)(5)Os](n+) (n = 2, 3) groups are coordinated to the porphyrin ring, Inorg. Chem., 1996, 35, 7928–7931.

    Article  CAS  Google Scholar 

  20. D. Gust, T. A. Moore and A. L. Moore, Mimicking bacterial photosynthesis, Pure Appl. Chem., 1998, 70, 2189–2200.

    Article  CAS  Google Scholar 

  21. F. Bedioui, J. Devynck, C-J. Bied-Charreton, Electropolymerized manganese porphyrin films as catalytic electrode materials for biomimetic oxidations with molecular oxygen, J. Mol. Catal. A: Chem., 1996, 113, 3–11.

    Article  CAS  Google Scholar 

  22. H. E. Toma and K. Araki, Supramolecular assemblies of ruthenium complexes, and porphyrins, Coord. Chem. Rev., 2000, 196, 307–329.

    Article  CAS  Google Scholar 

  23. K. Araki and H. E. Toma, Syntehesis, and characterization of a multibriged porphyrin complex containing peripheral bis(bipyridine)-ruthenium(II) groups, J. Coord. Chem., 1993, 30, 9–17.

    Article  CAS  Google Scholar 

  24. K. Araki and H. E. Toma, Luminescence, spectroelectrochemistry, and photoelectrochemical properties of a tetraruthenated zinc porphyrin, J. Photochem. Photobiol. A, 1994, 83, 245–250.

    Article  CAS  Google Scholar 

  25. F. M. Engelmann, P. Losco, H. Winnischofer, K. Araki and H. E. Toma, Synthesis, electrochemistry, spectroscopy, and photophysical properties of a series of meso-phenylpyridylporphyrins with one to four pyridyl rings coordinated to [Ru(bipy)2Cl]+ groups, J. Porphyrins Phthalocyanines, 2002, 6, 33–42.

    Article  CAS  Google Scholar 

  26. K. Araki, P. Losco, F. M. Engelmann, H. Winnischofer and H. E. Toma, Modulation of vectorial energy transfer in the tetrakis[tris(bipyridine)ruthenium(II)porphyrinate zinc complex, J. Photochem. Photobiol. A, 2001, 42, 25–30.

    Article  Google Scholar 

  27. K. Araki, A. L. Araujo, M. M. Toyama, M. Franco, C. M. N. Azevedo, L. Agnes and H. E. Toma, Spectroscopic, and electrochemical study of a tetrapyridylporphyrin modified with four bis-(1,10-phenanthroline)chlororuthenium(II) complexes, J. Porphyrins Phthalocyanines, 1998, 2, 467–472.

    Article  CAS  Google Scholar 

  28. N. L. Allinger, Conformational-analysis.130.MM2–Hydrocarbon force-field utilizing V1, and V2 torsional terms., J. Am. Chem. Soc., 1977, 99, 8127–8134.

    Article  CAS  Google Scholar 

  29. HyperChemTM version 6.01 for WindowsTM, Hypercube Inc. Gainesville, FL, USA, 2000.

  30. M. C. Zerner, G. H. Loew, R. F. Kirchner, U. T. Mueller-Westerhoff, Intermediate neglect of differential-overlap technique for spectroscopy of transtion-metal compexes–ferrocene, J. Am. Chem. Soc., 1980, 102, 589–599.

    Article  CAS  Google Scholar 

  31. A. D. Bacon and M. C. Zerner, Intermediate neglect of differential-overlap technique for spectroscopy of transtion-metal compexes–Fe, Co, and Cu chlorides, Theor. Chim. Acta, 1979, 53, 21–54.

    Article  CAS  Google Scholar 

  32. J. E. Ridley and M. C. Zerner, Triplet-states via intermediate neglect of differential overlap–benzene, pyridine, and diazines, Theor. Chim. Acta, 1976, 42, 223–236.

    Article  CAS  Google Scholar 

  33. C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, Nanocrystalline titanium oxide electrodes for photovoltaic applications, J. Am. Ceram. Soc., 1997, 80, 3157–3171.

    Article  Google Scholar 

  34. R. Dabestani, A. J. Bard, A. Campion, M. A. Fox, T. E. Mallouk, S. E. Webber and J. M. White, Sensitization of titanium-dioxide, and strontium-titanate electrodes by ruthenium(II) tris(2,2′-bipirine-4,4′dicarboxylic acid), and zinc tetrakis(4-carboxyphenyl)porphyrin–an evaluation of sensitization efficiency for component photoelectrodes in a multipanel device, J. Phys. Chem., 1988, 92, 1872–1878.

    Article  CAS  Google Scholar 

  35. H. Sugihara, L. P. Singh, K. Sayama, H. Arakawa, Md. K. Nazeeruddin and M. Gratzel, Efficient photosensitization of nanocrystalline TiO2 films by a new grass of sensitizer: cis-dithiocyanato bis(4,7-dicarboxy-1,10-phenanthroline)ruthenium(II), Chem. Lett., 1998, 1005–1006.

    Google Scholar 

  36. K. Hara, H. Horiuchi, R. Katoh, L. P. Singh, H. Sugihara, K. Sayama, S. Murata, M. Tachiya and H. Arakawa, Effect of the ligand structure on the efficiency of electron injection from excited Ru-phenanthroline complexes to nanocrystalline TiO2 films, J. Phys. Chem. B, 2002, 106, 374–379.

    Article  CAS  Google Scholar 

  37. S. A. Haque, Y. Tachibana, D. Klug and J. R. Durrant, Charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films under externally applied bias, J. Phys. Chem. B, 1998, 102, 1745–1749.

    Article  CAS  Google Scholar 

  38. I. Montanari, J. Nelson and J. R. Durrant, Iodide electron transfer kinetics in dye-sensitized nanocrystalline TiO2 films, J. Phys. Chem. B, 2002, 106, 12203–12210.

    Article  CAS  Google Scholar 

  39. J. N. Clifford, G. Yahioglu, L. R. Milgrom and J. R. Durrant, Molecular control of recombination dynamics in dye sensitised nanocrystalline TiO2 films, Chem. Commun., 2002, 1260–1261.

    Google Scholar 

  40. J. E. Kroeze, T. J. Savenije and J. M. Warman, Contactless determination of the efficiency of photo-induced charge separation in a porphyrin-TiO2 bilayer, J. Photochem. Photobiol. A, 2002, 148, 49–55.

    Article  CAS  Google Scholar 

  41. R. Argazzi, C. A. Bignozzi, T. A. Heimer and G. J. Meyer, Remote interfacial electron transfer from supramolecular sensitizers, Inorg. Chem., 1997, 36, 2–3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nogueira, A.F., Formiga, A.L.B., Winnischofer, H. et al. Photoelectrochemical properties of supramolecular species containing porphyrin and ruthenium complexes on TiO2 films. Photochem Photobiol Sci 3, 56–62 (2004). https://doi.org/10.1039/b306702e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b306702e

Navigation