Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The role of Toll-like receptor 4 polymorphisms in vaccine immune response

Abstract

Toll-like receptors (TLRs) are a class of pattern recognition receptors that are deputed to recognise a range of molecular structures in pathogens. One of the most studied members of this family is the TLR4, which is essential for the signalling of lipopolysaccharide. The gene encoding for TLR4 is highly polymorphic and this genetic variability may explain in part the interindividual variability observed in several clinical setting, including the response to vaccination. Herein, we review and systematise the available scientific evidence about the effect of TLR4 polymorphisms on vaccine response, including approved prophylactic, new therapeutic cancer vaccines and recently approved vaccine adjuvants. Data reviewed in this analysis indicate that TLR4 polymorphisms significantly affect vaccine response. If these results are confirmed by further analyses, the use of these genetic biomarkers may become a useful tool to tailor vaccination in specific subsets of patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Akira S, Hemmi H . Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett 2003; 85: 85–95.

    Article  CAS  PubMed  Google Scholar 

  2. Takeda K, Akira S . Toll-like receptors. In: Coligan JE et al. (eds). Current Protocols in Immunology, Chapter 14, Unit 14 12, 2007.

  3. Imler JL, Hoffmann JA . Toll receptors in innate immunity. Trends Cell Biol 2001; 11: 304–311.

    Article  CAS  PubMed  Google Scholar 

  4. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr . A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388: 394–397.

    Article  CAS  PubMed  Google Scholar 

  5. Medzhitov R, Janeway C Jr . Innate immunity. New Engl J Med 2000; 343: 338–344.

    Article  CAS  PubMed  Google Scholar 

  6. Takeda K, Akira S . TLR signaling pathways. Semin Immunol 2004; 16: 3–9.

    Article  CAS  PubMed  Google Scholar 

  7. Akira S, Takeda K, Kaisho T . Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001; 2: 675–680.

    Article  CAS  PubMed  Google Scholar 

  8. Lin SC, Lo YC, Wu H . Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1 R signalling. Nature 2010; 465: 885–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McAleer JP, Vella AT . Educating CD4 T cells with vaccine adjuvants: lessons from lipopolysaccharide. Trends Immunol 2010; 31: 429–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Casella CR, Mitchell TC . Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell Mol Life Sci 2008; 65: 3231–3240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Noreen M, Shah MA, Mall SM, Choudhary S, Hussain T, Ahmed I et al. TLR4 polymorphisms and disease susceptibility. Inflamm Res 2012; 61: 177–188.

    Article  CAS  PubMed  Google Scholar 

  12. Geleijns K, Jacobs BC, Van Rijs W, Tio-Gillen AP, Laman JD, van Doorn PA . Functional polymorphisms in LPS receptors CD14 and TLR4 are not associated with disease susceptibility or Campylobacter jejuni infection in Guillain-Barre patients. J Neuroimmunol 2004; 150: 132–138.

    Article  CAS  PubMed  Google Scholar 

  13. Bank S, Skytt Andersen P, Burisch J, Pedersen N, Roug S, Galsgaard J et al. Polymorphisms in the inflammatory pathway genes TLR2, TLR4, TLR9, LY96, NFKBIA, NFKB1, TNFA, TNFRSF1A, IL6R, IL10, IL23R, PTPN22, and PPARG are associated with susceptibility of inflammatory bowel disease in a Danish Cohort. PloS One 2014; 9: e98815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schroder NW, Schumann RR . Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet 2005; 5: 156–164.

    Article  Google Scholar 

  15. Balfour HH Jr., Edelman CK, Amren DP . Antibody response following customary use of MMR vaccine. JAMA 1984; 251: 3223–3224.

    Article  PubMed  Google Scholar 

  16. Haralambieva IH, Ovsyannikova IG, Pankratz VS, Kennedy RB, Jacobson RM, Poland GA . The genetic basis for interindividual immune response variation to measles vaccine: new understanding and new vaccine approaches. Exp Rev Vaccines 2013; 12: 57–70.

    Article  CAS  Google Scholar 

  17. Li ZK, Nie JJ, Li J, Zhuang H . The effect of HLA on immunological response to hepatitis B vaccine in healthy people: a meta-analysis. Vaccine 2013; 31: 4355–4361.

    Article  CAS  PubMed  Google Scholar 

  18. Pondo T CE Jr, Martin SW, Keitel WA, Keyserling HL, Babcock J et al. Evaluation of sex, race, body mass index and pre-vaccination serum progesterone levels and post-vaccination serum anti-anthrax protective immunoglobulin G on injection site adverse events following anthrax vaccine adsorbed (AVA) in the CDC AVA human clinical trial. Vaccine 2014; 32: 3548–3554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Klein SL, Poland GA . Personalized vaccinology: one size and dose might not fit both sexes. Vaccine 2013; 31: 2599–2600.

    Article  PubMed  Google Scholar 

  20. Haq K, McElhaney JE . Immunosenescence: influenza vaccination and the elderly. Curr Opin Immunol 2014; 29C: 38–42.

    Article  CAS  Google Scholar 

  21. Pellegrino P, Carnovale C, Perrone V, Pozzi M, Antoniazzi S, Radice S et al. Efficacy of vaccination against influenza in patients with multiple sclerosis: The role of concomitant therapies. Vaccine 2014; 32: 4730–4735.

    Article  PubMed  Google Scholar 

  22. Delpeut S, Noyce RS, Siu RW, Richardson CD . Host factors and measles virus replication. Curr Opin Virol 2012; 2: 773–783.

    Article  CAS  PubMed  Google Scholar 

  23. Centers for Disease C, Prevention. Progress in reducing measles mortality—worldwide, 1999-2003. MMWR 2005; 54: 200–203.

    Google Scholar 

  24. Ovsyannikova IG, Jacobson RM, Poland GA . Variation in vaccine response in normal populations. Pharmacogenomics 2004; 5: 417–427.

    Article  CAS  PubMed  Google Scholar 

  25. Poland GA, Ovsyannikova IG, Jacobson RM . Personalized vaccines: the emerging field of vaccinomics. Exp Opin Biol Ther 2008; 8: 1659–1667.

    Article  CAS  Google Scholar 

  26. Poland GA, Ovsyannikova IG, Jacobson RM . Vaccine immunogenetics: bedside to bench to population. Vaccine 2008; 26: 6183–6188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Posteraro B, Pastorino R, Di Giannantonio P, Ianuale C, Amore R, Ricciardi W et al. The link between genetic variation and variability in vaccine responses: Systematic review and meta-analyses. Vaccine 2014; 32: 1661–1669.

    Article  CAS  PubMed  Google Scholar 

  28. Haralambieva IH, Salk HM, Lambert ND, Ovsyannikova IG, Kennedy RB, Warner ND et al. Associations between race, sex and immune response variations to rubella vaccination in two independent cohorts. Vaccine 2014; 32: 1946–1953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hahm B, Cho JH, Oldstone MB . Measles virus-dendritic cell interaction via SLAM inhibits innate immunity: selective signaling through TLR4 but not other TLRs mediates suppression of IL-12 synthesis. Virology 2007; 358: 251–257.

    Article  CAS  PubMed  Google Scholar 

  30. Bieback K, Lien E, Klagge IM, Avota E, Schneider-Schaulies J, Duprex WP et al. Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J Virol 2002; 76: 8729–8736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dhiman N, Ovsyannikova IG, Vierkant RA, Ryan JE, Pankratz VS, Jacobson RM et al. Associations between SNPs in toll-like receptors and related intracellular signaling molecules and immune responses to measles vaccine: preliminary results. Vaccine 2008; 26: 1731–1736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ovsyannikova IG, Haralambieva IH, Vierkant RA, Pankratz VS, Jacobson RM, Poland GA . The role of polymorphisms in Toll-like receptors and their associated intracellular signaling genes in measles vaccine immunity. Hum Genet 2011; 130: 547–561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Guiso N . How to fight pertussis? Ther Adv Vaccines 2013; 1: 59–66.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ausiello CM, Cassone A . Acellular pertussis vaccines and pertussis resurgence: revise or replace? mBio 2014; 5: e01339–14.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fallo A, Manonelles G, Hozbor D, Lara C, Huespe M, Mazzeo S et al. Pertussis seroprevalence in adults, post-partum women and umbilical cord blood. Arch Argent Pediatr 2014; 112: 315–322.

    PubMed  Google Scholar 

  36. Banus HA, Vandebriel RJ, de Ruiter H, Dormans JA, Nagelkerke NJ, Mooi FR et al. Host genetics of Bordetella pertussis infection in mice: significance of Toll-like receptor 4 in genetic susceptibility and pathobiology. Infect Immun 2006; 74: 2596–2605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Higgins SC, Jarnicki AG, Lavelle EC, Mills KH . TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis: role of IL-17-producing T cells. J Immunol 2006; 177: 7980–7989.

    Article  CAS  PubMed  Google Scholar 

  38. Banus S, Bottema RW, Siezen CL, Vandebriel RJ, Reimerink J, Mommers M et al. Toll-like receptor 4 polymorphism associated with the response to whole-cell pertussis vaccination in children from the KOALA study. Clin Vaccine Immunol 2007; 14: 1377–1380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kimman TG, Banus S, Reijmerink N, Reimerink J, Stelma FF, Koppelman GH et al. Association of interacting genes in the toll-like receptor signaling pathway and the antibody response to pertussis vaccination. PloS One 2008; 3: e3665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Grondahl-Yli-Hannuksela K, Vuononvirta J, Barkoff AM, Viander M, Van Der Meeren O, Mertsola J et al. Gene polymorphism in toll-like receptor 4: effect on antibody production and persistence after acellular pertussis vaccination during adolescence. J Infect Dis 2012; 205: 1214–1219.

    Article  CAS  PubMed  Google Scholar 

  41. Harrison LH, Trotter CL, Ramsay ME . Global epidemiology of meningococcal disease. Vaccine 2009; 27: B51–B63.

    Article  PubMed  Google Scholar 

  42. Harrison LH . Epidemiological profile of meningococcal disease in the United States. Clin Infect Dis 2010; 50: S37–S44.

    Article  PubMed  Google Scholar 

  43. Pellegrino P, Perrone V, Radice S, Capuano A, Clementi E . Immunogenicity of meningococcal quadrivalent (serogroup A, C, W135 and Y) tetanus toxoid conjugate vaccine: Systematic review and meta-analysis. Pharmacol Res 2014; 92C: 31–39.

    Google Scholar 

  44. Faber J, Meyer CU, Gemmer C, Russo A, Finn A, Murdoch C et al. Human toll-like receptor 4 mutations are associated with susceptibility to invasive meningococcal disease in infancy. Pediatr Infect Dis J 2006; 25: 80–81.

    Article  PubMed  Google Scholar 

  45. Biebl A, Muendlein A, Kazakbaeva Z, Heuberger S, Sonderegger G, Drexel H et al. CD14 C-159 T and toll-like receptor 4 Asp299Gly polymorphisms in surviving meningococcal disease patients. PloS One 2009; 4: e7374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Spector SA, Qin M, Lujan-Zilbermann J, Singh KK, Warshaw MG, Williams PL et al. Genetic variants in toll-like receptor 2 (TLR2), TLR4, TLR9, and FCgamma receptor II are associated with antibody response to quadrivalent meningococcal conjugate vaccine in HIV-infected youth. Clin Vaccine Immunol 2013; 20: 900–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cohn AC, MacNeil JR, Harrison LH, Hatcher C, Theodore J, Schmidt M et al. Changes in Neisseria meningitidis disease epidemiology in the United States, 1998-2007: implications for prevention of meningococcal disease. Clin Infect Dis 2010; 50: 184–191.

    Article  PubMed  Google Scholar 

  48. Pellegrino P, Carnovale C, Perrone V, Salvati D, Gentili M, Brusadelli T et al. Epidemiological analysis on two decades of hospitalisations for meningitis in the United States. Eur J Clin Microbiol Infect Dis 2014; 33: 1519–1524.

    Article  CAS  PubMed  Google Scholar 

  49. Moore CE, Hennig BJ, Perrett KP, Hoe JC, Lee SJ, Fletcher H et al. Single nucleotide polymorphisms in the Toll-like receptor 3 and CD44 genes are associated with persistence of vaccine-induced immunity to the serogroup C meningococcal conjugate vaccine. Clin Vaccine Immunol 2012; 19: 295–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zughaier SM . Neisseria meningitidis capsular polysaccharides induce inflammatory responses via TLR2 and TLR4-MD-2. J Leukoc Biol 2011; 89: 469–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fransen F, Stenger RM, Poelen MC, van Dijken HH, Kuipers B, Boog CJ et al. Differential effect of TLR2 and TLR4 on the immune response after immunization with a vaccine against Neisseria meningitidis or Bordetella pertussis. PloS One 2010; 5: e15692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Alving CR . Lipopolysaccharide, lipid A, and liposomes containing lipid A as immunologic adjuvants. Immunobiology 1993; 187: 430–446.

    Article  CAS  PubMed  Google Scholar 

  53. Johnson DA, Keegan DS, Sowell CG, Livesay MT, Johnson CL, Taubner LM et al. 3-O-Desacyl monophosphoryl lipid A derivatives: synthesis and immunostimulant activities. J Med Chem 1999; 42: 4640–4649.

    Article  CAS  PubMed  Google Scholar 

  54. Baldridge JR, Cluff CW, Evans JT, Lacy MJ, Stephens JR, Brookshire VG et al. Immunostimulatory activity of aminoalkyl glucosaminide 4-phosphates (AGPs): induction of protective innate immune responses by RC-524 and RC-529. J Endotoxin Res 2002; 8: 453–458.

    Article  CAS  PubMed  Google Scholar 

  55. Didierlaurent AM, Morel S, Lockman L, Giannini SL, Bisteau M, Carlsen H et al. AS04, an aluminum salt- and TLR4 agonist-based adjuvant system, induces a transient localized innate immune response leading to enhanced adaptive immunity. J Immunol 2009; 183: 6186–6197.

    Article  CAS  PubMed  Google Scholar 

  56. Tiberio L, Fletcher L, Eldridge JH, Duncan DD . Host factors impacting the innate response in humans to the candidate adjuvants RC529 and monophosphoryl lipid A. Vaccine 2004; 22: 1515–1523.

    Article  CAS  PubMed  Google Scholar 

  57. Newport MJ, Allen A, Awomoyi AA, Dunstan SJ, McKinney E, Marchant A et al. The toll-like receptor 4 Asp299Gly variant: no influence on LPS responsiveness or susceptibility to pulmonary tuberculosis in The Gambia. Tuberculosis 2004; 84: 347–352.

    Article  CAS  PubMed  Google Scholar 

  58. Long H, O'Connor BP, Zemans RL, Zhou X, Yang IV, Schwartz DA . The Toll-like receptor 4 polymorphism Asp299Gly but not Thr399Ile influences TLR4 signaling and function. PloS One 2014; 9: e93550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yamakawa N, Ohto U, Akashi-Takamura S, Takahashi K, Saitoh S, Tanimura N et al. Human TLR4 polymorphism D299G/T399I alters TLR4/MD-2 conformation and response to a weak ligand monophosphoryl lipid A. Int Immunol 2013; 25: 45–52.

    Article  CAS  PubMed  Google Scholar 

  60. Sato K, Yoshimura A, Kaneko T, Ukai T, Ozaki Y, Nakamura H et al. A single nucleotide polymorphism in 3'-untranslated region contributes to the regulation of Toll-like receptor 4 translation. J Biol Chem 2012; 287: 25163–25172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Steinman RM, Banchereau J . Taking dendritic cells into medicine. Nature 2007; 449: 419–426.

    Article  CAS  PubMed  Google Scholar 

  62. Escobar A, Lopez M, Serrano A, Ramirez M, Perez C, Aguirre A et al. Dendritic cell immunizations alone or combined with low doses of interleukin-2 induce specific immune responses in melanoma patients. Clin Exp Immunol 2005; 142: 555–568.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lopez MN, Pereda C, Segal G, Munoz L, Aguilera R, Gonzalez FE et al. Prolonged survival of dendritic cell-vaccinated melanoma patients correlates with tumor-specific delayed type IV hypersensitivity response and reduction of tumor growth factor beta-expressing T cells. J Clin Oncol 2009; 27: 945–952.

    Article  CAS  PubMed  Google Scholar 

  64. Perrotta C, Bizzozero L, Falcone S, Rovere-Querini P, Prinetti A, Schuchman EH et al. Nitric oxide boosts chemoimmunotherapy via inhibition of acid sphingomyelinase in a mouse model of melanoma. Cancer Res 2007; 67: 7559–7564.

    Article  CAS  PubMed  Google Scholar 

  65. Paolucci C, Rovere P, De Nadai C, Manfredi AA, Clementi E . Nitric oxide inhibits the tumor necrosis factor alpha -regulated endocytosis of human dendritic cells in a cyclic GMP-dependent way. J Biol Chem 2000; 275: 19638–19644.

    Article  CAS  PubMed  Google Scholar 

  66. Andrews DM, Maraskovsky E, Smyth MJ . Cancer vaccines for established cancer: how to make them better? Immunol Rev 2008; 222: 242–255.

    Article  CAS  PubMed  Google Scholar 

  67. Frankenberger B, Schendel DJ . Third generation dendritic cell vaccines for tumor immunotherapy. Eur J Cell Biol 2012; 91: 53–58.

    Article  CAS  PubMed  Google Scholar 

  68. Zaloudik J, Vagunda V, Drahokoupilova M, Janakova L, Talac R, Kalabis J et al. Biomarkers for predicting response to regional chemo-immunotherapy in liver metastases from colorectal carcinoma. Int J Immunopharmacol 1997; 19: 481–485.

    Article  CAS  PubMed  Google Scholar 

  69. Hicklin DJ, Marincola FM, Ferrone S . HLA class I antigen downregulation in human cancers: T-cell immunotherapy revives an old story. Mol Med Today 1999; 5: 178–186.

    Article  CAS  PubMed  Google Scholar 

  70. Pasare C, Medzhitov R . Toll-like receptors: linking innate and adaptive immunity. Adv Exp Med Biol 2005; 560: 11–18.

    Article  CAS  PubMed  Google Scholar 

  71. Pasare C, Medzhitov R . Toll-like receptors: linking innate and adaptive immunity. Microbes Infect 2004; 6: 1382–1387.

    Article  CAS  PubMed  Google Scholar 

  72. Srivastava P . Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunology 2002; 2: 185–194.

    Article  CAS  PubMed  Google Scholar 

  73. Re F, Strominger JL . Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells. J Biol Chem 2001; 276: 37692–37699.

    Article  CAS  PubMed  Google Scholar 

  74. Tittarelli A, Gonzalez FE, Pereda C, Mora G, Munoz L, Saffie C et al. Toll-like receptor 4 gene polymorphism influences dendritic cell in vitro function and clinical outcomes in vaccinated melanoma patients. Cancer Immunol Immunother 2012; 61: 2067–2077.

    Article  CAS  PubMed  Google Scholar 

  75. Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautes-Fridman C et al. Trial Watch: experimental Toll-like receptor agonists for cancer therapy. Oncoimmunology 2012; 1: 699–716.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Poland GA, Kennedy RB, Ovsyannikova IG . Vaccinomics and personalized vaccinology: is science leading us toward a new path of directed vaccine development and discovery? PLoS Pathog 2011; 7: e1002344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Davis RL . The vaccine adverse event reporting system and vaccine safety research in the genomics era. Vaccine 2012; 30: 1162–1164.

    Article  PubMed  Google Scholar 

  78. Pellegrino P, Falvella FS, Perrone V, Carnovale C, Brusadelli T, Pozzi M et al. The first steps towards the era of personalised vaccinology: predicting adverse reactions. Pharmacogenomics J 2014, doi:10.1038/tpj.2014.57 [e-pub ahead of print].

  79. Pellegrino P, Carnovale C, Perrone V, Salvati D, Gentili M, Brusadelli T et al. On the association between human papillomavirus vaccine and primary ovarian failure. Am J Reprod Immunol 2014; 71: 293–294.

    Article  PubMed  Google Scholar 

  80. Pellegrino P, Carnovale C, Perrone V, Antoniazzi S, Pozzi M, Clementi E et al. No evidence of a link between multiple sclerosis and the vaccine against the human papillomavirus. Eur J Epidemiol 2013; 28: 705–707.

    Article  PubMed  Google Scholar 

  81. Pellegrino P, Carnovale C, Perrone V, Pozzi M, Antoniazzi S, Clementi E et al. Acute disseminated encephalomyelitis onset: evaluation based on vaccine adverse events reporting systems. PloS One 2013; 8: e77766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pellegrino P, Carnovale C, Radice S, Clementi E . Influenza-like illness after yellow fever vaccination. J Clin Virol 2014; 60: 181.

    Article  PubMed  Google Scholar 

  83. Pellegrino P, Carnovale C, Perrone V, Antoniazzi S, Pozzi M, Clementi E et al. Can HPV immunisation cause ADEM? Two case reports and literature review. Mult Scler 2014; 20: 762–763.

    Article  PubMed  Google Scholar 

  84. Pellegrino P, Carnovale C, Perrone V, Salvati D, Gentili M, Brusadelli T et al. On the possible interaction between vaccines and drugs. Eur J Clin Pharmacol 2014; 70: 369–371.

    Article  PubMed  Google Scholar 

  85. Pellegrino P, Carnovale C, Pozzi M, Antoniazzi S, Perrone V, Salvati D et al. On the relationship between human papilloma virus vaccine and autoimmune diseases. Autoimmun Rev 2014; 13: 736–741.

    Article  CAS  PubMed  Google Scholar 

  86. Reif DM, McKinney BA, Motsinger AA, Chanock SJ, Edwards KM, Rock MT et al. Genetic basis for adverse events after smallpox vaccination. J Infect Dis 2008; 198: 16–22.

    Article  CAS  PubMed  Google Scholar 

  87. Pellegrino P, Perrone V, Pozzi M, Carnovale C, Perrotta C, Clementi E et al. The epidemiological profile of ASIA syndrome after HPV vaccination: an evaluation based on the Vaccine Adverse Event Reporting Systems. Immunol Res 2014; 61: 90–96.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Italian Medicines Agency (Agenzia Italiana del Farmaco) and the Ministry of Health (Ricerca Corrente 2015) to EC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Clementi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pellegrino, P., Falvella, F., Cheli, S. et al. The role of Toll-like receptor 4 polymorphisms in vaccine immune response. Pharmacogenomics J 16, 96–101 (2016). https://doi.org/10.1038/tpj.2015.21

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2015.21

Search

Quick links