Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Somatic pharmacogenomics in cancer

Abstract

Many of the initial examples of the clinical utility of pharmacogenetics were elucidated in the field of oncology. Those examples were largely based on the existence of germline genetic variation that influences the metabolism of cytotoxic drugs. However, with the development of kinase inhibitors, drugs designed to preferentially target altered proteins driving oncogenesis, pharmacogenetics in cancer has shifted to understanding the somatic differences that determine response to these targeted agents. It is becoming increasingly clear that understanding the molecular genetics of cancer will lead to the further development of targeted therapeutics. Therefore, it is imperative that pharmacogenomics researchers understand the motivations and challenges of developing targeted therapies to treat cancer as a paradigm for personalized medicine. However, much of the discussion in the pharmacogenomics community in cancer is still largely focused on the germline variants as predictors of drug toxicity. In light of that fact, this review presents a detailed discussion of the development of commonly used targeted therapies for the treatment of hematological and solid tumors, the somatic mutations that determine response to those therapies, and the mechanisms of drug resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Weinstein JN, Pommier Y . Transcriptomic analysis of the NCI-60 cancer cell lines. C R Biol 2003; 326: 909–920.

    Article  CAS  PubMed  Google Scholar 

  2. Weinshilboum R, Wang L . Pharmacogenomics: bench to bedside. Nat Rev Drug Discov 2004; 3: 739–748.

    Article  CAS  PubMed  Google Scholar 

  3. Lindpaintner K . The impact of pharmacogenetics and pharmacogenomics on drug discovery. Nat Rev Drug Discov 2002; 1: 463–469.

    Article  CAS  PubMed  Google Scholar 

  4. Goetz MP, Ames MM, Weinshilboum RM . Primer on medical genomics. Part XII: pharmacogenomics—general principles with cancer as a model. Mayo Clin Proc 2004; 79: 376–384.

    Article  PubMed  Google Scholar 

  5. Kim TW, Innocenti F . Insights, challenges, and future directions in irinogenetics. Ther Drug Monit 2007; 29: 265–270.

    Article  PubMed  Google Scholar 

  6. Goetz MP, Kamal A, Ames MM . Tamoxifen pharmacogenomics: the role of CYP2D6 as a predictor of drug response. Clin Pharmacol Ther 2008; 83: 160–166.

    Article  CAS  PubMed  Google Scholar 

  7. Yen JL, McLeod HL . Should DPD analysis be required prior to prescribing fluoropyrimidines? Eur J Cancer 2007; 43: 1011–1016.

    Article  PubMed  Google Scholar 

  8. Sebolt-Leopold JS, English JM . Mechanisms of drug inhibition of signalling molecules. Nature 2006; 441: 457–462.

    Article  CAS  PubMed  Google Scholar 

  9. Manley PW, Cowan-Jacob SW, Buchdunger E, Fabbro D, Fendrich G, Furet P et al. Imatinib: a selective tyrosine kinase inhibitor. Eur J Cancer 2002; 38: S19–S27.

    Article  PubMed  Google Scholar 

  10. Roskoski Jr R . STI-571: an anticancer protein-tyrosine kinase inhibitor. Biochem Biophys Res Commun 2003; 309: 709–717.

    Article  CAS  PubMed  Google Scholar 

  11. Capdeville R, Buchdunger E, Zimmermann J, Matter A . Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov 2002; 1: 493–502.

    Article  CAS  PubMed  Google Scholar 

  12. Michor F, Hughes TP, Iwasa Y, Branford S, Shah NP, Sawyers CL et al. Dynamics of chronic myeloid leukaemia. Nature 2005; 435: 1267–1270.

    Article  CAS  PubMed  Google Scholar 

  13. Weisberg E, Manley PW, Cowan-Jacob SW, Hochhaus A, Griffin JD . Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer 2007; 7: 345–356.

    Article  CAS  PubMed  Google Scholar 

  14. le Coutre P, Tassi E, Varella-Garcia M, Barni R, Mologni L, Cabrita G et al. Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification. Blood 2000; 95: 1758–1766.

    CAS  PubMed  Google Scholar 

  15. Weisberg E, Griffin JD . Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines. Blood 2000; 95: 3498–3505.

    CAS  PubMed  Google Scholar 

  16. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001; 293: 876–880.

    Article  CAS  PubMed  Google Scholar 

  17. Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J . Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 2000; 289: 1938–1942.

    Article  CAS  PubMed  Google Scholar 

  18. Corbin AS, Buchdunger E, Pascal F, Druker BJ . Analysis of the structural basis of specificity of inhibition of the Abl kinase by STI571. J Biol Chem 2002; 277: 32214–32219.

    Article  CAS  PubMed  Google Scholar 

  19. Soverini S, Martinelli G, Rosti G, Bassi S, Amabile M, Poerio A et al. ABL mutations in late chronic phase chronic myeloid leukemia patients with up-front cytogenetic resistance to imatinib are associated with a greater likelihood of progression to blast crisis and shorter survival: a study by the GIMEMA Working Party on Chronic Myeloid Leukemia. J Clin Oncol 2005; 23: 4100–4109.

    Article  CAS  PubMed  Google Scholar 

  20. Nicolini FE, Corm S, Le QH, Sorel N, Hayette S, Bories D et al. Mutation status and clinical outcome of 89 imatinib mesylate-resistant chronic myelogenous leukemia patients: a retrospective analysis from the French intergroup of CML (Fi(phi)-LMC GROUP). Leukemia 2006; 20: 1061–1066.

    Article  CAS  PubMed  Google Scholar 

  21. Barthe C, Gharbi MJ, Lagarde V, Chollet C, Cony-Makhoul P, Reiffers J et al. Mutation in the ATP-binding site of BCR-ABL in a patient with chronic myeloid leukaemia with increasing resistance to STI571. Br J Haematol 2002; 119: 109–111.

    Article  CAS  PubMed  Google Scholar 

  22. Branford S, Rudzki Z, Walsh S, Grigg A, Arthur C, Taylor K et al. High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood 2002; 99: 3472–3475.

    Article  CAS  PubMed  Google Scholar 

  23. Kantarjian H, Giles F, Wunderle L, Bhalla K, O'Brien S, Wassmann B et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 2006; 354: 2542–2551.

    Article  PubMed  Google Scholar 

  24. Manley PW, Cowan-Jacob SW, Mestan J . Advances in the structural biology, design and clinical development of Bcr-Abl kinase inhibitors for the treatment of chronic myeloid leukaemia. Biochim Biophys Acta 2005; 1754: 3–13.

    Article  CAS  PubMed  Google Scholar 

  25. Das J, Chen P, Norris D, Padmanabha R, Lin J, Moquin RV et al. 2-aminothiazole as a novel kinase inhibitor template. Structure-activity relationship studies toward the discovery of N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1-piperazinyl)]-2-methyl-4-pyrimidinyl]amino)]-1,3-thiazole-5-carboxamide (dasatinib, BMS-354825) as a potent pan-Src kinase inhibitor. J Med Chem 2006; 49: 6819–6832.

    Article  CAS  PubMed  Google Scholar 

  26. Melnick JS, Janes J, Kim S, Chang JY, Sipes DG, Gunderson D et al. An efficient rapid system for profiling the cellular activities of molecular libraries. Proc Natl Acad Sci USA 2006; 103: 3153–3158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tokarski JS, Newitt JA, Chang CY, Cheng JD, Wittekind M, Kiefer SE et al. The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res 2006; 66: 5790–5797.

    Article  CAS  PubMed  Google Scholar 

  28. Cortes J, Rousselot P, Kim DW, Ritchie E, Hamerschlak N, Coutre S et al. Dasatinib induces complete hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in blast crisis. Blood 2007; 109: 3207–3213.

    Article  CAS  PubMed  Google Scholar 

  29. Talpaz M, Shah NP, Kantarjian H, Donato N, Nicoll J, Paquette R et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 2006; 354: 2531–2541.

    Article  CAS  PubMed  Google Scholar 

  30. Fletcher JA, Rubin BP . KIT mutations in GIST. Curr Opin Genet Dev 2007; 17: 3–7.

    Article  CAS  PubMed  Google Scholar 

  31. Corless CL, McGreevey L, Haley A, Town A, Heinrich MC . KIT mutations are common in incidental gastrointestinal stromal tumors one centimeter or less in size. Am J Pathol 2002; 160: 1567–1572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tuveson DA, Willis NA, Jacks T, Griffin JD, Singer S, Fletcher CD et al. STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene 2001; 20: 5054–5058.

    Article  CAS  PubMed  Google Scholar 

  33. Gold JS, Dematteo RP . Combined surgical and molecular therapy: the gastrointestinal stromal tumor model. Ann Surg 2006; 244: 176–184.

    Article  PubMed  PubMed Central  Google Scholar 

  34. DeMatteo RP, Lewis JJ, Leung D, Mudan SS, Woodruff JM, Brennan MF . Two hundred gastrointestinal stromal tumors: recurrence patterns and prognostic factors for survival. Ann Surg 2000; 231: 51–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Demetri GD . Identification and treatment of chemoresistant inoperable or metastatic GIST: experience with the selective tyrosine kinase inhibitor imatinib mesylate (STI571). Eur J Cancer 2002; 38: S52–S59.

    Article  PubMed  Google Scholar 

  36. Verweij J, van Oosterom A, Blay JY, Judson I, Rodenhuis S, van der Graaf W et al. Imatinib mesylate (STI-571 Glivec, Gleevec) is an active agent for gastrointestinal stromal tumours, but does not yield responses in other soft-tissue sarcomas that are unselected for a molecular target. Results from an EORTC Soft Tissue and Bone Sarcoma Group phase II study. Eur J Cancer 2003; 39: 2006–2011.

    Article  CAS  PubMed  Google Scholar 

  37. Verweij J, Casali PG, Zalcberg J, LeCesne A, Reichardt P, Blay JY et al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet 2004; 364: 1127–1134.

    Article  CAS  PubMed  Google Scholar 

  38. Heinrich MC, Corless CL, Demetri GD, Blanke CD, von Mehren M, Joensuu H et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 2003; 21: 4342–4349.

    Article  CAS  PubMed  Google Scholar 

  39. Tarn C, Merkel E, Canutescu AA, Shen W, Skorobogatko Y, Heslin MJ et al. Analysis of KIT mutations in sporadic and familial gastrointestinal stromal tumors: therapeutic implications through protein modeling. Clin Cancer Res 2005; 11: 3668–3677.

    Article  CAS  PubMed  Google Scholar 

  40. Joensuu H . Gastrointestinal stromal tumor (GIST). Ann Oncol 2006a; 17: 280–286.

    Article  Google Scholar 

  41. Heinrich MC, Corless CL . Gastric GI stromal tumors (GISTs): the role of surgery in the era of targeted therapy. J Surg Oncol 2005; 90: 195–207.

    Article  PubMed  Google Scholar 

  42. Heinrich MC, Corless CL, Blanke CD, Demetri GD, Joensuu H, Roberts PJ et al. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol 2006; 24: 4764–4774.

    Article  CAS  PubMed  Google Scholar 

  43. Joensuu H . Sunitinib for imatinib-resistant GIST. Lancet 2006b; 368: 1303–1304.

    Article  PubMed  Google Scholar 

  44. Demetri GD, van Oosterom AT, Garrett CR, Blackstein ME, Shah MH, Verweij J et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 2006; 368: 1329–1338.

    Article  CAS  PubMed  Google Scholar 

  45. Bauer S, Yu LK, Demetri GD, Fletcher JA . Heat shock protein 90 inhibition in imatinib-resistant gastrointestinal stromal tumor. Cancer Res 2006; 66: 9153–9161.

    Article  CAS  PubMed  Google Scholar 

  46. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707–712.

    Article  CAS  PubMed  Google Scholar 

  47. Perren TJ . c-erbB-2 oncogene as a prognostic marker in breast cancer. Br J Cancer 1991; 63: 328–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Roskoski Jr R . The ErbB/HER receptor protein-tyrosine kinases and cancer. Biochem Biophys Res Commun 2004; 319: 1–11.

    Article  CAS  PubMed  Google Scholar 

  49. Nahta R, Esteva FJ . Herceptin: mechanisms of action and resistance. Cancer Lett 2006; 232: 123–138.

    Article  CAS  PubMed  Google Scholar 

  50. Baselga J, Tripathy D, Mendelsohn J, Baughman S, Benz CC, Dantis L et al. Phase II study of weekly intravenous trastuzumab (Herceptin) in patients with HER2/neu-overexpressing metastatic breast cancer. Semin Oncol 1999; 26: 78–83.

    CAS  PubMed  Google Scholar 

  51. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L et al. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 2002; 20: 719–726.

    Article  CAS  PubMed  Google Scholar 

  52. Seidman AD, Fornier MN, Esteva FJ, Tan L, Kaptain S, Bach A et al. Weekly trastuzumab and paclitaxel therapy for metastatic breast cancer with analysis of efficacy by HER2 immunophenotype and gene amplification. J Clin Oncol 2001; 19: 2587–2595.

    Article  CAS  PubMed  Google Scholar 

  53. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344: 783–792.

    Article  CAS  PubMed  Google Scholar 

  54. Esteva FJ, Valero V, Booser D, Guerra LT, Murray JL, Pusztai L et al. Phase II study of weekly docetaxel and trastuzumab for patients with HER-2-overexpressing metastatic breast cancer. J Clin Oncol 2002; 20: 1800–1808.

    Article  CAS  PubMed  Google Scholar 

  55. Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ . Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol 2006; 3: 269–280.

    Article  CAS  PubMed  Google Scholar 

  56. Nahta R, Yuan LX, Zhang B, Kobayashi R, Esteva FJ . Insulin-like growth factor-I receptor/human epidermal growth factor receptor 2 heterodimerization contributes to trastuzumab resistance of breast cancer cells. Cancer Res 2005; 65: 11118–11128.

    Article  CAS  PubMed  Google Scholar 

  57. Chan CT, Metz MZ, Kane SE . Differential sensitivities of trastuzumab (Herceptin)-resistant human breast cancer cells to phosphoinositide-3 kinase (PI-3K) and epidermal growth factor receptor (EGFR) kinase inhibitors. Breast Cancer Res Treat 2005; 91: 187–201.

    Article  CAS  PubMed  Google Scholar 

  58. Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 2004; 6: 117–127.

    Article  CAS  PubMed  Google Scholar 

  59. Agus DB, Akita RW, Fox WD, Lewis GD, Higgins B, Pisacane PI et al. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2002; 2: 127–137.

    Article  CAS  PubMed  Google Scholar 

  60. Yakes FM, Chinratanalab W, Ritter CA, King W, Seelig S, Arteaga CL . Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res 2002; 62: 4132–4141.

    CAS  PubMed  Google Scholar 

  61. Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney Jr DW et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature 2003; 421: 756–760.

    Article  CAS  PubMed  Google Scholar 

  62. Franklin MC, Carey KD, Vajdos FF, Leahy DJ, de Vos AM, Sliwkowski MX . Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 2004; 5: 317–328.

    Article  CAS  PubMed  Google Scholar 

  63. Nahta R, Hung MC, Esteva FJ . The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res 2004; 64: 2343–2346.

    Article  CAS  PubMed  Google Scholar 

  64. Xia W, Gerard CM, Liu L, Baudson NM, Ory TL, Spector NL . Combining lapatinib (GW572016), a small molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases, with therapeutic anti-ErbB2 antibodies enhances apoptosis of ErbB2-overexpressing breast cancer cells. Oncogene 2005; 24: 6213–6221.

    Article  CAS  PubMed  Google Scholar 

  65. Xia W, Bacus S, Hegde P, Husain I, Strum J, Liu L et al. A model of acquired autoresistance to a potent ErbB2 tyrosine kinase inhibitor and a therapeutic strategy to prevent its onset in breast cancer. Proc Natl Acad Sci USA 2006; 103: 7795–7800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T et al. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 2006; 355: 2733–2743.

    Article  CAS  PubMed  Google Scholar 

  67. Azzoli CG, Krug LM, Miller VA, Kris MG, Mass R . Trastuzumab in the treatment of non-small cell lung cancer. Semin Oncol 2002; 29: 59–65.

    Article  CAS  PubMed  Google Scholar 

  68. Shi D, He G, Cao S, Pan W, Zhang HZ, Yu D et al. Overexpression of the c-erbB-2/neu-encoded p185 protein in primary lung cancer. Mol Carcinog 1992; 5: 213–218.

    Article  CAS  PubMed  Google Scholar 

  69. Brabender J, Danenberg KD, Metzger R, Schneider PM, Park J, Salonga D et al. Epidermal growth factor receptor and HER2-neu mRNA expression in non-small cell lung cancer Is correlated with survival. Clin Cancer Res 2001; 7: 1850–1855.

    CAS  PubMed  Google Scholar 

  70. Stephens P, Hunter C, Bignell G, Edkins S, Davies H, Teague J et al. Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 2004; 431: 525–526.

    Article  CAS  PubMed  Google Scholar 

  71. Shigematsu H, Takahashi T, Nomura M, Majmudar K, Suzuki M, Lee H et al. Somatic mutations of the HER2 kinase domain in lung adenocarcinomas. Cancer Res 2005b; 65: 1642–1646.

    Article  CAS  PubMed  Google Scholar 

  72. Gatzemeier U, Groth G, Butts C, Van Zandwijk N, Shepherd F, Ardizzoni A et al. Randomized phase II trial of gemcitabine-cisplatin with or without trastuzumab in HER2-positive non-small-cell lung cancer. Ann Oncol 2004; 15: 19–27.

    Article  CAS  PubMed  Google Scholar 

  73. Langer CJ, Stephenson P, Thor A, Vangel M, Johnson DH . Trastuzumab in the treatment of advanced non-small-cell lung cancer: is there a role? Focus on Eastern Cooperative Oncology Group study 2598. J Clin Oncol 2004; 22: 1180–1187.

    Article  CAS  PubMed  Google Scholar 

  74. Zinner RG, Glisson BS, Fossella FV, Pisters KM, Kies MS, Lee PM et al. Trastuzumab in combination with cisplatin and gemcitabine in patients with Her2-overexpressing, untreated, advanced non-small cell lung cancer: report of a phase II trial and findings regarding optimal identification of patients with Her2-overexpressing disease. Lung Cancer 2004; 44: 99–110.

    Article  PubMed  Google Scholar 

  75. Clamon G, Herndon J, Kern J, Govindan R, Garst J, Watson D et al. Lack of trastuzumab activity in nonsmall cell lung carcinoma with overexpression of erb-B2: 39810: a phase II trial of Cancer and Leukemia Group B. Cancer 2005; 103: 1670–1675.

    Article  CAS  PubMed  Google Scholar 

  76. Nicholson RI, Gee JM, Harper ME . EGFR and cancer prognosis. Eur J Cancer 2001; 37 (Suppl 4): S9–15.

    Article  CAS  PubMed  Google Scholar 

  77. Sridhar SS, Seymour L, Shepherd FA . Inhibitors of epidermal-growth-factor receptors: a review of clinical research with a focus on non-small-cell lung cancer. Lancet Oncol 2003; 4: 397–406.

    Article  CAS  PubMed  Google Scholar 

  78. Sridhar SS, Seymour L, Shepherd FA . Inhibitors of epidermal-growth-factor receptors: a review of clinical research with a focus on non-small-cell lung cancer. Lancet Oncol 2003; 4: 397–406.

    Article  CAS  PubMed  Google Scholar 

  79. Kris MG, Natale RB, Herbst RS, Lynch Jr TJ, Prager D, Belani CP et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 2003; 290: 2149–2158.

    Article  CAS  PubMed  Google Scholar 

  80. Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Douillard JY et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) (corrected). J Clin Oncol 2003; 21: 2237–2246.

    Article  CAS  PubMed  Google Scholar 

  81. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350: 2129–2139.

    Article  CAS  PubMed  Google Scholar 

  82. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304: 1497–1500.

    Article  CAS  PubMed  Google Scholar 

  83. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I et al. EGF receptor gene mutations are common in lung cancers from ‘never smokers’ and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA 2004a; 101: 13306–13311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. AstraZeneca Pharmaceuticals. Gefitinib (Iressaâ„¢) Marketing Authorization Application Withdrawn in EU. Press Release, January 4, 2005. Available at http://www.astrazeneca.com/pressrelease/4442.aspx. Accessed June 13, 2008.

  85. US Food and Drug Administration. IRESSA® (ZD1839, gefitinib) Tablets. Oncologic Drugs Advisory Committee (ODAC) Meeting Briefing Document, March 4, 2005. Available at http://www.fda.gov/ohrms/dockets/ac/05/briefing/2005-4095B2_01_01-AstraZeneca-Iressa.pdf. Accessed June 13, 2008..

  86. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, Tan EH, Hirsh V, Thongprasert S et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 2005; 353: 123–132.

    Article  CAS  PubMed  Google Scholar 

  87. Shigematsu H, Lin L, Takahashi T, Nomura M, Suzuki M, Wistuba II et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst 2005a; 97: 339–346.

    Article  CAS  PubMed  Google Scholar 

  88. Guo M, Liu S, Lu F . Gefitinib-sensitizing mutations in esophageal carcinoma. N Engl J Med 2006; 354: 2193–2194.

    Article  CAS  PubMed  Google Scholar 

  89. Gwak GY, Yoon JH, Shin CM, Ahn YJ, Chung JK, Kim YA et al. Detection of response-predicting mutations in the kinase domain of the epidermal growth factor receptor gene in cholangiocarcinomas. J Cancer Res Clin Oncol 2005; 131: 649–652.

    Article  CAS  PubMed  Google Scholar 

  90. Lee JW, Soung YH, Kim SY, Nam HK, Park WS, Nam SW et al. Somatic mutations of EGFR gene in squamous cell carcinoma of the head and neck. Clin Cancer Res 2005; 11: 2879–2882.

    Article  CAS  PubMed  Google Scholar 

  91. Nagahara H, Mimori K, Ohta M, Utsunomiya T, Inoue H, Barnard GF et al. Somatic mutations of epidermal growth factor receptor in colorectal carcinoma. Clin Cancer Res 2005; 11: 1368–1371.

    Article  CAS  PubMed  Google Scholar 

  92. Schilder RJ, Sill MW, Chen X, Darcy KM, Decesare SL, Lewandowski G et al. Phase II study of gefitinib in patients with relapsed or persistent ovarian or primary peritoneal carcinoma and evaluation of epidermal growth factor receptor mutations and immunohistochemical expression: a Gynecologic Oncology Group Study. Clin Cancer Res 2005; 11: 5539–5548.

    Article  CAS  PubMed  Google Scholar 

  93. Kwak EL, Jankowski J, Thayer SP, Lauwers GY, Brannigan BW, Harris PL et al. Epidermal growth factor receptor kinase domain mutations in esophageal and pancreatic adenocarcinomas. Clin Cancer Res 2006; 12: 4283–4287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 2005; 353: 2012–2024.

    Article  CAS  PubMed  Google Scholar 

  95. Ji H, Zhao X, Yuza Y, Shimamura T, Li D, Protopopov A et al. Epidermal growth factor receptor variant III mutations in lung tumorigenesis and sensitivity to tyrosine kinase inhibitors. Proc Natl Acad Sci USA 2006; 103: 7817–7822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kaye FJ . A curious link between epidermal growth factor receptor amplification and survival: effect of ‘allele dilution’ on gefitinib sensitivity? J Natl Cancer Inst 2005; 97: 621–623.

    Article  CAS  PubMed  Google Scholar 

  97. Riely GJ, Politi KA, Miller VA, Pao W . Update on epidermal growth factor receptor mutations in non-small cell lung cancer. Clin Cancer Res 2006b; 12: 7232–7241.

    Article  CAS  PubMed  Google Scholar 

  98. Riely GJ, Pao W, Pham D, Li AR, Rizvi N, Venkatraman ES et al. Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin Cancer Res 2006a; 12: 839–844.

    Article  CAS  PubMed  Google Scholar 

  99. Bell DW, Lynch TJ, Haserlat SM, Harris PL, Okimoto RA, Brannigan BW et al. Epidermal growth factor receptor mutations and gene amplification in non-small-cell lung cancer: molecular analysis of the IDEAL/INTACT gefitinib trials. J Clin Oncol 2005b; 23: 8081–8092.

    Article  CAS  PubMed  Google Scholar 

  100. Tsao MS, Sakurada A, Cutz JC, Zhu CQ, Kamel-Reid S, Squire J et al. Erlotinib in lung cancer—molecular and clinical predictors of outcome. N Engl J Med 2005; 353: 133–144.

    Article  CAS  PubMed  Google Scholar 

  101. Han SW, Kim TY, Hwang PG, Jeong S, Kim J, Choi IS et al. Predictive and prognostic impact of epidermal growth factor receptor mutation in non-small-cell lung cancer patients treated with gefitinib. J Clin Oncol 2005; 23: 2493–2501.

    Article  CAS  PubMed  Google Scholar 

  102. Mitsudomi T, Kosaka T, Endoh H, Horio Y, Hida T, Mori S et al. Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. J Clin Oncol 2005; 23: 2513–2520.

    Article  CAS  PubMed  Google Scholar 

  103. Uramoto H, Sugio K, Oyama T, Ono K, Sugaya M, Yoshimatsu T et al. Epidermal growth factor receptor mutations are associated with gefitinib sensitivity in non-small cell lung cancer in Japanese. Lung Cancer 2006; 51: 71–77.

    Article  PubMed  Google Scholar 

  104. Inoue A, Suzuki T, Fukuhara T, Maemondo M, Kimura Y, Morikawa N et al. Prospective phase II study of gefitinib for chemotherapy-naive patients with advanced non-small-cell lung cancer with epidermal growth factor receptor gene mutations. J Clin Oncol 2006; 24: 3340–3346.

    Article  CAS  PubMed  Google Scholar 

  105. Sunaga N, Tomizawa Y, Yanagitani N, Iijima H, Kaira K, Shimizu K et al. Phase II prospective study of the efficacy of gefitinib for the treatment of stage III/IV non-small cell lung cancer with EGFR mutations, irrespective of previous chemotherapy. Lung Cancer 2007; 56: 383–389.

    Article  PubMed  Google Scholar 

  106. Sutani A, Nagai Y, Udagawa K, Uchida Y, Koyama N, Murayama Y et al. Gefitinib for non-small-cell lung cancer patients with epidermal growth factor receptor gene mutations screened by peptide nucleic acid-locked nucleic acid PCR clamp. Br J Cancer 2006; 95: 1483–1489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Eberhard DA, Johnson BE, Amler LC, Goddard AD, Heldens SL, Herbst RS et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol 2005; 23: 5900–5909.

    Article  CAS  PubMed  Google Scholar 

  108. Kobayashi S, Boggon TJ, Dayaram T, Janne PA, Kocher O, Meyerson M et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 2005a; 352: 786–792.

    Article  CAS  PubMed  Google Scholar 

  109. Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2005a; 2: e73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bell DW, Gore I, Okimoto RA, Godin-Heymann N, Sordella R, Mulloy R et al. Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR. Nat Genet 2005a; 37: 1315–1316.

    Article  CAS  PubMed  Google Scholar 

  111. Kobayashi S, Ji H, Yuza Y, Meyerson M, Wong KK, Tenen DG et al. An alternative inhibitor overcomes resistance caused by a mutation of the epidermal growth factor receptor. Cancer Res 2005b; 65: 7096–7101.

    Article  CAS  PubMed  Google Scholar 

  112. Kwak EL, Sordella R, Bell DW, Godin-Heymann N, Okimoto RA, Brannigan BW et al. Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc Natl Acad Sci USA 2005; 102: 7665–7670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kakiuchi S, Daigo Y, Ishikawa N, Furukawa C, Tsunoda T, Yano S et al. Prediction of sensitivity of advanced non-small cell lung cancers to gefitinib (Iressa, ZD1839). Hum Mol Genet 2004; 13: 3029–3043.

    Article  CAS  PubMed  Google Scholar 

  114. Zhou BB, Peyton M, He B, Liu C, Girard L, Caudler E et al. Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer. Cancer Cell 2006; 10: 39–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cappuzzo F, Varella-Garcia M, Shigematsu H, Domenichini I, Bartolini S, Ceresoli GL et al. Increased HER2 gene copy number is associated with response to gefitinib therapy in epidermal growth factor receptor-positive non-small-cell lung cancer patients. J Clin Oncol 2005; 23: 5007–5018.

    Article  CAS  PubMed  Google Scholar 

  116. Wang SE, Narasanna A, Perez-Torres M, Xiang B, Wu FY, Yang S et al. HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors. Cancer Cell 2006; 10: 25–38.

    Article  CAS  PubMed  Google Scholar 

  117. Pao W, Wang TY, Riely GJ, Miller VA, Pan Q, Ladanyi M et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med 2005b; 2: e17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sordella R, Bell DW, Haber DA, Settleman J . Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 2004; 305: 1163–1167.

    Article  CAS  PubMed  Google Scholar 

  119. Cappuzzo F, Magrini E, Ceresoli GL, Bartolini S, Rossi E, Ludovini V et al. Akt phosphorylation and gefitinib efficacy in patients with advanced non-small-cell lung cancer. J Natl Cancer Inst 2004; 96: 1133–1141.

    Article  CAS  PubMed  Google Scholar 

  120. Pao W, Miller VA, Venkatraman E, Kris MG . Predicting sensitivity of non-small-cell lung cancer to gefitinib: is there a role for P-Akt? J Natl Cancer Inst 2004b; 96: 1117–1119.

    Article  PubMed  Google Scholar 

  121. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007; 316: 1039–1043.

    Article  CAS  PubMed  Google Scholar 

  122. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954.

    Article  CAS  PubMed  Google Scholar 

  123. Stephens P, Hunter C, Bignell G, Edkins S, Davies H, Teague J et al. Lung cancer: intragenic ERBB2 kinase mutations in tumors. Nature 2004; 431: 525–526.

    Article  CAS  PubMed  Google Scholar 

  124. Parsons DW, Wang TL, Samuels Y, Bardelli A, Cummins JM, DeLong L et al. Colorectal cancer: mutations in a signaling pathway. Nature 2005; 436: 792.

    Article  CAS  PubMed  Google Scholar 

  125. Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A et al. BRAF mutation predicts sensitivity to MEK inhibition. Nature 2006; 439: 358–362.

    Article  CAS  PubMed  Google Scholar 

  126. Niculescu-Duvaz I, Roman E, Whittaker SR, Friedlos F, Kirk R, Scanlon IJ et al. Novel inhibitors of the v-raf murine sarcoma viral oncogene homologue B1 (BRAF) based on a 2,6-disubstituted pyrazine scaffold. J Med Chem 2008; 51: 3261–3274.

    Article  CAS  PubMed  Google Scholar 

  127. Ikediobi ON, Reimers M, Durinck S, Blower PE, Futreal PA, Stratton MR et al. In vitro differential sensitivity of melanomas to phenothiazines is based on the presence of codon 600 BRAF mutation. Mol Cancer Ther 2008; 7: 1337–1346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yu K, Toral-Barza L, Shi C, Zhang WG, Zask A . Response and determinants of cancer cell susceptibility to PI3K inhibitors: combined targeting of PI3K and Mek1 as an effective anticancer strategy. Cancer Biol Ther 2008; 7: 307–315.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O N Ikediobi.

Additional information

Duality of interest

The author has no conflicts or duality of interests to disclose.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikediobi, O. Somatic pharmacogenomics in cancer. Pharmacogenomics J 8, 305–314 (2008). https://doi.org/10.1038/tpj.2008.8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2008.8

Keywords

This article is cited by

Search

Quick links