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Auxin flow-mediated competition 
between axillary buds to restore 
apical dominance
Jozef Balla1,2,*, Zuzana Medveďová1,3,*, Petr Kalousek2, Natálie Matiješčuková1, Jiří Friml4, 
Vilém Reinöhl1 & Stanislav Procházka1

Apical dominance is one of the fundamental developmental phenomena in plant biology, which 
determines the overall architecture of aerial plant parts. Here we show apex decapitation activated 
competition for dominance in adjacent upper and lower axillary buds. A two-nodal-bud pea (Pisum 
sativum L.) was used as a model system to monitor and assess auxin flow, auxin transport channels,  
and dormancy and initiation status of axillary buds. Auxin flow was manipulated by lateral stem wounds 
or chemically by auxin efflux inhibitors 2,3,5-triiodobenzoic acid (TIBA), 1-N-naphtylphtalamic acid 
(NPA), or protein synthesis inhibitor cycloheximide (CHX) treatments, which served to interfere with 
axillary bud competition. Redirecting auxin flow to different points influenced which bud formed the 
outgrowing and dominant shoot. The obtained results proved that competition between upper and 
lower axillary buds as secondary auxin sources is based on the same auxin canalization principle that 
operates between the shoot apex and axillary bud.

It is widely accepted that genetic determination and variable responses to different environmental conditions 
are responsible for the wide range of plant body forms. Among other factors, plasticity in plant shape is possi-
ble due to activity of the shoot apical meristem (SAM), which is established during embryogenesis. The entire 
aboveground part of the plant mass originates from this single primary meristem on the upper end of plant 
axis. Primary SAM continually produces new stem cells, leaf primordia, which develop into leaves. In each new 
immature leaf axil, secondary SAMs (or axillary meristems) are forming. If these meristems are arrested, dormant 
axillary buds form, which contain immature leaves and tertiary axillary meristems. These buds can be activated by 
large-scale environmental stimuli, such as shading, temperature, water, and nutrient availability; and loss of SAM 
by wind damage or grazing by herbivorous animals, which results in secondary branch production. Plants build 
primary, secondary and/or tertiary bodies in a modular fashion, adding new to existing axes in this hierarchical 
order based on environmental conditions (reviewed in ref. 1).

Apical dominance is the regulatory mechanism which primary SAM uses to control outgrowth of higher order 
axillary meristems. Simple primary SAM removal releases one or more axillary buds from dormancy and the out-
growing shoots replace the previously dominant apex. Auxin is the most studied signalling molecule originating 
in SAM. Auxin is synthesized in the shoot apex and young leaves, and transported in stem vasculature, i.e., down-
wards in xylem parenchyma cells. The direction of basipetal cell-to-cell auxin transport is determined by polar, 
subcellular localization of PIN auxin efflux carriers2,3. These carriers occur at the lower side of the respective cells 
assisted by AUX1/LAX auxin influx carriers, which also show polar localization in some cells4. This tip-to-base 
directed auxin flow maintains dormancy in axillary buds. Indeed, external auxin supply into decapitated stem 
prevents bud outgrowth5. On contrary, auxin application to axillary buds of decapitated plants does not block 
their outgrowth, suggesting the bud outgrowth inhibition mechanism(s) is not simply auxin supply from stem to 
buds confirmed by application of radioactively labelled auxin to a stump, which did not enter the axillary buds6. 
In addition, it was showed7 that arrested axillary buds promptly increased auxin production following activation.
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One of the possibilities how to explain this behaviour of auxin is the competitive canalization model8–11. The 
original canalization hypothesis proposed an initial broad and low auxin flux from a source, which up-regulated 
and directed its own transport. The transport finally narrowed to cell files, canals, where the hormone moved very 
effectively from source to sink. These auxin transport channels subsequently patterned a new plant vasculature12. 
This concept was applied to bud outgrowth regulation: forming effective auxin transport channels from dormant 
axillary buds to the primary stem auxin flow was a prerequisite for its outgrowth. However, this in the presence 
of a strong auxin source–the primary SAM that supplied auxin to the primary stem and reduced its sink strength 
for possible secondary auxin sources–was disabled12.

Aim of the present study was to show that not only the primary stem apex and axillary buds, but also adjacent 
axillary buds compete for dominance. We also tested the importance of long-range auxin signalling mediating 
bud outgrowth.

Results
Axillary buds released from dormancy compete for dominance in pea. Garden pea, among plant 
species, has well pronounced apical dominance. This trait manifests by inhibition of axillary bud outgrowth by the 
shoot apex (Fig. 1a,c,e). In the primary stem of intact pea plants, PIN1 auxin efflux carriers in cells accompanying 
the vasculature were polarly organized, indicating massive polar auxin transport (PAT) (Fig. 1h). On contrary, 
PIN1 carrier localization in procambial cell files of inhibited axillary buds did not show this polarized distribu-
tion (Fig. 1i). Shoot apex removal releases axillary buds from growth inhibition (Fig. 1b,d) and in these released 
outgrowing buds the PIN1 carriers in procambial cells became polarly localized (Fig. 1j), similar to the primary 
stem. In our two-nodal-bud model system the lower axillary buds were half the length of the upper buds, however 
following decapitation, bud growth was initiated and occurred at the same rate, i.e., bud length doubled daily. 
Three days after decapitation, growth rates began to slow in shoots that developed from lower buds, while upper 
buds continued growth at the same rate and became evidently dominant (Fig. 1f). This competition pattern for 
outgrowth of axillary buds was not altered when cotyledons, the nutrient sources, were removed (Supplementary 
Fig. 1a). Morphological changes in buds were accompanied by expected changes in the dormancy marker gene 
PsDRM1 (DORMANCY-ASSOCIATED PROTEIN1) expression, reflecting bud growth status, i.e., in both out-
growing buds, PsDRM1 expression decreased to zero during six hours after decapitation, while in rearrested lower 
buds at day five, expression increased to a high level (Fig. 1g).

Auxin pool in decapitated stem delays release of buds from dormancy. The importance of basi-
petal auxin flow in stems for bud outgrowth regulation was evaluated using de-etiolated plants with long inter-
nodes. Plants with the decapitation site and upper axillary bud separated by 90 mm (long stump) were compared 
with the standard 5 mm (short stump) separation (Fig. 2a,b). Dormancy release and bud outgrowth timing were 
determined using the dormancy marker gene PsDRM1 and branching repressor gene PsBRC1 (BRANCHED1). 
Generally, we observed an approximately 12 h delay in the expression dynamics of both genes in long compared 
to short stem stump plants (Fig. 2c,d).

Interruption of PAT in the primary stem releases buds from dormancy. The role of PAT system in 
stems for inhibition of axillary bud outgrowth was further tested by reducing intact plant auxin flow by imposing 
a deep stem wound. The incision positioned above the upper axillary bud (Fig. 3a) released this bud from dor-
mancy while the lower bud remained arrested. The released upper bud subsequently formed a shoot and primary 
shoot also continued in growth (Fig. 3c). These axillary bud changes exhibited no relationship to altered nutrient 
supplies caused by wounding and cotyledon removal (Supplementary Fig. 1b,d).

As an alternative and supporting approach, we inhibited stem basipetal auxin flow by applying a ring of auxin 
efflux inhibitor 2,3,5-triiodobenzoic acid (TIBA) on the stem subapically, i.e., between the apex and upper axillary 
bud (Fig. 3b). The TIBA-ring effectively blocked stem auxin transport from the apex, as shown by radioactively 
labelled auxin ([3H]-IAA) application measurements (Fig. 3f). In addition, these results indicated that upper bud 
outgrowth was promoted, while lower buds remained arrested (Fig. 3d). PsDRM1 dormancy marker expression 
confirmed the macroscopically observed bud dormancy status (Fig. 3e). Furthermore, PIN1 auxin efflux car-
rier immunodetection provided additional evidence that in intact plants subapically treated with a TIBA-ring 
(Fig. 3b) the polarized PIN1 carrier in procambial cell files established auxin export from the upper outgrow-
ing buds (Supplementary Fig. 2a); however in arrested lower buds, signs of polarization were not observed 
(Supplementary Fig. 2b). In the stem itself, visible changes in PIN1 polarization on or adjacent to the TIBA-ring 
position were not detected (Fig. 3g). Same experimental setup with auxin efflux inhibitor 1-N-naphtylphtalamic 
acid (NPA) ring application led to identical results (Supplementary Fig. 3a,d,e) as with TIBA-ring, while protein 
synthesis inhibitor cycloheximide (CHX) ring did not promote bud outgrowth (Supplementary Fig. 4a,d) and did 
not block auxin transport from the apex (Supplementary Fig. 4e). Lengths of growing shoot apices measured from 
the subapically applied ring to the tip showed that TIBA and NPA content in the ring promoted shoot elongation 
above the application site in comparison to lanolin control and CHX-ring. Furthermore, the stem above TIBA- 
and NPA- ring was swollen (Supplementary Fig. 2c–g).

Interruption of PAT between buds releases lower bud from dormancy. Auxin flow was disrupted 
in the primary stem between axillary buds in intact plants to examine bud initiation. Deep stem wound posi-
tioned above the lower axillary bud (Fig. 4a) (or wherever between the upper and lower bud) released the lower 
bud from inhibition that subsequently formed a shoot, while the upper bud remained inhibited. In addition to 
the lower bud outgrowth, the primary shoot also continued its growth (Fig. 4d). This outgrowth pattern was not 
affected by changed nutrient supplies caused by wounding and cotyledon removal (Supplementary Fig. 1c,e).
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Figure 1. Axillary buds released from dormancy compete for dominance in pea. (a) Scheme of intact 
plant. Red arrows represent auxin (IAA) flow; red arrows crossed with black X represent disabled auxin flow. 
Auxin loaded from the apex (as primary source) to the stem prevents auxin canalization and its export from 
the axillary buds (as potential secondary auxin sources). (b) Scheme of decapitated plant. Red and crossed 
red arrows as depicted in a). Dashed crossed red arrow represents intermitted auxin flow after temporary 
activation. Green arrow represents bud outgrowth and dominance, dashed green arrow represents temporary 
outgrowth. Apex, the primary source for auxin flow, is removed and auxin synthesized in the buds can be 
exported, resulting in outgrowth of both buds. The initial outgrowth turns into competition leading to upper 
bud dominance over the lower. (c) Intact control plant 7-DAS (at the beginning of experiment). (d) Plant 5 
days after decapitation with outgrowing and dominant upper axillary bud and temporarily outgrown and then 
arrested lower bud. (e) Intact plant of same age (7-DAS +  5 days); both axillary buds remain arrested. (f) Length 
of axillary buds and forming shoots, where: (li) lower bud of intact plants; (ui) upper bud of intact plants; 
(ld) lower bud of decapitated plants; (ud) upper bud of decapitated plants. Statistically significant differences 
(identified by Student’s t-test): α  =  0.05* and α  =  0.01**. Error bars represent standard deviations (n =  60). 
(g) Relative expression of PsDRM1 gene in lower and upper axillary buds following decapitation. Statistically 
significant differences (identified by Student’s t-test): α  =  0.05* and α  =  0.01**. Error bars represent standard 
deviations (n =  4). (h,j) Immunoanalysis of PIN1 auxin efflux carriers (red signal) showed polar localization in 
the primary stem (h), lack of localization in procambial cells of inhibited axillary buds, (i) and polar localization 
in procambial cells of outgrowing buds (j). Scale bar, 100 μ m.
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Instead of the incision, a TIBA-ring was applied on the stem between the buds of intact plant (gjj). Results were 
consistent with those previously observed, where the lower bud exhibited outgrowth, while the upper remained 
arrested (Fig. 4e). Auxin transport was further examined by applying a TIBA-ring between the axillary buds of 
decapitated plants to inhibit stem auxin transport (Fig. 4c). TIBA as an auxin efflux inhibitor isolated the upper 
and lower axillary buds; monitored and confirmed by the blocked stem [3H]-IAA transport below the TIBA-ring 
(Fig. 4h), however, [3H]-IAA export from the forming lower shoots was not affected while from the upper shoots 
analysed above the TIBA-ring was reduced (Supplementary Fig. 5a,c). Further, the similar dynamics of PsDRM1 
expression in both axillary buds confirmed their independent outgrowth (Fig. 4g). TIBA-ring application resulted 
in two equally growing shoots, without any signs of sub- or super-ordination (Fig. 4f). NPA-ring application led to 
same results (Supplementary Fig. 3b,c,f,g,h) as TIBA-ring, while CHX-ring on intact plants neither promote bud 
outgrowth (Supplementary Fig. 4b) nor interfere with bud outgrowth pattern after decapitation (Supplementary 
Fig. 4c), however, reduced the stem auxin flow from the upper forming shoot (Supplementary Fig. 4g).

Inhibition of PAT from the upper bud releases lower bud from dormancy. Auxin export inhibition 
specifically from the upper bud was used to intervene with bud competition. TIBA-ring effects applied on the 
upper buds of decapitated plants were tested (Fig. 5a). As expected, continuously growing shoots were formed 
from lower buds, while the treated upper buds returned to the dormant state following an initial growth period 
(Fig. 5b). If instead the TIBA-ring NPA-ring was applied (Fig. 5a), growth of lower bud and inhibition of upper 
bud (Fig. 5b) was similar to TIBA treated plants. Application of the protein synthesis inhibitor CHX-ring (Fig. 5a) 
had again same effect, and moreover, the treated upper buds were arrested completely (Fig. 5b). Decreased 
PsDRM1 expression reflected growth status of lower buds and the several fold-increased expression in the treated 
upper buds corresponded with their return to dormancy (Fig. 5c–e). [3H]-IAA export assays from the treated 
upper buds of decapitated plants showed that TIBA, NPA, and CHX were strong inhibitors of [3H]-IAA export 
(Fig. 5f). In addition, TIBA-, NPA-, or CHX-ring applied on decapitated stem above the upper bud did not affect 
the [3H]-IAA export from the upper bud (Supplementary Fig. 5b,d). Application of TIBA and NPA to axillary 

Figure 2. Auxin pool in decapitated stem delays release of buds from dormancy. (a,b) Scheme of plant with 
long stump decapitated 90 mm above the upper bud (a) and plant with short stump decapitated 5 mm above the 
upper bud (b). Red arrows represent auxin (IAA) flow; red arrows crossed with black X represent disabled auxin 
flow. Green arrows represent bud outgrowth. Auxin depletion or decrease from the missing apex has impact on 
bud outgrowth timing. (c,d) Relative expression of PsDRM1 (c) and PsBRC1 (d) genes in the upper axillary bud 
of plants with long or short stump. Statistically significant differences (identified by Student’s t-test): α  =  0.05* 
and α  =  0.01**. Error bars represent standard deviations (n =  4).
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Figure 3. PAT Interruption in the primary stem releases buds from dormancy. (a) Scheme of plant wounded 
above the upper bud. Red arrows represent auxin (IAA) flow; red arrow crossed with black X represents 
disabled auxin flow. Green arrow represents bud outgrowth. Weakening stem auxin flow facilitated auxin export 
from the upper bud and its outgrowth. The lower bud remained arrested in dormancy by auxin loaded from the 
upper bud. (b) Scheme of intact plant subapically treated with TIBA-ring. Arrows as depicted in a). Auxin efflux 
inhibitor blocks auxin flow from the apex and the upper bud becomes a new auxin source, which continues to 
prevent auxin transport from the lower bud. (c) Wounded plant. Black arrow points to the lateral shoot formed 
from the upper axillary bud, above which the stem was incised. (d) Length of axillary buds and forming shoots, 
where: (li) lower bud of intact plants, (ui) same plants, upper bud, (liTs) lower bud of intact plants subapically 
treated with TIBA-ring, (uiTs) same treatment, upper bud. Statistically significant differences (identified 
by Student’s t-test) α  =  0.05* and α  =  0.01**. Error bars represent standard deviations (n =  60). (e) Relative 
expression of PsDRM1 gene in the lower and upper axillary bud of intact plants subapically treated with TIBA-
ring. Statistically significant differences (identified by Student’s t-test) α  =  0.05* and α  =  0.01**. Error bars 
represent standard deviations (n =  4). (f) [3H]-IAA transport from the apex in stem subapically treated with 
TIBA-ring was measured in two stem sections at a distance of 0–4 and 4–8 mm under the TIBA application site. 
Statistically significant differences (identified by Student’s t-test) α  =  0.05* and α  =  0.01**. Error bars represent 
standard deviations (n =  10). (g) PIN1 auxin efflux carrier immunoanalysis (red signal) in stem cells at TIBA-
ring position exhibited no visible changes in organization. Stage 24 h after treatment. Scale bar, 100 μ m.
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Figure 4. Interruption of PAT between buds releases lower bud from dormancy. (a) Scheme of plant 
wounded above the lower bud. Red arrows represent auxin (IAA) flow; red arrow crossed with black X 
represents disabled auxin flow. Green arrow represents bud outgrowth. Weakening stem auxin flow facilitated 
auxin export from the lower bud and its outgrowth. (b) Scheme of intact plant treated with TIBA-ring between 
the buds. Arrows as depicted in a). Auxin efflux inhibitor prevents auxin flow in the stem and allows auxin 
export from the lower bud and its outgrowth. (c) Scheme of decapitated plant treated with TIBA-ring between 
the buds. Arrows as depicted in a). Competition for outgrowth between buds is relinquished by TIBA, which 
isolates the lower bud from the auxin loaded by the upper bud, resulting in two equally growing shoots.  
(d) Wounded plant. Black arrow points to the lateral shoot was formed from the lower bud, above which the 
stem was incised. (e) Length of axillary buds and forming shoots, where: (li) lower bud of intact plants, (ui) 
same plants, upper bud, (liTb) lower bud of intact plants treated with TIBA-ring between the buds, (uiTb) 
same treatment, upper bud. Statistically significant differences (identified by Student’s t-test) α  =  0.05* and 
α  =  0.01**. Error bars represent standard deviations (n =  60). (f) Length of axillary buds and forming shoots, 
where: (ld) lower bud of decapitated plants, (ud) same plants, upper bud, (ldTb) lower bud of decapitated 
plants treated with TIBA-ring between the buds, (udTb) same treatment, upper bud. Statistically significant 
differences (identified by Student’s t-test) α  =  0.05* and α  =  0.01**. Error bars represent standard deviations 
(n =  60). (g) Relative expression of PsDRM1 gene in lower and upper buds of decapitated plants treated with 
TIBA-ring between the buds. Statistically significant differences (identified by Student’s t-test) α  =  0.05* and 
α  =  0.01**. Error bars represent standard deviations (n =  4). (h) [3H]-IAA transport in decapitated stems from 
shoots formed from upper axillary buds measured in two stem sections at distance of 0–4 and 4–8 mm under 
the TIBA-ring between the buds. Statistically significant differences (identified by Student’s t-test) α  =  0.05* and 
α  =  0.01**. Error bars represent standard deviations (n =  10).
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Figure 5. Inhibition of PAT from the upper bud releases lower bud from dormancy. (a) Scheme of 
decapitated plant treated with TIBA-, NPA-, or CHX-ring on the upper bud (asterisk indicates NPA or CHX was 
also applied). Red arrows represent auxin (IAA) flow; red arrows crossed with black X represent disabled auxin 
flow. Green arrow represents bud outgrowth. Treated bud outgrowth was inhibited by a mechanism associated 
with each applied chemical, which resulted in the lower bud becoming a new auxin source and developing a 
shoot. (b) Length of axillary buds and forming shoots, where: (ltiba) lower bud of decapitated plants, when 
upper bud was treated with TIBA, (utiba) same treatment, upper bud, (lnpa) lower bud of decapitated plants, 
when upper bud was treated with NPA, (unpa) same treatment, upper bud, (lchx) lower bud of decapitated 
plants, when upper bud was treated with CHX, (uchx) same treatment, upper bud. Statistically significant 
differences (identified by Student’s t-test) α  =  0.05* and α  =  0.01**. Error bars represent standard deviations 
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buds did not prevent initial PIN1 polarization or visibly affect PIN1 polar localization (Fig. 5g,h). In addition, 
immunoanalysis of CHX-treated buds, which were effectively arrested, showed normal PIN1 polarization (Fig. 5i).

Discussion
In plants with strong apical dominance, the shoot apex supplies the primary stem with auxin, and inhibits out-
growth of axillary buds. Saturated polar auxin flow in the primary stem does not become a sink for auxin flux 
from axillary buds, therefore PIN auxin efflux carriers in buds remained unpolarized. Removal of the shoot 
apex initiates axillary bud growth. This release from dormancy and outgrowth was accompanied by PIN carrier 
polarization, enabling auxin export from the buds. Previously we showed that inhibition of bud outgrowth was 
caused by competition between apical and lateral auxin sources (shoot apex versus axillary bud) for primary 
auxin transport channels converging in the stem auxin stream10. Subsequently, we subjected the axillary buds in 
our two-nodal-bud model system to a much closer examination and observed competition between buds. This 
result suggested that the competitive nature for dominance also applies to axillary buds after decapitation, i.e., 
upper buds inhibited lower buds, but dominance was not imposed immediately following decapitation. Thus, 
morphology and the PsDRM1 marker13 demonstrated competition for dominance between axillary buds when 
released from dormancy, i.e., the upper bud gained dominance over the lower bud during time post treatment. 
The importance of basipetal auxin flow in stems for bud outgrowth regulation was evaluated using de-etiolated 
plants with long internodes. BRC1 (BRANCHED1) is a putative integrator of different branching pathways in 
Arabidopsis and its expression changes rapidly following decapitation14. We observed that the same expression 
dynamics applied in our pea model. Given average polar auxin transport (PAT) velocity is ~10 mm h−1 15, this 
result suggested auxin depletion or at least its decrease from the missing auxin source at the stem apex had 
an impact on the timing of bud outgrowth. Similar effects of the stem on bud growth were reported16 in soy-
bean. Buds located on the basal ends of excised stem segments showed partly inhibited growth compared with 
buds on the apical ends of segments. However, several more recent studies performed on 20-day-old pea plants 
under different experimental regimes reported that onset of axillary bud outgrowth following decapitation or 
girdling was not always accompanied by local auxin depletion in the stem17–21. Nonetheless, our observations in 
the two-nodal-bud pea system showed a high correlation between the axillary buds’ release from dormancy and 
known stem auxin depletion resulting from decapitation.

There are indications that NPA have a rapid restricting systemic effect on basipetal auxin flow21. In the used 
decapitated two-nodal-bud pea model system nor auxin efflux inhibitors NPA or TIBA nor protein synthesis 
inhibitor CHX applied on stem showed effect on auxin export from the shoots formed below the application site. 
However, in the shoots formed above application site the amount of transported [3H]-IAA was reduced by approx. 
50%, but this reduced PAT flow was still enough for unaffected long-term growth. The observed promoted inter-
node elongation and swelling if TIBA or NPA was applied subapically to intact plants are typical results of high 
auxin content22,23 giving indirect evidence that despite the reduced PAT from the apex21 the amount of flowing 
auxin was still enough to produce the physiological effects.

Interruption of polar auxin flow in the primary stem by auxin efflux inhibitor TIBA24 or NPA25,26 or by lateral 
incision released axillary buds from dormancy in the presence of the shoot apex. The outgrowing axillary bud 
(lower or upper) was consistently the bud above which the primary stem auxin flux was interrupted. This out-
growth pattern was not influenced if nutrient supplies were changed by cotyledon removal. Furthermore, consid-
ering the roots as main source of strigolactone (SL)27–29, demonstrated as effective inhibitor of bud outgrowth21, it 
can be hypothesized that incision above the bud could direct more acropetally moving SL into this bud and cause 
its inhibition. Nonetheless, this bud was released from inhibition and formed a shoot. This finding supports the 
hypothesis that SL inhibits bud growth only in the presence of auxin in the main stem9. In addition, the acropetal 
flow of cytokinins in the stem30 restricted by incision could also enter the bud and promote bud outgrowth initi-
ation. These results indicated sustainable auxin flow in the primary stem from the apex was required to maintain 
axillary bud dormancy and auxin flow interruption or inhibition released the upper bud from dormancy, as 
demonstrated by bud outgrowth, dormancy markers, and PIN1 auxin carrier polarization. These results are also 
congruent with the hypothesis that auxin flow from more apical plant parts controls the dormancy status of axil-
lary buds. Furthermore, the typical result of competition for dominance was initiated by decapitation, where the 
upper axillary bud outcompeted the lower bud. This competition pattern was not altered by cotyledon removal. 
Competition ceased by interruption of auxin flow between upper and lower competing axillary buds, resulting in 
two long-term equally growing shoots. Similarly, the position-predetermined “winning” upper bud can be dis-
qualified from the competition game by inhibition of the auxin flow from it, by auxin efflux inhibitors or protein 
synthesis inhibitor. TIBA blocks PIN trafficking between the plasma membrane and endosomal compartments 
more generally, leaving PIN1 accumulation at the plasma membrane unaffected24. However, PIN proteins or PIN 
cycling are apparently not directly affected by NPA31,32. Despite these described effects of TIBA on PIN trafficking, 

(n =  60). (c–e) Relative expression of PsDRM1 gene in lower and upper axillary buds following TIBA (c), NPA 
(d), and CHX (e) treatments in upper buds of decapitated plants. Statistically significant differences (identified 
by Student’s t-test) α  =  0.05* and α  =  0.01**. Error bars represent standard deviations (n =  4). (f) [3H]-IAA 
export from upper axillary buds, measured in two stem sections, from 0–4 and 4–8 mm under the upper bud. 
Decapitation facilitated auxin export, while TIBA, NPA and CHX reduced auxin flow. Statistically significant 
differences (identified by Student’s t-test) α  =  0.05* and α  =  0.01**. Error bars represent standard deviations 
(n =  10). (g–i) PIN1 auxin efflux carrier immunoanalysis (red signal) in axillary buds showed TIBA (g), NPA 
(h), and CHX (i) lanolin paste treatments did not prevent polarization following decapitation. Stages 24 h after 
treatment. Scale bar, 100 μ m.
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TIBA or NPA applied to axillary buds did not affect initial PIN1 polarization. This result was unexpected, but 
effective chemical concentrations in plant tissues might be sufficient to inhibit auxin export and initial bud out-
growth, but not affect steady-state PIN localization. The protein synthesis inhibitor CHX also interferes with 
auxin transport33,34. However, the CHX-treated effectively arrested buds showed normal initial PIN1 polarization. 
Similar results were reported in Arabidopsis roots, where CHX exhibited no detectable effects on PIN1 at the 
plasma membrane35. These experiments demonstrated that chemical inhibition of auxin export from buds does 
not necessarily impact PIN1 polarization in treated buds. These results suggested not only PIN polarization, but 
more importantly the capacity of auxin export from buds is required for sustained outgrowth of axillary shoots.

Based on the auxin canalization theory, establishment of an effective auxin transport channel follow-
ing interruption of stem auxin flow leads to redirection of the auxin source-sink pattern from the original 
primary-apex-root pathway to a new secondary-apex-root pathway. Developmental processes involved in the 
new vascular strands are consistent with the directed auxin flow. The auxin flow source is acting as a sink for 
assimilates and nutrients essential for development and further reproduction in the outgrowing shoot’s body 
mass. More detailed studies on the influence of other hormones and exogenous factors on auxin flow-mediated 
bud competition will likely elucidate its mechanisms.

Methods
Plant material, growth conditions, inhibitors and hormonal treatment. Pea plants (Pisum 
sativum L.) cv. Vladan were grown in perlite soaked with Richter’s nutrient solution in a growth chamber at 
20 °C/18 °C day/night temperatures, under a 16 h day/8 h night cycle photoperiod and light intensity 150 μ mol 
m−2 s−1. Age of plants was 7 days after sowing (DAS), experimental variants were intact, decapitated 10 mm above 
the upper bud, or identically decapitated and decotyledoned. Following protocols: i) axillary bud and apical shoot 
length measurement; ii) axillary bud gene expression analyses; iii) PIN1 protein immunolocalization assays; iv) 
polar auxin transport capacity assays were used. Furthermore, 7 DAS plants or 7 DAS decotyledoned plants were 
administered with a deep lateral incision above the upper axillary bud or between the lower and upper axillary 
buds and used for axillary bud length measurements (henceforth wounded plants). Ten DAS de-etiolated plants 
decapitated 90 mm (long stump) or 5 mm (short stump) above the upper axillary bud were used for gene expres-
sion analyses in the upper axillary buds.

Water lanolin paste (control) or paste containing 1% 2,3,5-triiodobenzoic acid (TIBA), 1% 1-N-naphtylphtalamic  
acid (NPA), or 1% cycloheximide (CHX) was applied as a ring on the stem, subapically 5 mm below apex, 5 mm 
above the upper bud or between the upper and lower axillary bud of intact and decapitated plants. Water lanolin 
paste (control) or paste containing 1% TIBA, 1% NPA, or 1% CHX were applied on the upper axillary bud 4 h 
before decapitation. The upper and lower axillary buds were used to explore gene expression and PIN1 protein 
localization. For bud length measurements, 60 plants in two biological replicates were used for each treatment.

Gene expression analysis (RNA extraction, cDNA synthesis, and quantitative Real-Time PCR).  
Bud samples were harvested and ground in liquid nitrogen. Total RNA for each sample was isolated from 30 buds 
using the RNeasy Plant Mini Kit (Qiagen) following the manufacturer’s protocol. A DNase treatment with the 
RNase-free DNase Set (Qiagen) was carried out for 15 min at 25 °C. Total cDNA was synthesized from 0.5 μ g of 
total RNA using the Superscript III cDNA kit (Invitrogen).

Real-Time PCR (qPCR) was performed using LC 480 SYBR Green I Master Mix (Roche Diagnostics) with the 
following gene specific primers: PsDRM1: PsDRM1 forward (5′ -AAC TCA CCA CCA CCC TCA AAG ATG-3′ )  
and PsDRM1 reverse (5′ -GAT GTA GAC ACG TGG CAG AAG ATG-3′ ); PsBRC1: PsBRC1 forward (5′ -AGG 
CAA GAG AAA GAG CAA GG-3′ ) and PsBRC1 reverse (5′ -TTG CAT TGC TTT GAG TTT GA-3′ ). Cycling 
conditions for amplification were 95 °C for 10 min, 40 cycles of 95 °C for 15 s, 58 °C for 15 s (for Psβ-tubulin, 
PsActin, PsEF1-α and PsDRM1) or 62 °C for 15 s (for PsBRC1), and 72 °C for 15 s. A gene expression normaliza-
tion factor was calculated (Microsoft Excel geNorm, 2002) based on Psβ-tubulin, PsActin, and PsEF1-α (primer 
sequences36) expression levels. Two biological replicates were analyzed in duplicates. The mean value and stand-
ard deviations were determined from replications of each variant. A Student’s t-test was performed to test for 
significant differences between individual variants.

Immunolocalization of PIN1 protein. Immunolocalization was performed on longitudinal stem seg-
ments or stem segments containing the lower or upper axillary buds collected 24 h after treatment, with 10 rep-
licate segments from each sample type, following the published protocol37. The anti-Arabidopsis-PIN1 antibody 
also recognizes the homologous PIN protein in pea, which is presumed to be a PIN1 functional ortholog based 
on expression similarity and localization signal to Arabidopsis38. The following antibodies and dilutions were 
used: anti-PIN1 (1:500) and CY3-conjugated anti-rabbit secondary antibody (1:500). Samples were viewed under 
a confocal laser scanning microscope Fluoview 200 (Olympus) using UPlanFI 20x/0.5 objective at room temper-
ature. Images were acquired using Fluoview 5.0 software.

Polar auxin transport capacity assay. Plants were treated with 0.5 or 1 μ l of [5-3H]-indole-3-acetic acid 
(American Radiolabeled Chemicals, 925 Gbq mmol−1, 6666 Bq μ l−1) diluted in a 50% ethanol solution for auxin 
export assays. For each experimental variant stem segment samples were collected from 10 plants. In all stem seg-
ment variants samples were incubated in a dioxane-based liquid scintillator cocktail overnight. The [3H] activity 
in stem segments was measured with a scintillation spectrophotometer Packard TRI/Carb 2000 (Packard).

Auxin export was assessed from the apex of plants with a subapical ring application around the stem of pure 
lanolin (control) or 1% TIBA, 1% NPA or 1% CHX lanolin paste. Twenty-four h after treatment, 1 μ l of [3H]-IAA 
was applied to the apex tip and 2 h later, the stem under the application site was cut into 4 mm segments of 0–4 
and 4–8 mm.
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Auxin export from outgrowing shoots was examined on plants treated with pure lanolin (control) or 1% TIBA, 
1% NPA or 1% CHX lanolin paste between upper and lower axillary buds as a ring around the stem, and immedi-
ately decapitated 10 mm above the upper axillary bud. Three days later, 1 μ l of [3H]-IAA was applied to the tip of 
the upper outgrowing shoot. After 2 h, the stem under the application site was cut into 4 mm segments of 0–4 and 
4–8 mm or into 6 mm segments below the forming upper and lower shoot.

Auxin export was evaluated from upper axillary buds by application of lanolin paste (control) or 1% TIBA, 
1% NPA, 1% CHX lanolin paste or control lanolin past ring at the base of the upper axillary bud. Plants were 
decapitated 10 mm above the upper bud 4 h following treatment. Six hours after decapitation, 0.5 μ l of [3H]-IAA 
was applied to the tip of the upper axillary bud; and following 1.5 h, the stem under the upper axillary bud was cut 
into 4 mm segments of 0–4 and 4–8 mm. Furthermore, auxin export from upper buds was examined on plants 
decapitated 10 mm above the upper bud and treated with pure lanolin (control) or 1% TIBA, 1% NPA or 1% CHX 
lanolin paste 5 mm above the upper axillary bud. 24 h after this treatment 0.5 μ l of [3H]-IAA was applied to the 
tip of the upper bud; and following 1.5 h, the stem under the upper axillary bud was cut into 4 mm segments of 
0–4 and 4–8 mm.
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