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Reconfigurable Solid-state Dye-
doped Polymer Ring Resonator 
Lasers
Hengky Chandrahalim & Xudong Fan

This paper presents wavelength configurable on-chip solid-state ring lasers fabricated by a single-
mask standard lithography. The single- and coupled-ring resonator hosts were fabricated on a 
fused-silica wafer and filled with 3,3′-Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), 
and 3,3′-Diethylthiadicarbocyanine iodide (CY5)-doped polymer as the reconfigurable gain media. 
The recorded lasing threshold was ~220 nJ/mm2 per pulse for the single-ring resonator laser with 
R6G, marking the lowest threshold shown by solid-state dye-doped polymer lasers fabricated with a 
standard lithography process on a chip. A single-mode lasing from a coupled-ring resonator system with 
the lasing threshold of ~360 nJ/mm2 per pulse was also demonstrated through the Vernier effect. The 
renewability of the dye-doped polymer was examined by removing and redepositing the dye-doped 
polymer on the same resonator hosts for multiple cycles. We recorded consistent emissions from the 
devices for all trials, suggesting the feasibility of employing this technology for numerous photonic and 
biochemical sensing applications that entail for sustainable, reconfigurable, and low lasing threshold 
coherent light sources on a chip.

Since the pioneering work back in the 1960s and 1970s1–4, solid-state dye-doped polymer lasers have found many 
applications in optical communication devices5, advanced nanoscale lasers6, biosensing7–9, and novel integrated 
photonic systems on-chip10. Recently, there has been a surge of research to explore innovative optical resonator 
designs as the feedback component for the lasers. Bragg gratings based devices such as distributed feedback (DFB) 
structures11–20 are the most commonly used cavity structures in solid-state dye lasers. These devices exhibit certain 
compelling characteristics, such as low pump thresholds, tunable wavelengths, and single-mode of operations. 
However, the manufacturing of these devices is not straightforward and rather expensive as electron-beam (e-beam) 
lithography to pattern the molds13,15,17 or holography lithographic technique11,12,14 is necessary. In addition, the 
laser emission is limited to one wavelength region determined by the emission band of the selected dye. Changing 
from one wavelength region (i.e., one dye) to another region (i.e., another dye) requires fabrication of new DFB 
structures. Photonic crystal based dye-doped polymer lasers have also been explored to exhibit single-mode 
emission21–23 and good repeatability24. Nevertheless, they share the same drawbacks as DFB lasers in terms of 
fabrication complexity, cost, and wavelength flexibility.

The micro-ring and micro-disk optical cavities that operate based on the whispering gallery modes (WGM) 
are recognized to have relatively high quality factors (Q-factors) even if they are manufactured on a chip8,25–27. 
They have a simple geometrical shape, small footprint, and ability to accommodate a broad range of lasing emis-
sion wavelengths. Solid-state micro-ring and micro-disk dye-doped polymer lasers that have compact sizes28,29 
and single-mode of operations30,31 have been previously presented. Recently, dye-doped polymer lasers based 
on WGM microgoblets for sensing applications were demonstrated7–9. A large array of microgoblet lasers can 
be fabricated in parallel by a single step of Deep-UV (DUV) lithography, followed by thermal reflow to form the 
goblets. Impressively, Bog et al. demonstrated the multiplexed deposition of different functionalization coatings on 
neighboring goblet structures7,9. While this method shows the great potential to manufacture solid-state lasers eco-
nomically8, it lacks the accuracy to define the final shape and size of the ring resonators after the reflowing process.

In general, the polymer host materials of the solid-state dye lasers built to date naturally have a modest mechan-
ical robustness, which is vulnerable to mechanical deformations, temperature fluctuations, and chemical reactions. 
Therefore, operating these polymer–based lasers under certain environmental conditions is challenging. More 
importantly, a full fabrication process of new devices is required once the device lifetime ends or radiations of 
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different wavelengths are desired. A successful launch of solid-state dye lasers as practical submodules in photonic 
networks requires a simple, rapid, and economical fabrication process that can reliably mass-produce the lasers 
with flexibility in lasing wavelength, which can be configured virtually at any time. Ideally the solid-state dye lasers 
should be refillable systems that do not frequently require replacements from the newly fabricated devices. From the 
device application perspective, a laser host that has a high mechanical strength, broad chemical compatibility, and 
good thermal stability is greatly favorable. Several attempts have been reported to coat or dope the gain medium 
on the outer surface of a solid ring resonators on-chip32–34. However, such methods pose a limitation to precisely 
define the final dimensions of the resonators and/or have difficulty in controlling the gap between the two rings 
in a coupled ring resonator system.

Here, we report on the design, fabrication, and demonstration of solid-state ring lasers made of fused-silica and 
refillable by the reconfigurable dye-doped polymer that meets the aforementioned requirements (see Fig. 1). We 
built the devices with a simple single-mask standard lithography, followed by a dry reactive ion etching, dicing, and 
deposition of dye-doped polymer. We employed 3,3′ -Diethyloxacarbocyanine iodide (CY3), Rhodamine 6G (R6G), 
and 3,3′ -Diethylthiadicarbocyanine iodide (CY5) dyes as the gain media for our solid-state lasers. First, several 
dye-doped polymer single-ring resonators on the same chip were excited to demonstrate multiple lasers on a single 
chip. Next, the single optical ring resonators with CY3, R6G, and CY5-doped SU-8 were at 480, 530, and 570 nm, 
respectively, and achieved multimode lasing centered around 540, 590, and 770 nm. The lowest recorded lasing 
threshold is ~220 nJ/mm2 per pulse for the multimode single-ring cavity with R6G-doped SU-8. A single-mode 
lasing from a coupled-ring resonator system with the lasing threshold of ~360 nJ/mm2 was demonstrated through 
the Vernier effect. Finally, the renewability of the dye-doped polymer was tested by removing and re-depositing 
the dye-doped polymer on the same resonator hosts for multiple cycles. We recorded consistent laser emissions 
from the tested devices for all trials. Our fabrication process enables a durable solid-state laser platform that can be 
produced rapidly, reliably, and economically at the wafer level with a standard photolithography. The gain media 
in our process are deposited on mechanically, thermally, and chemically inert fused-silica host resonators, thereby 
providing excellent protective framework to the emitting polymer cores.

Methods
The solid-state ring resonator lasers in this work comprised primarily of the fused-silica ring resonator hosts and 
the dye-doped high refractive index (> 1.46) polymer deposited on it. The top and cross-sectional views of the 
device are illustrated in Fig. 1. The single-ring resonator was designed to have inner and outer radii and depth of 
110, 150, and 12 μ m, respectively. In order to achieve single-mode laser operation, we utilized the Vernier effect, 
in which two ring resonators of slightly dissimilar sizes hence the free spectral ranges (FSRs) are coupled to each 
other to suppress the side modes31,35–37. In our current coupled-ring system, each ring had an outer radius of 150 
and 145 μ m, respectively. The coupling distance between the two rings was designed to be 1 μ m.

The solid-state ring cavity structures were fabricated with a wafer level single-mask bulk micromachin-
ing process as outlined in Fig. 2. A 100 mm diameter fused-silica wafer was first cleaned in a Piranha solution  
(H2SO4 + H2O2) at 60 °C for 10 minutes. Next, the wafer was spin-coated with a 14 μ m thick negative-tone pho-
toresist (KMPR) and soft-baked at 100 °C for 6 minutes. A Suss MicroTec MA/BA-6 contact aligner was used 
to expose the wafer with the UV light. The wafer was then baked at 100 °C for 3 minutes and developed with a 
TMAH (Tetramethylammonium hydroxide) based photoresist developer. A reactive ion glass etcher was used to 
etch the fused-silica wafer. The chamber pressure, coil power, and platen power were set at 4 mTorr, 1400 W, and 
300 W, respectively. The gasses used in this etching process were C4F8 and He with flow rates of 10 and 174 sccm, 
respectively. After the etching process, the wafer was diced into 1 cm×1 cm chips by using ADT 7100 dicing 
saw. The scanning electron (SEM) images of the fabricated single and coupled-ring resonators prior to polymer 

Figure 1.  3-D and cross-sectional schematic of the fused-silica ring resonator coated with a gain medium 
doped high refractive index polymer. 
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deposition are shown in Fig. 3. Finally, a 5 μ m thick layer of dye-doped polymer was spin-coated and cured on 
the diced fused-silica chips.

Three types of dyes (CY3, R6G, and CY5) were first dissolved in ethanol (10 mM dye concentration for each 
solution) and subsequently mixed with SU-8 at a ratio of 10% (ethanol +  dye) to 90% (SU-8) in the ultrasonic bath 
for 60 minutes. Each solution was then spin-coated onto the fused-silica chips that already have the ring cavity 
hosts patterned on them and baked for 30 minutes at 95 °C to evaporate the solvent and cure the polymer. The 
solid-state ring resonators that support the WGM were formed by the dye-doped polymer with a higher refractive 
index (1.6) than that of the surrounding fused-silica (1.46). Since the cured polymer is enclosed by a mechanically 
robust circumambient fused-silica, thus the conventional process of cross-linking the polymer with the UV light 
followed by post-baking is unnecessary. The absence of the polymer cross-linking process allows for easy removal 
of the polymeric gain media from the ring channels and re-deposition of alternative dye-doped polymers with 
different emission wavelengths as desired. The solid-state dye lasers were tested and characterized according to 
the measurement setup outlined in Fig. 4. Nanosecond pulses from an optical parametric oscillator (OPO, repe-
tition rate =  20 Hz, pulse width =  5 ns) were transmitted through the variable attenuator and steered towards the 
beam splitter by two mirrors. The transmitted light went to another beam splitter and was focused to a spot area 
of 0.03 mm2 on the sample by using a microscope objective. The emitted laser beam from the cavity was divided 
by the beam splitter and directed towards the CCD camera and the spectrometer (Horiba iHR550).

Results
First, we realized multiple lasers on the same chip with a single-mask one parallel lithography step. Three 
CY5-doped SU-8 single-ring lasers on the same chip as illustrated in Fig. 5(A) were excited independently by the 
OPO at 570 nm wavelength. Figure 5(B) plots the multimode laser emission spectra of three different CY5-doped 
SU-8 single-ring lasers on the same chip with 10 μ J/mm2 pump intensity. It should be emphasized that several 
fabrication methods, especially those applied to realize Bragg gratings and photonic crystal based cavities, require 
serial writings by e-beam lithography, which can be very time consuming and lead into astronomical fabrication 
costs when large arrays of devices on the substrate are needed. In contrast, the fabrication method that we devel-
oped here enables the realization of a large number of devices on a chip with reliable performance at low-cost in 
a timely manner.

Additionally, our solid-state dye lasers offer a wide range of wavelength selections across the wafer due to the 
spectral availability of the WGMs. Here we used CY3, R6G, and CY5-doped SU-8 single-ring lasers as model 
systems, which were excited by the OPO at 480, 530, and 570 nm, respectively. The multimode lasing outputs cen-
tered around 540, 590, and 770 nm were observed from those lasers, as shown in Fig. 6 (A–C) with different the 
pump intensities. Figure 6(D–F) display the spectrally integrated laser emissions after fluorescence background 
removal as a function of the pump intensity. The lowest recorded lasing threshold is ~220 nJ/mm2 per pulse for the 
R6G-doped SU-8 single-ring cavity laser, marking the lowest threshold shown by solid-state dye-doped polymer 
lasers fabricated with a standard lithography process on a chip.

The commonly known manufacturing processes of polymer lasers, regardless the types of cavities, usually per-
mit only one homogeneous deposition of organic gain media across the same substrate for each deposition step. 

Figure 2.  The fabrication process flow of the ring resonators: (A) 500 μm thick fused-silica wafer. (B) 14 μ m 
thick KMPR negative-tone photoresist was spin-coated on the top of the fused-silica wafer and exposed to the 
UV light. (C) The developed photoresist on the fused-silica wafer. (D) The fused-silica wafer after a dry-etching 
process by using a reactive-ion etcher. (E) 5 μ m thick layer of gain medium doped polymer was deposited and 
cured on the surface of the cavity.
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This imposes a limitation on the choices of the center wavelengths at which the lasers operate. The gain media in 
our process are deposited on fused-silica chips after the wafer dicing process. Consequently, a large variety of gain 
media with different emission ranges can be deposited independently on these chips.

Figure 3.  Scanning microscope images of the fabricated ring resonators: (A) Single ring resonator with inner 
and outer radii and depth of 110, 150, and 12 μm respectively. (B) Coupled ring resonators with an outer radius 
of 150 μ m and 145 μ m, respectively. Both ring resonators are 40 μ m wide and 12 μ m deep. The coupling distance 
between the two rings is approximately 1 μ m.

Figure 4.  Schematic of the measurement setup. 
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The single-mode emission feature is essential in many applications, such as laser spectroscopy, laser metrology, 
and biomolecular sensing. The WGM single-ring resonator lasers intrinsically have multimode lasing emissions 
due to their narrow FSRs, which is a major drawback as compared to the DFB based lasers that normally have a 
single laser mode. Here we designed and fabricated coupled-ring optical cavities on the same chip and used the 
Vernier effect to produce single-mode laser emissions. The lasing spectra of the coupled-ring cavity filled with 

Figure 5.  (A) A schematic of multiple dye-doped polymer single-ring resonators on a chip. (B) Lasing 
spectra of three different CY5-doped SU-8 single-ring resonator lasers on the same chip. The spot size of the 
OPO pumping laser beam was approximately 0.03 mm2. A 1200 g/mm grating was used to record the entire 
discernable multimode laser emissions. The three single-ring cavity lasers were excited with 10 μ J/mm2 at 
570 nm. All spectra are vertically shifted for clarity.

Figure 6.  Lasing spectra of (A) CY3-doped SU-8, (B) R6G-doped SU-8, and (C) CY5-doped SU-8 single 
ring resonator lasers. All spectra are vertically shifted for clarity. (D–F) Spectrally integrated laser outputs 
(542–548 nm for CY3-doped SU-8, 586–601 nm for R6G-doped SU-8, 760–770 nm for CY5-doped SU-8) 
after fluorescence background removal as a function of the pump intensity extracted from (A–C). The lasing 
thresholds for CY3, R6G, and CY5-doped SU-8 are approximately 1.9, 0.2, and 3.9 μ J/mm2, respectively. Error 
bars are obtained with 3 measurements.
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R6G-doped SU-8 at various pump intensities are plotted in Fig. 7(A). The single-mode emission at 589 nm started 
to emerge with the resolution limited linewidth of 0.03 nm. The corresponding lasing threshold curve is plotted in 
Fig. 7(B), showing a lasing threshold of 360 nJ/mm2. It is noted that the lasing threshold of the coupled-ring cavity 
is slightly higher than the single-ring cavity. This might be due to the fact that the coupled-ring cavity experienced 
more light scatterings from the two ring constituents.

One of the major advantages of our dye-doped polymer laser over the existing polymer lasers is its simple 
regeneration capability, which can easily be achieved by removing and re-depositing identical dye-doped polymer 
on the same resonator hosts for multiple cycles. We first performed the dye laser renewability experiments on the 
single-ring cavity laser. The CY3-doped SU-8 on the chip was removed by Remover PG solution (MicroChem) and 
re-deposited for multiple cycles. The pump intensity of 16 μ J/mm2 at 480 nm was used to excite the gain medium 
after active polymer re-deposition on the resonator in all experiments. Consistent multimode emission spectra 
were recorded at around 540 nm center wavelength as shown in Fig. 8(A).

Next, we performed similar experiments to justify the renewability of dye laser in the coupled-ring laser. We 
performed multiple cycles of removal and deposition of R6G-doped SU8 on the identical coupled-ring cavity. 
Given the rich WGM spectrum for the cavity dimensions that we have (FSR ~0.23 nm), the Vernier becomes less 
effective in suppressing the side modes at high pump intensities, leading to the emergence of the neighboring 
side modes. However, the pump intensity at which the side modes starts to appear can be used as an additional 
parameter to measure consistency of our ring resonator lasers. In the experiment, we increased the pump intensity 

Figure 7.  (A) Single-mode emissions of a R6G-doped SU-8 coupled-ring resonator laser. A 2400 g/mm grating 
was used to achieve high spectral resolution. The full-width-at-half-maximum is approximately 0.03 nm, limited 
by the instrument’s spectral resolution. Spectra are vertically shifted for clarity. (B) Lasing peaks as a function of 
the pump intensity extracted from (A). The lasing threshold is approximately 0.36 μ J/mm2.

Figure 8.  Consistent laser emissions are recorded from the same ring resonator hosts after four cycles of 
removals and re-depositions of dye-doped polymer. (A) Emission spectra of a CY3-doped SU-8 single ring 
resonator laser with a 16 μ J/mm2 pump intensity. A 1200 g/mm grating was used to capture the entire detectable 
laser emissions. (B) Emission spectra of an R6G-doped SU-8 coupled-ring resonator laser with a 6 μ J/mm2 
pump intensity. A 2400 g/mm grating was used to achieve high spectral resolution. All spectra are vertically 
shifted for clarity.
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(at 530 nm) until the side modes (1 FSR away from the central laser line) started to emerge at 6 μ J/mm2 (~17×  
the lasing threshold) and used the same pump intensity to excite the cavity under test. We recorded consistent 
laser emissions between 587 to 588 nm from the same coupled-ring cavity laser after active polymer re-deposition 
cycles as shown in Fig. 8(B). In addition, the neighboring modes started to appear in the spectra at 6 μ J/mm2 pump 
intensity for all trials, confirming the repeatability of the laser performance.

Discussion
We have successfully designed, fabricated, and achieved multimode and single-mode wavelength configurable 
on-chip solid-state dye-doped polymer ring resonator lasers. Such lasers offer advantageous features compared to 
the existing solid-state dye lasers, such as a large array of excitable emissions from a single chip, low lasing thresh-
olds, inherent mechanical robustness, flexible wavelength selection across the wafer, and the regeneration of the 
emitting polymer cores. Particularly, in comparison with the popular DFB based polymer lasers, which require 
expensive fabrication techniques and are less flexible in accommodating dyes of various emission wavelengths, 
the current devices can be mass-produced rapidly, reliably, and economically at the wafer level. In comparison 
with the design in which the gain medium is placed on the outer surface of a ring resonator, the present method 
(coating on the inner surface) allows us to precisely control the final ring resonator dimensions and the gap 
between the two coupled ring resonators. Therefore, the solid-state ring resonator lasers studied in this work can 
be an attractive candidate for various photonics applications that require sustainable, reconfigurable, dependable, 
and low-cost coherent light sources on a chip. In addition to dyes, fluorescent conjugate polymers38, fluorescent 
proteins39, quantum dots32,40,41, rare-earth ions34 can be explored as gain media in the future. Finally, the same 
structures, in particular, the coupled ring resonator can be adapted to accommodate the liquid gain medium using 
3-D microfluidics as shown in our recent work42.
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