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Deciphering Genomic 
Underpinnings of Quantitative 
MRI-based Radiomic Phenotypes 
of Invasive Breast Carcinoma
Yitan Zhu1,*, Hui Li2,*, Wentian Guo3, Karen Drukker2, Li Lan2, Maryellen L. Giger2 & Yuan Ji1,4

Magnetic Resonance Imaging (MRI) has been routinely used for the diagnosis and treatment of breast 
cancer. However, the relationship between the MRI tumor phenotypes and the underlying genetic 
mechanisms remains under-explored. We integrated multi-omics molecular data from The Cancer 
Genome Atlas (TCGA) with MRI data from The Cancer Imaging Archive (TCIA) for 91 breast invasive 
carcinomas. Quantitative MRI phenotypes of tumors (such as tumor size, shape, margin, and blood 
flow kinetics) were associated with their corresponding molecular profiles (including DNA mutation, 
miRNA expression, protein expression, pathway gene expression and copy number variation). We 
found that transcriptional activities of various genetic pathways were positively associated with 
tumor size, blurred tumor margin, and irregular tumor shape and that miRNA expressions were 
associated with the tumor size and enhancement texture, but not with other types of radiomic 
phenotypes. We provide all the association findings as a resource for the research community 
(available at http://compgenome.org/Radiogenomics/). These findings pave potential paths for 
the discovery of genetic mechanisms regulating specific tumor phenotypes and for improving MRI 
techniques as potential non-invasive approaches to probe the cancer molecular status.

Precise cancer diagnosis and treatment rely on the integration of information from various sources, such as 
the phenotypic and genotypic profilings of tumors. Radiogenomics aims to integrate computer-extracted 
phenotypes from radiological imaging data with genomic data, providing an opportunity to investigate 
the association between the radiomic tumor phenotypes and the genomic measurements of the same 
tumors. Such a study may identify the genetic mechanisms that regulate the development of specific 
tumor phenotypes. Radiomic phenotypes that are highly correlated with important genomic biomarkers 
can potentially serves as diagnosis and prognosis tools for patient monitoring, and therefore augment 
the utility of radiological imaging as a non-invasive technology for cancer care.

Radiogenomics is a new scientific field with scarce applications. This is mainly due to the lack of data 
consisting of both imaging and genomic measurements on the same set of tumors. Nevertheless, a few 
recent studies have pioneered early endeavor. Studies in lung cancer1–2, head & neck cancer2, glioblas-
toma multiforme3, and clear cell renal cell carcinoma4 attempted to correlate tumor radiomic phenotypes 
with DNA mutations4, mRNA expressions1–3 and copy number variations3. For breast cancer, Yamamoto 
et al.5 collected Magnetic Resonance Imaging (MRI) data and gene expression data from 10 human 
tumors and correlated 26 imaging phenotypes defined by radiologists with the expressions of individ-
ual genes and gene sets. Mazurowski et al.6 extracted radiomic phenotypes based on 48 patients and 
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discovered the phenotypes associated with the luminal B subtype of breast cancer. Based on 56 Estrogen 
Receptor Positive (ER+ ) breast cancers, Ashraf et al.7 used computationally derived radiomic phenotypes 
to predict the recurrence likelihood score defined by Oncotype DX, a validated gene expression assay 
including 21 selected genes. Agner et al.8 extracted quantitative radiomic features of 76 breast lesions and 
used them to differentiate the triple-negative breast cancer from other subtypes. In addition, BRCA1/2 
and UGT2B variations have been associated with computer-extracted radiomic phenotypes9–11.

Here, we report a comprehensive radiogenomic study of breast invasive carcinoma based on the inte-
gration of The Cancer Imaging Archive (TCIA)12 and The Cancer Genome Atlas (TCGA)13, two leading 
cancer research projects supported by the U. S. National Institutes of Health. We integrated the Dynamic 
Contrast Enhanced-MRI (DCE-MRI) data with the multi-platform genomic data for 91 primary breast 
tumors. Through an extensive investigation, we identified statistically significant associations between 
various genomic features and radiomic phenotypes in breast invasive carcinoma that have yet to be 
reported. Among the many novel findings, we discovered highly specific associations of radiogenomic 
features, which are potentially useful for (1) the imaging based diagnosis that can inform the genetic 
progress of tumor and (2) the discovery of genetic mechanisms that regulate the development of tumor 
phenotype. We believe that our study is the first of its kind that investigates the relationships between the 
multi-layer tumor molecular system and the various quantitative radiomic phenotypes of breast cancer.

Results
Summary of Associations between Genomic Features and Radiomic Phenotypes.  Through 
the Gene-Set Enrichment Analysis (GSEA)14–15 (Supplementary Information Section 5) and the linear 
regression analysis (Supplementary Information Sections 6–8), we performed a quantitative study to 
associate genomic features, including miRNA expressions, protein expressions, and gene somatic muta-
tions, and transcriptional activities and gene CNVs of all genetic pathways in the Kyoto Encyclopedia of 
Genes and Genomes (KEGG)16 database, with six categories of radiomic phenotypes, including tumor 
size, shape, morphology, enhancement textures, kinetic curve assessments, and enhancement-variance 
kinetics. The study schema is presented in Fig. 1 and the main results are presented in Fig. 2. Specifically, 
Fig. 2a shows the statistically significant associations and Fig. 2b summarizes the numbers of associations 
between different categories of genomic features and radiomic phenotypes. Fisher’s exact test17–18 was 
applied to the numbers reported in Fig. 2b and concluded that the frequencies of statistically significant 
associations are dependent on the categories of genomic features and radiomic phenotypes (p-value 
≤ 1.0 ×  10−8). In other words, some types of genomic features and radiomic phenotypes are more likely 
to be associated than others.

The most intriguing findings in Fig. 2 are related to the associations of two types of genomic features, 1)  
transcriptional activities of pathways and 2) miRNA expressions. Specifically, pathway transcriptional 
activities are associated with all six types of radimoic phenotypes with statistical significance (Table S3),  
indicating that they can regulate various aspects of the tumor phenotype. Strikingly, statistically signifi-
cant associations between pathway transcriptional activities and all four tumor size phenotypes (includ-
ing lesion volume, effective diameter, surface area, and maximum linear size) are extremely specific in that 
more than 97.7% of the associations are positive (adjusted p-values ≤ 6.21 ×  10−9 by the Chi-squared 
proportion tests with equal proportions of positive and negative associations), indicating that many 
pathways are up-regulated during tumor growth since larger tumors are associated with mostly higher 
pathway activities. We find that pathway transcriptional activities are mostly negatively associated with 
two tumor morphological features including margin sharpness and variance of radial gradient histogram 
(with adjusted p-values ≤ 0.043 from the proportion tests). This suggests a positive correlation between 

Figure 1.  Flowchart illustrating the organization of data and analyses in the study. QIA refers to 
Quantitative Image Analysis.
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the transcriptional activities of genetic pathways and a blurred tumor margin, which is potentially a sign 
of tumor invasion into the surrounding tissue. Also, the transcriptional activities of pathways are mostly 
positively associated with the irregularity of tumor shape, another sign of aggressive tumor, characterized 
by two radiomic phenotypes irregularity and surface to volume ratio (with adjusted p-values ≤ 0.00285 
from the proportion tests).

The associations between miRNA expressions and radiomic phenotypes are highly specific in that 
miRNA expressions are only associated with primarily two types of radiomic phenotypes, tumor size 
and enhancement texture (Fig.  2 and Table S3). Statistically significant associations between miRNA 
expressions and three out of the four tumor size phenotypes are dominantly positive with proportions 
≥ 92.3% and adjusted p-values ≤ 0.00118 from the proportion tests. This suggests that miRNAs may 
mainly mediate the growth of tumor and the heterogeneity of blood vessel system in tumor. Such insights 
on the role of miRNA may facilitate the cancer mechanism study and the design of miRNA targeted 
treatment. Conversely, due to the specificity in the associated phenotypes, it is possible to use radiomic 
phenotypes characterizing the tumor size and enhancement texture to predict miRNA activities without 
the need for tumor biopsy and miRNA profiling.

Compared to the transcriptional activities of genetic pathways, the CNVs of pathways have much 
fewer statistically significant associations (Fig.  2), which are enriched with only the tumor size 

Figure 2.  Overview of all identified statistically significant associations. (a) In the figure, each node is 
a genomic feature or a radiomic phenotype. Each line is an identified statistically significant association. 
Genomic features without statistically significant association are not shown. Genomic features are organized 
into circles by data platform and indicated by different node colors. Radiomic phenotypes are divided 
into six categories also indicated by different node colors. The node size is proportional to its connectivity 
relatively to other nodes in the category. Associations are deemed as statistically significant if the adjusted 
p-values ≤ 0.05. The only exception is for the associations involving somatically mutated genes, for which the 
statistical significance criteria are (1) p-value ≤ 0.05 and (2) the gene mutated in at least five patients.  
(b) A table showing the numbers of statistically significant associations between genomic features of different 
platforms and radiomic phenotypes of different categories.
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phenotypes (adjusted p-value =  7.95 ×  10−8, Table S3) and the enhancement-variance kinetics (adjusted 
p-value =  4.46 ×  10−6, Table S3). TCGA uses the Reverse Phase Protein Array (RPPA) to measure the 
expression levels of 142 proteins and phospho-proteins related to breast cancer. Protein expressions show 
enriched associations with the tumor size phenotypes (adjusted p-value =  0.0486, Table S3) and the mor-
phological phenotypes (adjusted p-value =  0.0244, Table S3), but not with any other phenotype category.

We discuss the identified associations of different types of genomic features in detail in the next four 
sub-sections.

Associations between Genetic Pathways and Radiomic Phenotypes.  The associations between 
the transcriptional activities of KEGG pathways and the radiomic phenotypes were studied using 
GSEA14–15. A total of 1,103 statistically significant (adjusted p-values ≤ 0.05) associations have been 
identified (Fig. 2 and Table S4). Fig. 3 provides some examples involving cancer-related pathways, which 
we elaborate below.

Cell Cycle, DNA Replication and Ribosome.  Tumor growth requires excessive cell proliferation, for 
which 1) DNA replication, 2) protein synthesis, and 3) cell cycle are essential. Genes involved in cell cycle 
and DNA replication are positively associated with all four tumor size phenotypes (Fig.  3), indicating 
their activations during tumor growth. All these three gene modules are also positively associated with 
enhancement at the first post-contrast time point, normalized total rate variation, and maximum variance 
of enhancement, which characterize the blood flow dynamics and the contrast uptake heterogeneity in 
tumor.

Conserved Regulations in Cancer.  KEGG does not provide a genetic pathway dedicated to breast cancer, 
but provides a comprehensive regulation map called “pathways in cancer“19 that includes the conserved 
regulation mechanisms across cancer types. The transcription activity of this large molecular regulation 
system is positively associated with 14 radiomic phenotypes and negatively associated with 9 radiomic 
phenotypes (Fig. 3). It is positively associated with the tumor size phenotypes. Its activity is also associ-
ated with an increased tumor shape irregularity characterized by the irregularity and sphericity pheno-
types, which is usually a sign of malignant and aggressive tumor20.

JAK-STAT Signaling Pathway.  The JAK-STAT signaling cascade forms the principal signaling trans-
duction mechanism in response to a variety of cytokines and growth factors21. Over-activation of the 
JAK-STAT pathway can cause cancer by evading apoptosis and forming self-sufficient growth signals22. 
According to our analysis, the transcriptional activity of JAK-STAT signaling pathway is positively associ-
ated with the tumor size phenotypes (Fig. 3). Also, we found a statistically significant association between 

Figure 3.  Heatmap representation of statistically significant associations between radiomic phenotypes 
and transcriptional activities of some cancer-related genetic pathways. In the heatmap, genetic pathways 
are rows and radiomic phenotypes are columns.
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its activity and the tumor shape irregularity measured by two radiomic phenotypes, irregularity and 
sphericity. We also see that the pathway has statistically significant positive associations with maximum 
enhancement and enhancement at first post-contrast time point, which implies that tumors with a higher 
JAK-STAT pathway activity have more leaky microvessels to support its growth.

Cell Adhesion Molecules.  The cell adhesion molecules are in direct or indirect control of cellular activ-
ities such as adhesion, proliferation, migration and differentiation. Aberrant activities of cell adhesion 
molecules disrupt normal cell-cell and cell-matrix interactions and can facilitate tumor formation and 
metastasis23. In Fig.  3, we find that expressions of cell adhesion genes are correlated with the signs of 
tumor malignancy and aggressiveness, such as a large tumor size (measured by all four tumor size pheno-
types), an increased tumor shape irregularity (characterized by irregularity and sphericity), and increased 
blood flow dynamics (measured by maximum enhancement, enhancement at the first post-contrast time 
point, and uptake rate).

TGF-beta Signaling Pathway.  The role of TGF-beta signaling pathway in breast cancer has been inten-
sively studied24–25. TGF-beta serves as a tumor suppressor at the initial stage of tumorigenesis, but loses 
its growth inhibition function during cancer progression and diverts towards promoting motility, inva-
sion and metastasis at late stage25. We find that a strong activity of TGF-beta signaling pathway is posi-
tively associated with irregular tumor shape characterized by sphericity (Fig. 3). Its statistically significant 
positive association with the maximum variance of enhancement implies a correlation between the activ-
ity of TGF-beta signaling pathway and the heterogeneous blood distribution in tumor.

Section 5 in the Supplementary Information provides more explanations on the associations involving 
other cancer-related pathways shown in Fig.  3. We also identified statistically significant associations 
between the CNVs of pathways and radiomic phenotypes (Fig. S2 in the Supplementary Information 

Figure 4.  (a) Statistically significant associations between radiomic phenotypes and expressions of 
selected cancer-related miRNAs. Only radiomic phenotypes and miRNAs with statistically significant 
associations are shown. (b) Statistically significant associations between radiomic phenotypes and RPPA 
protein expressions. Only proteins and radiomic phenotypes with statistically significant associations are 
shown. For each protein, the name of the protein is shown after “|” and the gene that encodes the protein  
is shown before “|”.
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Section 5). For example, the copy number amplification of JAK-STAT signaling pathway is associated 
with an increased tumor shape irregularity.

Associations between miRNA Expressions and Radiomic Phenotypes.  Using the linear regres-
sion analysis (see Section 6 in the Supplementary Information), we found statistically significant (adjusted 
p-value ≤ 0.05) associations between miRNA expressions and primarily two types of radiomic pheno-
types, tumor size and enhancement texture (Fig. 2). Table S5 in the Supplementary Information shows all 
the identified associations. We curated a list of miRNAs related to cancer development, especially breast 
cancer formation, by literature survey26–29, and present in Fig. 4a the statistically significant associations 
involving these cancer-related miRNAs. MiR-128-1 plays an oncogenic role in drug-resistant breast can-
cer cell by interfering with TGF-beta signaling27. Its expression is found to be positively associated with 
the tumor size. MiR-18a has been reported to induce tumor growth and tumor vascularization26. Its 
expression is positively associated with lesion volume and difference variance. Both miR-19a and miR-
18a belong to the miR-17-92 cluster. The expression of miR-19a is statistically significantly associated 
with enhancement texture phenotypes, including contrast, correlation, difference variance, entropy, and 
maximum correlation coefficient. These associations indicate that the expression of miR-19a correlates 
with the heterogeneity of tumor enhancement texture, which is also a sign of aggressive and malignant 
lesion20. Let-7b shows an opposite association pattern with the enhancement texture phenotypes com-
pared to miR-19a, probably due to the tumor suppressive function of the let-7 family26. MiR-10b has been 
reported as a modulator of tumor invasion and metastasis26,27. Its expression is associated with tumor 
effective diameter.

Associations between Protein Expressions and Radiomic Phenotypes.  All statistically signif-
icant (adjusted p-value ≤ 0.05) associations between protein expressions and radiomic phenotypes are 
shown in Fig. 4b. P-cadherin is a calcium-dependent cell-cell adhesion glycoprotein encoded by CDH3 
in human. Its expression has been shown to be correlated with high histologic grade, increased prolif-
eration, and poor patient survival in breast cancer30–31. We find a statistically significant positive associ-
ation between the expression of P-cadherin and the tumor size, measured by effective diameter, surface 
area, and lesion volume. JNK2 is a mitogen-activated protein kinase encoded by MAPK9 in the MAPK 
signaling pathway. It is considered as a negative regulator of cellular proliferation32, and cooperates with 
JNK1 in activating the p53 singling pathway to induce apoptosis33. The anti-tumorigenic role of JNK2 
is demonstrated in our analysis as its expression is negatively associated with the tumor size phenotypes 
and positively associated with tumor margin sharpness, a phenotype signaling the absence of tumor 
invasion into the surrounding tissue.

Associations between Somatic Gene Mutations and Radiomic Phenotypes.  We compared the 
measurements of a radiomic phenotype for patients harboring somatic mutations in a gene versus those 
not (Section 8 in the Supplementary Information). Table S7 in the Supplementary Information shows all 
the associations in which a gene mutated in at least five patients and the obtained p-value ≤ 0.05.

PIK3CA is an oncogene participating in the signaling cascades of cell growth, survival, proliferation, 
motility and morphology. Four radiomic phenotypes, including one kinetic curve assessment and three 
enhancement texture phenotypes, are associated with PIK3CA mutations. GATA3 has been observed by 
TCGA as the third most frequently mutated gene in breast invasive carcinoma after TP53 and PIK3CA, 
with an overall mutation rate larger than 10%13. GATA3 encodes a transcription factor that regulates 
luminal epithelial cell differentiation in the mammary gland34. Its expression is progressively lost dur-
ing luminal breast cancer progression as cancer cells acquire a stem cell-like phenotype35. Our analysis 
shows that mutations in GATA3 are negatively associated with tumor size (measured by three tumor size 
phenotypes), tumor shape irregularity (measured by irregularity), and sum entropy that measures the ran-
domness of enhancement texture. Such an observation leads to the hypothesis that mutations in GATA3, 
although frequent, might not be driver mutations causing tumor progression, because a large tumor size, 
an irregular tumor shape, and random enhancement texture are usually signs of malignant and aggressive 
tumors. MAP2K4 encodes a kinase in the MAPK signaling pathway and is considered as a tumor suppres-
sor36. Its mutations are positively associated with time to peak and negatively associated with uptake rate, 
indicating tumors with MAP2K4 mutations have a relatively slow blood flow and fewer leaky microvessels.

We also studied the associations of somatic gene mutations at the pathway level, by comparing the 
measurement of a radiomic phenotype for patients with gene mutations in a KEGG pathway versus those 
without (see Section 8 in the Supplementary Information). Table S8 in the Supplementary Information 
shows all the identified statistically significant associations. An interesting observation is that somatic 
mutations in the p53 signaling pathway was found to be positively associated with tumor effective diam-
eter, indicating potentially that DNA mutations can damage the tumor suppressive function of the p53 
signaling pathway and thus induce tumor growth.

Discussion
Based on the integrated data from TCIA and TCGA, we have conducted a comprehensive radiog-
enomic study to explore the association between multi-platform genomic profiles and MRI-based tumor 
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phenotypes for breast invasive carcinoma. Our study generated two major findings that have not been 
previously reported. First, we identified statistically significant associations between six types of radi-
omic tumor phenotypes and various genomic features involved in multiple molecular regulation layers. 
Our large-scale study produced a new resource (available at http://compgenome.org/Radiogenomics/) for 
exploring the genetic mechanisms that potentially regulate the formation of various tumor phenotypes. 
We expect our findings will facilitate future radiogenomic research and provide a template for the type 
of analyses that could be carried out. Second, we observed highly specific patterns for the identified 
associations. Many genetic pathways are more active in tumors with a large size, irregular shape, and 
blurred margin. MiRNA expressions are associated with only tumor size and enhancement texture, but 
not other types of radiomic phenotypes. These patterns provide new insights on the genetic mechanisms 
that regulate tumor development. They are also potentially useful in the clinical diagnosis of cancer by 
suggesting the candidate radiomic phenotypes for predicting genomic features, although further valida-
tions are needed. If validated, these findings could augment the use of MRI as a non-invasive technology, 
not only for examining tumor phenotypes, but also for probing the underlying molecular status of tumor, 
which is crucial for personalized treatment.

Compared to the associations at the transcriptional level, we found much fewer statistically signifi-
cant associations for pathway CNVs and gene somatic mutations. There could be two reasons for this 
observation. Firstly, DNA mutation events, such as CNVs and somatic mutations are rarely shared across 
many patients ( Table S6). Thus, there lacks sufficient statistical power for identifying a potential asso-
ciation, especially given the small sample size in almost all radiogenomic studies. We believe that our 
initial results can trigger the motivation for future large-scale radiogenomic studies that include a large 
number of samples. Secondly, compared to DNA mutations, gene expressions are more directly related 
to phenotype in the process of genetic events influencing phenotype development. Genetic mutations 
are more upstream in the functional activities of the cellular system. Therefore, gene expressions present 
more associations with tumor phenotypes.

An interesting finding is that the transcriptional activity of basal cell carcinoma pathway is statistically 
significantly associated with 12 radiomic phenotypes of breast invasive carcinoma (Table S9). Actually, 
among all the cancer-type-specific KEGG pathways, the basal cell carcinoma pathway is associated with 
the largest number of breast cancer radiomic phenotypes (Section 9 and Table S9 in the Supplementary 
Information). Such associations between breast and skin cancer are consistent with their correlation in 
terms of disease prevalence. Patients with basal cell carcinoma, especially those diagnosed at a young 
age, have been reported to have an increased risk for noncutaneous cancers including breast cancer38.

Our study is based on genomic data generated by a single tissue sample from each primary tumor. 
Tumor contains spatially heterogeneous cell populations. A single biopsy sample of a tumor usually 
contains multiple cell subpopulations, but typically cannot encompass all the subclones of a tumor. 
Therefore, the genomic profile of a single tumor sample may be incomplete and only partially reflect 
the overall genomic landscape of the entire tumor. All these can affect the results obtained through the 
radiogenomic analysis. A comprehensive study would require multiple biopsy samples from the same 
tumor, which is often costly and labor-intensive in practice. In return, such a study will be more inform-
ative and accurate.

In addition to the association analysis, we did clustering analysis on the tumor samples to provide 
an overview of the radiomic and expression data used in the analysis (Fig. S1 and Section 3 in the 
Supplementary Information). The clustering partitions of tumors were associated with the clinical sub-
types of tumors defined by their pathological state and molecular receptor status (Table S2). Tumor 
clustering partitions based on gene expressions, miRNA expressions, and protein expressions are all 
statistically significantly (adjusted p-values ≤  0.05) associated with the statuses of Estrogen Receptor 
(ER) and Progesterone Receptor (PR), which means that ER+  patients and PR+  patients show differ-
ent expression patterns from ER − patients and PR − patients, respectively, at multiple molecular levels 
(Table S2 and Fig. S1).

Survival analysis is not included in our study, because of the short overall follow up (median is 870 days)  
and the small number of mortality events (1 out of 91). In this work, we are focusing on understanding 
the relationship between MRI tumor phenotypes and underlying genetic mechanisms, if there are any. 
We attempt to address a critical aspect of patient care – the use of noninvasive technology. Genomic fea-
tures reflect the molecular characteristics of a tumor, but are obtained through invasive procedures such 
as surgery or biopsy. Through the study of radiogenomics, we aim to identify good surrogate radiomic 
features that can reveal genetic changes of tumors, thereby establishing noninvasive means for monitor-
ing tumor progression.

More analyses have been planned for future radiogenomic study of breast cancer. Integration of mul-
tiple genomic, epigenomic, proteomic features simultaneously with radiomic phenotypes can provide a 
better understanding of how the multiple molecular regulation layers generate the observed tumor phe-
notypes. Graphical models can be a powerful tool to study the complex relationships between radiomic 
and genomic features39, which takes into account the potential competitive regulations and conditional 
dependence between them. Another interesting topic is to use predictive modeling to predict the status 
of a genomic feature (especially the biomakers important for diagnosis, prognosis, and response to ther-
apy) based on imaging phenotypes that have been shown to associate with genomic features.

http://compgenome.org/Radiogenomics/
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Methods
The preparation of data and the organization of the analysis in this study are illustrated in Fig.  1. The 
DCE-MRIs of 91 breast cancers were downloaded from TCIA. These cases were contributed by four insti-
tutions, including Memorial Sloan Kettering Cancer Center, Mayo Clinic, University of Pittsburg Medical 
Center, and Roswell Park Cancer Institute. Section 1 in the Supplementary Information introduces the 
imaging cases, including the patient populations and the MRI pulse sequences used. Using a quantitative 
MRI radiomics workstation, i.e. the Quantitative Image Analysis (QIA) workstation20,40–45 that had been 
initially developed for computer-aided diagnosis research, we computationally extracted 38 radiomic 
phenotypes from the DCE-MRIs for each of the 91 primary tumors to characterize size, shape, margin, 
enhancement texture, kinetics, and variance kinetics. See Table S1 in the Supplementary Information for a 
summary of the radiomic phenotypes by category. Section 1 in the Supplementary Information also pro-
vides the mathematical descriptions of radiomic phenotypes. Using TCGA-Assembler46, we retrieved and 
processed the multi-layer genomic data of these tumors from TCGA, including gene expressions, copy 
number variations (CNV), protein expressions, miRNA expressions, and somatic mutations. Section 2  
in the Supplementary Information introduces the sample inclusion criteria of TCGA and the assays, 
platforms, and algorithms used for generating the genomic data.

The radiomic data and genomic data were then combined as described in Fig.  1. See Table  1 for a 
summary of the combined radiogenomic data. To provide an overview of the radiogenomic dataset, 
unsupervised clustering on tumor samples was performed to identify tumor subgroups defined by indi-
vidual data platforms (Fig. S1). The obtained tumor clusters were then associated with the tumor patho-
logical stage and molecular receptor status (see Table S2). Details of the clustering analysis and results 
can be found in the Supplementary Information Section 3. Section 4 of the Supplementary Information 
tests the enrichment of the identified associations for each category of genomic features and radiomic 
phenotypes, with the results shown in Table S3.

We used the R package PIANO15 to perform the GSEA for identifying the associations between radi-
omic phenotypes and genetic pathways. Section 5 in the Supplementary Information introduces the 
PIANO package, its parameter setting, and other details of the analysis. Table S4 shows the median 
adjusted p-values for all associations between the radiomic phenotypes and the pathway transcriptional 
activities. Fig S2 is a heatmap presentation of all statistically significant associations between the radi-
omic phenotypes and the copy number variations of pathways. Additional discussions on the associ-
ations involving transcriptional activities of cancer-related pathways are included in Section 5 of the 
Supplementary Information.

Data Platform Number of Features Number of tumors

Number of features and tumors in different data platforms

Radiomics 38 91

Gene expressions 20531 genes (186 pathways) 91

Copy number variations 19950 genes (186 pathways) 91

miRNA expressions 1046 91

Protein expressions 142 62

Mutated genes 3734 91

Number of tumors with different pathological stages

Pathological Stage T M N Overall

0 91 46

I 38 34 22

II 50 6 58

III 3 4 11

X 1

Number of tumors with different molecular receptor statuses

Receptor Status ER PR HER2

Negative 14 19 72

Positive 77 72 19

Table 1.   Summary of integrated data. ER, PR and HER2 refer to Estrogen Receptor, Progesterone 
Receptor, and Human Epidermal growth factor Receptor 2, respectively.
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Sections 6, 7 and 8 of the Supplementary Information introduce the details of linear regression analy-
sis for identifying associations between radiomic phenotypes and three types of genomic features, includ-
ing miRNA expression, protein expression, and gene somatic mutation, respectively. Data preprocessing 
steps, mathematical formulas, and the analysis procedure are included in those sections. Table S5 shows 
the analysis results of all identified associations involving miRNA expressions. Table S6 summarizes the 
frequencies of somatic gene mutations among patients. Table S7 and Table S8 present the analysis results 
of all identified associations involving somatic gene mutations at the single gene level and at the pathway 
level, respectively.

Section 9 and Table S9 in the Supplementary Information summarize the numbers of associations 
between the radiomic phenotypes of invasive breast carcinoma and the transcriptional activities of 
KEGG pathways dedicated to other types of cancer. This information is provided for the discussion on 
the relationship between breast cancer and basal cell carcinoma.
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