
1Scientific Reports | 5:11625 | DOI: 10.1038/srep11625

www.nature.com/scientificreports

Energy landscape scheme for an 
intuitive understanding of complex 
domain dynamics in ferroelectric 
thin films
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Seung Yup Jang2, Taeyuun Min2, Jin-Seok Chung5, Chang-Beom Eom4 & Tae Won Noh1,2

Fundamental understanding of domain dynamics in ferroic materials has been a longstanding issue 
because of its relevance to many systems and to the design of nanoscale domain-wall devices. 
Despite many theoretical and experimental studies, a full understanding of domain dynamics 
still remains incomplete, partly due to complex interactions between domain-walls and disorder. 
We report domain-shape-preserving deterministic domain-wall motion, which directly confirms 
microscopic return point memory, by observing domain-wall breathing motion in ferroelectric BiFeO3 
thin film using stroboscopic piezoresponse force microscopy. Spatial energy landscape that provides 
new insights into domain dynamics is also mapped based on the breathing motion of domain walls. 
The evolution of complex domain structure can be understood by the process of occupying the 
lowest available energy states of polarization in the energy landscape which is determined by defect-
induced internal fields. Our result highlights a pathway for the novel design of ferroelectric domain-
wall devices through the engineering of energy landscape using defect-induced internal fields such as 
flexoelectric fields.

Domain-wall (DW) motion in ferroic materials has been the subject of abundant researches1–12 and is 
critical to many device applications4–6 because it significantly affects dielectric, piezoelectric, ferroelectric, 
and magnetic properties4. Interestingly, the interaction of DWs with defects induces many intriguing 
phenomena, including complex but universal pinning-dependent field-driven DW dynamics8–11 and the 
wide spread occurrence of Rayleigh behavior in disordered ferroics12–14 by which the nonlinear responses 
of magnetic, piezoelectric and dielectric properties at low fields are analyzed. In addition, DW itself can 
have functional properties, such as electronic conductivity of ferroelectric DWs15, the magnetic moments 
of ferroelectric DWs in antiferromagnets16 and electric polarization of magnetic DWs17, that offer poten-
tial for active nanodevice applications4–6,18. Most of next-generation nanoscale non-volatile memory and 
logic devices based on DW motion rely on the controlled movement of DWs in ferroic systems4–6,18–20. 
In magnetic systems, a well controlled DW motion has been achieved by introducing artificial defects 
to engineer the energy landscape21. Such a deterministic DW motion actually has been a longstanding 
question related to microscopic return point memory, i.e., whether one point on the major hysteresis 
loop returns to the same microscopic domain configuration22–24.
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For the realization of the conceptual DW-based nanodevices, whose performance relies on the pre-
cise manipulation of DWs, a deeper understanding of DW dynamics under the influence of disorder is 
required. A conceptual one-dimensional energy landscape has been often used to describe DW motion 
in disordered system12,21,25,26 because DW motion is determined by the interplay between the driving 
forces and the complex energy landscape of the system. Although the concept of energy landscape is 
useful in describing DW motion, a theoretical framework for the analysis of the energy landscape is 
yet not well established in ferroic systems because of complex interactions between DWs and disorder. 
Recent reports on the spatial and energy distribution of nucleation centers27, nanoscale ferroelectric 
switching dynamics11,28–31, and controllability of switching process32 and DW motion19–21 have advanced 
the understanding of domain dynamics in ferroic systems. Nevertheless, practical studies on the energy 
landscape, which can explain the evolution dynamics of complex domain structure and its correlations 
with defects, have been rare29. The notion of energy landscape will provide a much deeper understanding 
of DW motion in ferroic systems in which driving forces act.

In this paper, we report an intuitive approach to understanding complex domain dynamics in ferroe-
lectric thin film, including domain nucleation and the propagation of DWs, by visualizing spatial energy 
landscape that correlates the energy landscape with defect-induced local internal fields. In the scheme 
of energy landscape, domain switching kinetics corresponds to the process of sequentially occupying the 
lowest available energy states of polarization under an external field. Our work provides new insights into 
domain dynamics and highlights a new pathway for controlling DW motion in emerging technologies 
that exploit DWs by using defect-induced internal fields such as flexoelectric fields.

Results and Discussion
Domain-shape-preserving deterministic domain wall motion.  BiFeO3 (BFO) is known to have 
a very strong coupling between ferroelastic strain and ferroelectric polarization33. We used epitaxial Pt/
BFO/SrRuO3 heterostructure grown on a vicinal SrTiO3 (STO) (001) substrate with a 2° miscut as a 
model system (For the detailed information of sample characterization, see Methods and Supplementary 
Figs. S1 and S2). By using stroboscopic piezoresponse force microscopy (PFM)34, we investigated the 
evoultion of switched domains in the BFO film systematically. Especially, we observed DW breathing, i.e., 
the repetitive back-and-forth motion of DWs, by applying cyclic series of positive and negative electric 
pulse fields to the top Pt electrode (see Methods and Supplementary Fig. S3). The PFM phase (θ) images 
in Fig. 1a show the nucleated domains of upward polarization (bright regions) growing anisotropically in 
a down-poled single domain by applying a series of negative switching pulses. We note that subsequent 
application of positive pulses causes only the shrinkage of the switched up-domains (Fig. 1b). Repeated 

Figure 1.  Domain-shape-preserving DW breathing motion. a-j, Successive out-of-plane PFM phase 
(θ) images of FE domains taken upon application of each pulse field. Domains expand and shrink in 
approximately the same patterns under the 1st, 2nd, 3rd, 4th, and 5th series of negative (a, c, e, g, and i) and 
positive (b, d, f, h, and j) switching pulses with the respective switching times of τi and ξi (i =  1,2,3,4,5), 
τ i and ξ i are the cumulative pulse time of each domain-switching with negative and positive switching 
pulses, respectively, i.e. the sum of the widths of a series of switching pulses (Supplementary Fig. S3a). ⊙  
and ⊗  represent the direction of the external upward and downward electric fields induced by negative and 
positive switching pulses, respectively. The bright and dark regions in the out-of-plane PFM images represent 
ferroelectric domains with up and down polarization, respectively.
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measurements (Fig.  1a–j) enable us to trace the positions of DWs during the breathing motion and 
provide information on the evolution dynamics of complex domain structure.

Importantly, the behavior of DW breathing in the BFO film reveals that DW motion is deteriminstic 
in large parts. The DW breathing motion shows an asymmetric growth behavior, where DWs at the right 
side of the switched domain move toward the [100] or [−100] directions, while the left side is strongly 
pinned, in agreement with the previous report35. Although minor differences are found in the detailed 
shape of domains, the overall evoution of switched domains follows nearly the same pattern during 
domain expansion and shrinkage. Even for the repetitive nucleation processes, they grow in similar 
shapes (Fig. 1g,i). Figure 2 displays the overlapped positions of DWs for the largest switched domains, 
which are determined from the PFM images in Fig. 1a–j. It should be noted that the positions of DWs 
are practically identical with only small minor variations.

Microscopic return point memory, which measures the reproducibility of microscopic domain struc-
ture after hysteresis loop cycling in ferroic systems, is strongly influenced by disorder and has been 
shown to increase with increasing random-field disorder22. The domain-shape-preserving DW breath-
ing motion directly demonstrates a high degree of microscopic return point memory and confirms the 
strong effect of disorder in the BFO film. The DW motion in the film is largely deterministic and the 
patterns of domain evolution should be affected by the defects in the film. Namely, the DW motion 
should be subject to the energy landscape that is pre-determined by the defect-induced built-in internal 
fields in the film. Therefore, the traces of DWs should correspond approximately to the equipotential 
lines in the energy landscape of the BFO film, similar to contour lines in a map.

Energy landscape and built-in internal fields.  In order to explore experimentally the features of 
energy landscape for domain dynamics in ferroelectrics, we first consider the energetics of polarization 
switching under local effective field, Eeff(r, t).

P r P E ru t u t[ ] 1LG eff
0( , ) = − ⋅ ( , ), ( )

E r E E rt t t 2eff ext int( , ) = ( ) + ( , ) ( )

where u[P(r, t)] is the free-energy density of polarization P(r) and the term uLG
0  can be expressed as the 

Landau-Ginzburg-Devonshire form of the Gibbs free-energy density at zero external field. Eext and Eint(r, 
t) are external and local internal fields, respectively. The origin of the internal field includes depolariza-
tion field, ferroelastic strain, and other fields coming from defects etc. As for the effect of defects, 

Figure 2.  Overlaps of DW positions showing deterministic DW motion. The overlapped positions of 
DWs obtained from the PFM images in Fig. 1a,e,g,i for τ1 =  250 μ s (solid black lines), τ2 =  80 μ s (dashed red 
lines), τ3 =  80 μ s (dotted green lines), τ4 =  140 μ s (dash-dotted blue lines), and τ5 =  120 μ s (dash-dot-dotted 
purple lines). The positions of all the DWs are nearly identical, showing deterministic motion of DWs in the 
vicinal BFO (001) film.
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Nattermann et al. introduced random-field and random-bond type interactions between DWs and ran-
dom disorders to treat DW pinning in disordered systems7. The random-field defects break local sym-
metry by causing built-in internal fields and give rise to different double-well potential energies for 
equivalent ferroic states. On the other hand, the random-bond defects do not break local symmetry and 
the potential energy should be the same for equivalent ferroic states.

If we assume that a ferroelectric system is initially poled to have a uniform polarization by applying a 
strong external field, the local energy of polarization determined by equation (1) should reflect built-in 
local internal fields. Figure 3a shows a presumed 1-dimensional profile of the internal fields. Then, the 
profiles of potential energy depends on the initial poling states of polarization, as shown in Fig. 3b,c. The 
energy profile for up-polarization (Fig. 3b) has the reversed shape of the builit-in internal field, while that 
for down-polarization poling state (Fig. 3c) resembles the profile of the internal field. Each local energy 
state corresponds to one of the energy minima of double-well potential that is conventionally used in 
describing polarization states. The built-in internal fields cause the local double-well potential to become 
asymmetric. It should be noted that, for polarization switching to occur by applying an external field, 
an energy barrier must be overcome. The local energy barrier is determined in principle by the energy 
difference between zero-polarization and ± P states in equation (1). An external switching field would 
induce instabilty of the intial states by shifting the overall energy levels of polarization in the energy 
landscape. In case of the local effective field being strong enough for the nucleation of opposite domain, 
a transition from the initial down- to up-polarization state can be initiated at energetically unstable sites 
by overcoming the energy barrier, as indicated with red up-arrows in Fig.  3b,c. The transition proba-
bility would increase with increasing the strength of external field. The nucleation of down-polarization 
domains in the initial up-polarization state occurs in a similar way, as indicated with blue down-arrows. 
After the nucleaton process, switched domains continuously grow into nearby regions by occupying the 
lowest available energy states in the energy landscape. If we use an analogy between the energy landscape 

Figure 3.  Schematic energetics of polarization in built-in local internal fields. The local energy of 
polarization in builit-in local internal fields depends on the initial poling states of the polarization. a, A 
presumed one-dimensional profile of the internal field. b,c The potential energy profiles of U(Pup) (b) and 
U(Pdown) (c) are the local energies for up-polarization and down-polarization poling states, respectively. The 
external switching field shifts the overall levels of the energy profiles and induces instabilty of the intial 
states, causing transition from the initial (up/down)-polarization state to (down/up)-polarization state. 
Nucleation occurs at energetically the most unstable site(s) by the transition of the polarization states, as 
indicated with the up-/down-arrows. Additional application of the swiching fields causes succesive transitons 
of polarization states along the paths of the lowest energy states (red dotted-lines), driving the growth of 
nucleated domain (shadow region).
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for polarization and the geometrical landscape of a lake to explain the growth of domains, the schematic 
energy landscape for up-polarization state in Fig. 3b corresponds to the geometric landscape in which 
water has been completely drained away. Then, the expansion of water-filled and exposed (i.e., absence 
of water) regions would correspond to the growth of up- and down-polarization domains, respectively, 
upon the application of switching external fields. Hence, the domain switching kinetics of ferroelectric 
films corresponds to the process of sequentially occupying the lowest available energy states in the energy 
landscape under an external field, which is dependent on the spatial distribution of the stable/unstable 
energy states for different polarization.

It should be mentioned that domain growth may influence local internal fields through the inter-
action between the polarization of adjecent sites3,7,8. The interaction may modify the local energy 
state of polarization near DWs without affecting signifcantly the overall profile of U[P(r)]. When the 
interaction is strong enough to overcome the effect of defect-induced internal fields, a stochastic (or 
non-deterministic) DW motion should occur. Thus, nanoscale study of domain dynamics can provide 
information on defect-induced internal fields as well as the dominant defect-type governing the domain 
dynamics.

Energy landscape and domain switching kinetics.  To gain further insights into the details of 
the deterministic DW motion, we investigate DW breathing for two different polarization states in 
the out-of-plane direction, as shown in Fig. 4a,b (Supplementary Fig. S4). The domain evoluton of the 
switched domains also reveals the domain-shape-preserving deterministic motion of DWs. We note that 
the distribution of nucleation sites are quite different for the different intial polarization states32,34. This 
indicates that local polarization reversal symmetry is broken considerably by defect-induced built-in 
internal fields which lower local nucleation energy. Thus, in a plane-capacitor experiment, random-field 
type defects, probably formed at the interfaces31,32, are expected to play a dominant role in domain 
switching27, leading to the deterministic DW motion as well as inhomogeneous deterministic nuclea-
tion11,32,34.

The energy landscape of the BFO film can be mapped by superimposing the total piezoresponse 
(Rcosθ) images acquired during the breathing motion, and then plotting the total intensity of each pixel 
in spatial coordinates36 (see Methods and Supplementary Fig. S5). The deduced energy landscape is 
shown in Fig. 4c and its contour plot (Fig. 4d) shows the equipotential lines in the energy landscape. It 
should be mentioned that there exist uncertainties in the energy landscape because DW motion is not 
perfectly deterministic and depends on the spatial distribution of built-in internal fields. The regions of 
middle contrast in Fig. 4d have the maximum uncertainty in the positions of DWs for different switching 
events and a stochastic behavior may appear. On the other hand, in the regions of extreme contrast, DW 
positions show the minimum variation. The spatially-resolved energy landscape provides the basis for an 
intuitive understanding of complex domain dynamics.

The nucleation and subsequent growth behavior of domains are determined by the morphology of the 
energy landscape. Figure 4e shows the cross-sectional profiles of the spatial energy landscape along the 
[100] (solid black line) and [010] (dash-dotted blue line) directions. The nucleation of up-polarization 
domain occurs at the local minimum of the energy landscape (marked by upward arrow). The asymmet-
ric shape of the energy landscape profile along the [100] direction well explains the directional growth of 
up-polarization domains along the direction35. The right side of the nucleation site exhibits slow variation 
in energy and low-energy states are easily occupied by polarization switching, resulting in easy DW 
propagation toward the [100] direction. On the other hand, a much larger variation of energy at the left 
side of the nucleation site hinders domain growth to the [−100] direction. For the down-polarization 
domains, the nucleation sites (downward arrows) are widely distributed within a narrow energy range, 
which causes a multiple nucleation at the initial stage of switching. The slow variations of energy at the 
left sides of nucleation sites result in the preferred DW propagation along the [−100] direction, i.e., easy 
occupation of down-polarization states. As for the DW propagation along the [010]/[0–10] direction, 
the cross-sectional profile of the energy landscape (dash-dotted blue line) is relatively flat for both up- 
and down-polarization domain switching, which allows fast domain growth to the direction. Thus, the 
morphology of energy landscape well explains the asymmetric DW propagation and anisotropic domain 
growth in the film.

Field-driven domain wall dynamics in the energy landscape.  DWs in the energy landscape are 
interfaces between the occupied and unoccupied energy states of up-/down-polarization. The nontrivial 
morphology of the energy landscape in Fig.  4c hints at the nature of weak-field DW creep. In a weak 
field, DW front would propagate along a complex path that follows nearby local energy minima in the 
energy landscape by a thermally assisted process. The behavior is conventionally described as creep 
motion of DWs. This motion detours high energy barriers, which results in unswitched islands inside 
the switched domains in Figs 2a–j and 4a,b. On the other hand, an increase in electric field increases the 
probability of occupying the higher energy states in a short time by polarization switching, which causes 
the depinning transition or crossover to the flow regime of DW motion8–10. Thus, pinning-dominated 
driven dynamics of DWs in disordered media can also be easily understood from the energy landscape 
point of view.
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Figure 4.  Spatial mapping of energy landscape and the cross-sectional profiles. a,b Successive out-
of-plane PFM phase (θ) images during the breathing motion of DWs for the switched domains from the 
two different initial single-domain with down- (a) and up-polarization (b) states. ⊙  and ⊗  indicate the 
directions of the upward and downward electric fields induced by the negative and positive switching 
voltages, respectively. The bright and dark regions represent ferroelectric domains with up and down 
polarization, respectively. τ1 and τ2 (ξ1 and ξ2) are the cumulative switching times under negative (positive) 
switching pulses. c, The spatial energy landscape (U) obtained by superimposing total piezoresponse (Rcosθ) 
images. d, The corresponding contour plot showing equipotential lines in the energy landscape. e, Cross-
sectional energy profiles along the [100] (solid black line) and [010] (dash-dotted blue line) directions 
shown in the spatial energy landscape in c. The upward and downward arrows represent the preferential 
nucleation sites of ferroelectric domains with up and down polarization, respectively.
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We argue that the roughness of energy landscape is also quite relevant to domain growth behaviors. 
Figure 5a,b shows the areas of switched domains of up- and down-polarization as a function of cumu-
lative switching-pulse time during domain expansion and shrinkage. We first note that the areal speed 
of domain growth, va, which is equivalent to the slopes of the time dependence of the switched areas, is 
quite different during the expansion and shringkage of domains. The difference should result from the 
built-in internal field which prefer to a particular direction of polarization. The values of va are also quite 
dependent on the polarization direction of switched domains; 13.3 and 3.21 mm2 s−1 for the up- and 
down-polarization domains in the initial down- and up-poling states, respectively. For the sideways DW 
motion, we consider the energy cost U∆  for the nucleation and growth of domains, which can be writ-
ten approximately as;

P E P EU V A U N dv t A U N2 2 3eff w nucl eff a w nucl∆ ∆ σ ∆ ∆ ∆ σ ∆ ∆= ⋅ + + = ⋅ + + , ( )

where Δ V and Δ A are the changes in the volume of switched domains and the area of DWs, respectively, 
and wσ  is the average DW energy density. U nucl is the average nucleation energy, d the thickness of film, 
and N∆  the increase in the number of nuclei. In a rough energy landscape, which is the case of the 
growh of down-polarization domains (Fig.  4b), multiple nucleation takes place and propagating DWs 
encounter a large number of high energy barriers. The detouring motion of DWs around the barriers 
results in large DW areas, requiring additional energy cost for switching in addition to nucleation energy. 
Therefore, va should be small for a given energy supply during the time t∆  of the switching pulse. Hence, 
the roughness of the energy landscape can increase the roughnes of DWs and critically affect the growth 
rate of domains.

Interestingly, the overall switching time varies significantly depending on the preexisting domains. In 
the second stage of domain expansion (open triangles in Fig. 5a,b), polarization switching is governed 
only by DW motion due to the preexisting domains. However, if domain switching process includes 
nucleation (open squares in Fig.  5a,b), va should be much slower according to equation (3) until the 

Figure 5.  Areas of switched domains during the breathing DW motion. a,b The areas of switched 
domains plotted as a function of cumulative switching time for up- (bright regions) (a) and down-
polarization (dark regions) (b) obtained from the PFM images in Fig. 4a,b. The 2nd expansion after the 1st 
shrinkage of domains does not include the initial nucleation process while the 1st expansion of domains 
includes the nucleation process.
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nucleation process is completed. Thus, the overall switching time becomes much longer than the domain 
switching governed only by DW motion. This implies that devices based on DW motion can exhibit 
much faster operating characteristics.

Correlation between the energy landscape and disorder.  Finally, the energy landscape can pro-
vide intuitive information on its relationship with disorder in the film. Figure 6 shows the spatial deriva-
tives of the energy landscape, i.e., the spatial distribution of pinning forces acting on DW because a steep 
energy variation hinders DW propagation. For the local pinning forces hindering DW motion toward 
[100]/[−100] direction, a highly anisotropic stripe-like distribution appears along the step edges of the 
substrate, parallel to [010] direction (Fig. 6a). On the other hand, no strong pinning force is found for 
the DW motion toward the [010]/[0–10] direction (Fig. 6b), in consistent with the fast domain expan-
sion along the [010]/[0–10] direction. The anisotropic distribution of the pinning foreces in the vicinal 
BFO film may be associated with the symmetry breaking induced by the vicinal substrate, because the 
step-terrace structure of the vicinal STO substrate induces anisotropic strains in the film35,37–39.

If we consider the asymmetric energy gradients around the nucleation sites in the energy landscape 
(Fig. 4e), the stripe-like distribution of the local pinnig forces appears to be related to flexoelectric effect. 
In vicinal BFO films, the anisotropically strained state at the step-edge regions would be relaxed inho-
mogeneously with the formation of defects such as misfit dislocations39,40 as the film thickness increases. 
The asymmetric and anisotropic strain relaxation may give rise to flexoelectric effect in the vicinal BFO 
film, resulting in the stripe-like distribution of builit-in local field and DW pinning forces (Fig. 6a). Our 
results are consistent with the recent report that flexoelectric field is weak in the [010] direction com-
pared with that in the [100] direction due to the absence of appreciable strain gradient along the [010] 
direction for the uniaxially strained vicinal BFO film38. This implies that deterministic control of DWs 
for device applications is possible by engineering the energy landscape using defect-induced internal 
fields such as flexoelectric field.

Conclusion
We have investigated the repeated back-and-forth breathing motion of DWs to trace the domain evo-
lution and DW propagation in a vicinal BFO film. Significantly, we demonstrate that the DW motion 
in the film is largely deterministic, preserving the shape of switched domains. This directly confirms a 
high degree of microscopic return point memory in the vicinal BFO films. By considering the interac-
tion between polarization and the built-in local internal fields induced by random-field type defects, 
we define the energy landscape of the vicinal BFO film. In the scheme of the energy landscape, domain 
switching kinetics corresponds to the process of occupying the lowest available energy states by polari-
zation under an external field. The complex domain dynamics in the film, including domain nucleation 
and asymmetric/anisotropic growth of domains can be explained by the morphological characteristics 

Figure 6.  Distribution of local pinning forces in a vicinal BFO(001) film. a,b Spatial derivatives of the 
energy landscape (U) with respect to the [100] (a) and [010] directions (b) of the vicinal BFO (001) film 
(see Fig. 4c). The spatial derivatives correspond to the pinning forces which impedes the propagation of 
DWs along [100]/[−100] (a) and [010]/[0–10] (b) directions. The stripe-like distribution of the pinning 
force along the [010] direction in a shows a correlation with the step-terrace structure of the underlying 
miscut STO substrate.
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of the energy landscape. A stripe-like distribution of the pinnng force for the DW motion toward [100]/
[− 100] direction, which seems to reveal directly the effect of the interfacial step-terrace structure of the 
vicinal substrate, was discussed in conjuction with flexoelectric effect. Our approach provides an intu-
itive understanding of ferroelectric DW dynamics and a pathway to engineering the energy landscape 
for the novel design of ferroelectric DW devices by controlling defect-induced internal fields such as 
flexoelectric field.

Methods
Epitaxial heterostructure film of Pt (40 nm)/BFO (200 nm)/SrRuO3 (100 nm) was grown on a vicinal 
STO (001) substrate with a 2° miscut via off-axis radio frequency magnetron sputtering41. The Pt top 
electrodes, of which area varied from 10 ×  10 to 200 ×  200 μ m2, were patterned through photolithogra-
phy and sputtering. The epitaxial nature of the BFO film was confirmed by using high-resolution x-ray 
diffraction (AXS D8, Bruker). The preferential monoclinic distortion of BFO lattices toward the downhill 
miscut direction (i.e., [100]) was also confirmed by reciprocal space mapping (Supplementary Fig. S1). 
Ferroelectricity of the vicinal BFO (001) film was also confirmed by ferroelectric hysteresis loop meas-
urements (aixACCT TF Analyzer 2000) (Supplementary Fig. S2). Built-in imprint voltage of − 0.75 V was 
revealed in the negative voltage shift of the square-type hysteresis loop.

To visualize the breathing DW motion in a BFO (001) capacitor under the application of an external 
electric field, a modified stroboscopic PFM configuration was used34. For the PFM measurement, we 
designed a series of electric pulse trains that consist of a poling and switching pulse fields. After applying 
the initial positive poling pulse, an alternate series of negative and positive switching pulses with constant 
amplitude Vext and a width t were applied to the Pt top electrode of BFO capacitors (Supplementary Fig. 
S3a). The cumulative pulse time (τ i and ξ i) for each domain-switching state is the sum of the widths 
of a series of negative or positiveswitching pulses. We monitored the evolution of ferroelectric domains 
step by step after the application of each switching pulse by using stroboscopic PFM technique34,42. 
Out-of-plane PFM images were taken for the amplitude (R), phase (θ), and total piezoresponse (Rcosθ) 
signals under an ac voltage of 0.3 Vrms at a frequency of 19.1 kHz. The Vext values used for polarization 
reversal were − 4.5 and 3.0 V for negative and positive switching pulses, respectively, which were close 
to the coercive voltages in the ferroelectric hysteresis loop. Additional details of the PFM experiment, 
including the R images that clearly show DWs, can be found in Supplementary Fig. S3b,c.

The successive application of pulse field causes the occupation of the lowest available states in order, 
and thus, the traces of the DWs obtained from the out-of-plane PFM images correspond to equipotential 
lines in the spatial energy landscape. By adding up the Rcosθ (i.e., piezoresponses with a voltage unit) 
signals of the PFM images acquired during breathing DW motion pixel by pixel, we were able to map 
the spatial energy landscape (Supplementary Fig. S5). In detail, the intensity of the Rcosθ images was 
accumulated with the same weight, because each image was obtained after applying almost identical 
switching pulses in terms of the amplitude and the pulse width. The superimposed Rcosθ image was 
presented spatially and its contour plot based on the accumulated intensity using the WSxM software36. 
In addition, we would like to note that the absolute intensity value in each pixel cannot be solely used 
to describe the observed domain switching behaviors. Rather, relative intensity differences between adja-
cent pixels provide the basis for qualitative explanation of domain nucleation and subsequent sideways 
domain wall motion.
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